





# Mr. OS and Ms. OS study

Professor Timothy Kwok
Director
Jockey Club Centre for Osteoporosis Care and Control
Deputy Director
JC Institute of Ageing

#### Content

- Study design
- Examples of analysis
- How you can participate
- Discussion









# IVIS OS (Hong Kong)

# **Study Design**

- The first ever cohort study on osteoporosis in Asian older men and women
- Mr Os (Hong Kong) is the Chinese arm of an international study of osteoporosis in men (USA (n=5994) and Sweden (n = 3014)).
- Ms Os (Hong Kong) is the study for women, alongside with Mr Os (Hong Kong).
- 2000 men and 2000 women (average age 72 years) in 2001 -2003
- Stratified by age groups: 65-69; 70-74; 75+









#### Study Design & Recruitment

Mr. OS cohort study

Ms. OS (Hong Kong)

Mr. OS Hong Kong

USA

**Sweden** 

Advertisements:

housing estates and community centers

Ambulatory, dwelling in the community

**2000** women ≥ 65y

2000 men ≥ 65y

Baseline recruit: From Aug 2001 to Dec 2003

Follow-up visit: 2yFU, 4yFU, 7yFU, 14yFU

Except those who (1) are unable to walk without assistance of another person (2) are not competent to give informed consent







#### Questionnaires

- Lifestyle, medical history and medication use
- **Fracture history**
- Self rated socioeconomic status (SES, community ladder)
- Physical activity (PASE)
- Cognitive function (MMSE, CSID)
- **SF12**
- **IADL**
- **Geriatric depression scale**
- Prostate health/ women health
- Back and joint health
- Food frequency (dietary quality index, DQI)









#### Measurement - I

- Height and Weight
- BP, pulse
- Ankle / arm BP index
- Visual function: acuity, contrast sensitivity and stereopsis
- Neuromuscular: grip strength, single and repeated chair stand, 6 meter usual pace and 20cm narrow walk





#### Measurement - II

- BMD at hip & lumbar spine and body composition by DXA
- Ultrasound on heel
- MRI in subgroups (baseline M=177 F=218, perfusion, marrow fat, disc and vertebral height, endplate and true volume, 14YFU N~500 spine)
- pQCT at distal radius and tibia (Baseline M=466 F=443, 2YFU M=1728 F=37, 4YFU M=358; BMD)
- QCT (Male spine=329, Male hip=332 at 2YFU)
- X-ray (spine at baseline and spine and hip at 4YFU)









# Bio-sample (serum, DNA)

- ACE genotype
- Serum ACE activity
- Male sex hormones
- **Telomere (M=976, F=1030)**
- Serum vitamin D
- **IGF**
- CRP
- PTH (M=991)
- Amino acid
- Homocysteine, vitamin B12 and folate









# Follow-up

- Two yearly follow-up (site visit) for 4 years
- Fall incidence by every 4 months (telephone) FU) for four years
- Hospital discharge diagnosis for six years
- Fracture rate for ten years
- Survival for 14 years









# Follow up – site visit

| Visit    | Time            | Male | Female | Total     |  |  |
|----------|-----------------|------|--------|-----------|--|--|
| Baseline | Aug 01 - Dec 03 | 2000 | 2000   | 4000      |  |  |
| 2Y FU    | Aug 03 - Dec 05 | 1745 | 1682   | 3427      |  |  |
| 4Y FU    | Aug 05 - Nov 07 | 1566 | 1587   | 3153      |  |  |
| 7Y FU    | Jan 08 - Jan 10 | 989  | 889    | 1878      |  |  |
| 14Y FU   | Nov 15 - Aug 17 | 509  | 552    | 1061 +400 |  |  |









# Special features at year 7

- Overall 53% of the surviving cohort participated
- The unfit were not invited
- Cardiorespiratory fitness
- No DXA





# New variables at year 14

- Questionnaire
  - Loneliness
  - Neighbourhood cohesion
  - SARC-F
  - FRAIL
- Cognitive tests MOCA, verbal fluency (voice recorded)
- Actigraph physical activity over 7 days (N=600)
- Fasting glucose, lipids, creatinine (n=1030)
- Lung function test (N=302)
- MRI spine (N=420)
- Indoor air pollutant monitoring for three days (N=121)









# New variables at year 14

- Consent for access to electronic medical records for ten years
- History of address verified to estimate historical air pollution exposure
- 512 pair of spouses at baseline; 82 pair followed up at year 14; 26 spouses joined study
- Fall incidence 3 monthly









# Characteristics – Baseline (I)

|                                                       | Mean (SD)     | / Freq (%)    | p-value |
|-------------------------------------------------------|---------------|---------------|---------|
|                                                       | Male          | Female        |         |
| Baseline                                              | N=2000        | N=2000        |         |
| Age                                                   | 72.39 (5.01)  | 72.58 (5.36)  | 0.2541  |
| Weight (kg)                                           | 62.44 (9.38)  | 54.52 (8.50)  | <.0001  |
| Height (cm)                                           | 163.10 (5.72) | 150.90 (5.31) | <.0001  |
| BMI (kg/m²)                                           | 23.45 (3.13)  | 23.92 (3.45)  | <.0001  |
| PASE score                                            | 97.28 (50.30) | 85.36 (33.16) | <.0001  |
| SF12 – physical                                       | 50.53 (7.59)  | 46.60 (8.76)  | <.0001  |
| SF12 – mental                                         | 55.83 (6.77)  | 55.05 (7.76)  | 0.0007  |
| Time to complete 5 stands (s)                         | 12.65 (3.90)  | 13.42 (5.04)  | <.0001  |
| Appendicular lean muscle/ height <sup>2</sup> (kg/m²) | 7.20 (0.82)   | 6.06 (0.73)   | <.0001  |
| Grip strength (kg)                                    | 33.90 (6.73)  | 22.31 (4.41)  | <.0001  |
| Walking speed (m/s)                                   | 1.07 (0.23)   | 0.96 (0.21)   | <.0001  |
| Sarcopenia                                            | 187 (9.35%)   | 106 (5.3%)    | <.0001  |









# Characteristics – Baseline (II)

|                                  | Mean (SD)    | / Freq (%)   | p-value |
|----------------------------------|--------------|--------------|---------|
|                                  | Male         | Female       |         |
| Baseline                         | N=2000       | N=2000       |         |
| Smoking                          | 238 (11.9%)  | 37 (1.85%)   | <.0001  |
| Alcohol use (>12 drinks in p12m) | 471 (23.55%) | 51 (2.55%)   | <.0001  |
| Diabetes                         | 293 (14.65%) | 286 (14.3%)  | 0.7531  |
| Hypertension                     | 836 (41.8%)  | 871 (43.55%) | 0.2632  |
| Cardiovascular disease           | 366 (18.3%)  | 330 (16.5%)  | 0.1332  |
| COPD                             | 232 (11.6%)  | 101 (5.05%)  | <.0001  |
| Depressed                        | 169 (8.45%)  | 203 (10.16%) | 0.0642  |
| Cognitive impaired <sup>a</sup>  | 81 (4.05%)   | 266 (13.3%)  | <.0001  |
| Osteoporosis                     | 273 (13.65%) | 983 (49.15%) | <.0001  |

<sup>&</sup>lt;sup>a</sup> Mini-Mental State Examination score ≤18 in illiterate, ≤20 in 1–2 years of schooling and ≤22 in more than 2 years of schooling









# Characteristics – 14Y FU (I)

|                                               | Mean (SD)     | / Freq (%)    | p-value |
|-----------------------------------------------|---------------|---------------|---------|
|                                               | Male          | Female        |         |
| 14Y FU                                        | N=509         | N=552         |         |
| Age                                           | 83.34 (3.69)  | 83.33 (4.03)  | 0.9851  |
| Weight (kg)                                   | 61.33 (9.10)  | 52.92 (8.70)  | <.0001  |
| Height (cm)                                   | 161.97 (6.00) | 149.53 (5.93) | <.0001  |
| BMI (kg/m²)                                   | 23.34 (2.96)  | 23.66 (3.64)  | 0.1237  |
| PASE score                                    | 76.60 (43.42) | 68.35 (38.38) | 0.0013  |
| SF12 – physical                               | 48.53 (8.75)  | 42.30 (10.22) | <.0001  |
| SF12 – mental                                 | 52.86 (8.09)  | 51.18 (9.31)  | 0.0018  |
| Time to complete 5 stands (s)                 | 11.49 (4.74)  | 12.95 (5.46)  | <.0001  |
| ALM/ height <sup>2</sup> (kg/m <sup>2</sup> ) | 6.52 (0.74)   | 5.56 (0.71)   | <.0001  |
| Grip strength (kg)                            | 23.49 (6.04)  | 13.85 (4.24)  | <.0001  |
| Walking speed (m/s)                           | 0.86 (0.22)   | 0.74 (0.22)   | <.0001  |
| Sarcopenia                                    | 239 (54.94%)  | 198 (37.22%)  | <.0001  |









# Characteristics – 14Y FU (II)

|                        | Mean (SD)    | / Freq (%)   | p-value |
|------------------------|--------------|--------------|---------|
|                        | Male         | Female       |         |
| 14Y FU                 | N=509        | N=552        |         |
| Smoking                | 18 (3.54%)   | 7 (1.27%)    | 0.015   |
| Alcohol use            | 79 (15.52%)  | 18 (3.26%)   | <.0001  |
| Diabetes               | 102 (20.04%) | 115 (20.83%) | 0.7487  |
| Hypertension           | 331 (65.29%) | 400 (72.6%)  | 0.0102  |
| Cardiovascular disease | 67 (13.16%)  | 71 (12.86%)  | 0.8843  |
| COPD                   | 46 (9.09%)   | 37 (6.74%)   | 0.1564  |
| Depressed              | 60 (11.81%)  | 91 (16.61%)  | 0.0262  |
| MoCA                   |              |              | <.0001  |
| Normal                 | 461 (91.29%) | 424 (76.95%) |         |
| MCI                    | 26 (5.15%)   | 67 (12.16%)  |         |
| AD                     | 18 (3.56%)   | 60 (10.89%)  |         |
| Osteoporosis           | 51 (10.06%)  | 280 (51.38%) | <.0001  |







#### **Publication - I**

|    | Theme                 | Coordinator | No of papers |
|----|-----------------------|-------------|--------------|
| 1  | Fracture/osteoporosis | Kwok T      | 23           |
| 2  | Cognitive function    | Kwok T      | 4            |
| 3  | Fall                  | Kwok T      | 5            |
| 4  | Frailty               | Woo J       | 12           |
| 5  | Sarcopenia            | Woo J       | 12           |
| 6  | Spousal relationship  | Fung H      | 1            |
| 7  | Psychology            | Fung H      | 3            |
| 8  | Indoor air            | Ho KF       | 0            |
| 9  | Environment           | Lau K/Woo J | 3            |
| 10 | Sleep                 | Wing YF     | 3            |
| 11 | Vertebral #           | Wang YX     | 7            |
| 12 | Bone imaging          | Griffith J  | 16           |

Total no. of publications: 156 (updated to July 2018)\*

<sup>\*</sup>Full publication list please refer to Appendix\_2\_Publication\_list\_july\_2018









#### **Publication - II**

|           | Theme                           | Coordinator | No of papers |
|-----------|---------------------------------|-------------|--------------|
| 13        | Accelerometry/Physical activity | Kwok T      | 2            |
| 14        | Biomarker of ageing             | Tang N      | 13           |
| 15        | Dietary intakes                 | Woo J       | 11           |
| 16        | Lung function                   | Ko F        | 0            |
| <b>17</b> | Men's health                    | Wong S      | 8            |
| 18        | Depression                      | Wong S      | 9            |
| 19        | Vitamin D                       | Lee J       | 4            |
| 20        | Sex hormone                     | Kwok T      | 7            |
| 21        | Sulphur containing amino acids  | Kwok T      | 0            |
| 22        | Body fat/ Body composition      | AuYeung TW  | 9            |
| 23        | Social factors                  | Woo J       | 2            |
| 24        | Others                          |             | 2            |

Total no. of publications: 156 (updated to July 2018)\*

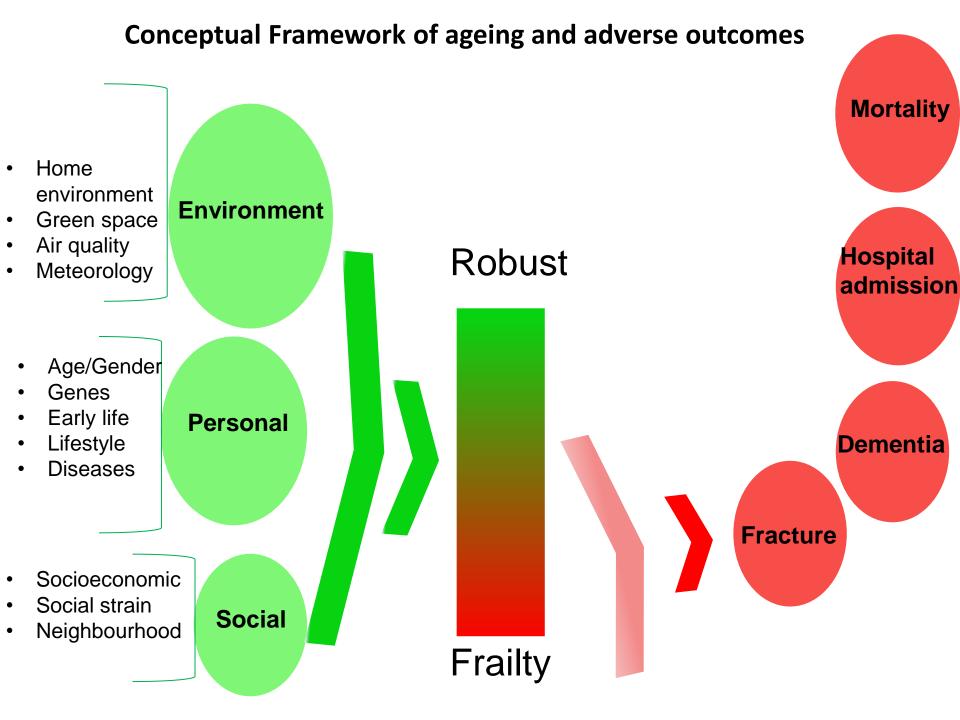
\*Full publication list please refer to Appendix\_2\_Publication\_list\_july\_2018










# **Funding**

- National Institutes of Health R01 grant AR049439–01A1
- Research Grants Council Earmarked Grant CUHK4101/02 M
- JC Centre for osteoporosis care and control
- HMRF 2x for serum analysis
- Therese Chow dementia prevention research centre

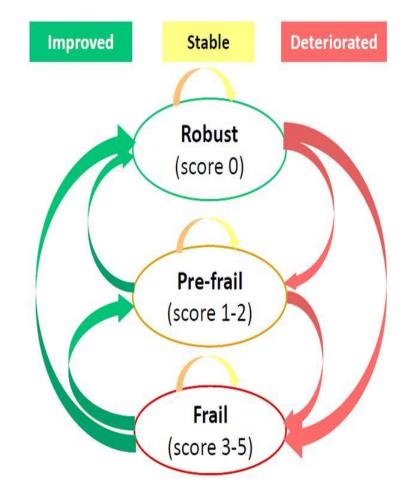











#### Using data from the MrOs study, we examined...

Transitions, consequences, and factors associated with frailty

#### We found that...

#### Transitions in frailty states

- Frailty is reversible
- At baseline, 850 (48.7%)
   men and 884 (52.6%)
   women were pre-frail.
   Among these, 23.4% men
   and 26.6% women
   improved after 2 years;
   11.1% of men and 6.6%
   of women worsened
   (Lee J JAMDA 2014;15:281 86)



#### We found that...

#### Consequences of frailty

- Frailty was associated with an increase in functional limitation after 4 years (OR 1.33, 95% CI 1.01-1.76)
   (Woo J Age 2014;36:923-31)
- Cognitive frailty (pre-frailty + cognitive impairment) was associated with increased risks of functional limitation after 4 years (OR 1.78, 95% CI 1.26-2.51) and mortality over 12 years (OR 1.46, 95%CI 1.02-2.07)

(Yu R Frontiers in Medicine 2018;5:Article 5)

#### We also found that...

#### Factors associated with frailty

 Hospitalizations, older age, previous stroke, lower cognitive function, diabetes, and osteoarthritis were associated with worsening or less improvement in frailty

(Lee J JAMDA 2014;15:281-86)

- Older age, being a woman, and low levels of physical activity were common risk factors for frailty across three Chinese populations: Hong Kong, Taiwan urban, Taiwan rural.
- Living alone was associated with frailty in Hong Kong men, but not in Hong Kong women or Taiwanese people (Yu R IJERPH 2017;14:1096)

#### Recently, we found that...

#### Factors associated with frailty

 Older people living in neighborhoods with a higher percentage of green space were associated with improvement in frailty status, independent of a wide range of individual characteristics (OR 1.29 95% CI 1.04-1.60)

(Yu R JAMDA 2018;19(6):528-34)





# Hip fx in HK



| Hip fracture patients in 2012 (n= 2914) |       |  |  |  |  |
|-----------------------------------------|-------|--|--|--|--|
| Female                                  | 67.9% |  |  |  |  |
| Community dwelling                      | 73.7% |  |  |  |  |
| Age (yr) 60-69                          | 6.3%  |  |  |  |  |
| 70-79                                   | 25.2% |  |  |  |  |
| 80-8                                    | 50.0% |  |  |  |  |
| ≥ 9                                     | 18.5% |  |  |  |  |
| Osteoporosis diagnosis                  | 4.2%  |  |  |  |  |

[1] Leung KS, Yuen WF, Ngai WK, Lam CY, Lau TW, Lee KB, Siu KM, Tang N, Wong SH, Cheung WH (2017) How well are we managing fragility hip fractures? A narrative report on the review with the attempt to setup a Fragility Fracture Registry in Hong Kong. Hong Med J







#### **Calculation Tool**

Please answer the questions below to calculate the ten year probability of fracture with BMD.

| Country: Hong Kong                                                                               | Name/ID:            |                                                                                                                             | About the risk factors |
|--------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------|
| Questionnaire:  1. Age (between 40 and 90 years Age: Date of Birth: 65 Y:  2. Sex 3. Weight (kg) | M: D: Male • Female | 10. Secondary osteoporosis  11. Alcohol 3 or more units/day  12. Femoral neck BMD (g/cm²)  T-Score  T-Score  Clear  Calcula | No Yes  No Yes  tte    |
| 4. Height (cm)                                                                                   | 165                 | BMI: 23.9                                                                                                                   |                        |
| 5. Previous Fracture                                                                             | ○ No ● Yes          | The ten year probability of fractu                                                                                          | re (%)                 |
| 6. Parent Fractured Hip                                                                          | No ○ Yes            | with BMD                                                                                                                    |                        |
| 7. Current Smoking                                                                               | No ○ Yes            | Major osteoporotic                                                                                                          | 14                     |
| 8. Glucocorticoids                                                                               | No ○ Yes            | Hip Fracture                                                                                                                | 4.6                    |
| 9. Rheumatoid arthritis                                                                          | No ○ Yes            | If you have a TBS value, click here                                                                                         | : Adjust with TBS      |

#### A large-scale trial in UK [2]

(community women aged 70-85 years)

# Prescreening using FRAX questionnaire Subsequent DXA test for selected people Subsequent treatment for selected people A 30% reduction in 5-y hip fracture risk

http://www.shef.ac.uk/FRAX/tool.aspx?country=20

- [1] Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23:2239-2256
- [2] Shepstone L, Lenaghan E, Cooper C, et al. (2018) Screening in the community to reduce fractures in older women (SCOOP): a randomised controlled trial. Lancet 391:741-747

### **SARC-F**



# Sarcopenia ~ loss of muscle mass ~ decline in muscle function

Editorial

SARC-F: A Simple Questionnaire to Rapidly Diagnose Sarcopenia

Theodore K. Malmstrom PhD a,b, John E. Morley MB, BCh b,\*

#### Its increasing propensity to hip fracture

- Possible association with osteoporosis
- Possible association with incident fall risk

a number of other factors play into the role of diagnosing the propensity to have a fracture.<sup>28,29</sup> This is particularly true in older persons with diabetes mellitus who often have good bone mineral density but weak bones, and this is coupled with an increase in sarcopenia.<sup>30–33</sup> This has led to the concept that the questions associated with the Fracture Risk Assessment Tool (FRAX) (www.shef.

**Table 1** SARC-F Screen for Sarcopenia

| Component         | Question                    | Scoring                             |
|-------------------|-----------------------------|-------------------------------------|
| Strength          | How much difficulty do you  | None = 0                            |
|                   | have in lifting and         | Some = 1                            |
|                   | carrying 10 pounds?         | A lot or unable = 2                 |
| Assistance in     | How much difficulty do you  | None = 0                            |
| walking           | have walking across a room? | Some = 1                            |
|                   |                             | A lot, use aids, or unable $= 2$    |
| Rise from a chair | How much difficulty do you  | None = 0                            |
|                   | have transferring from      | Some = 1                            |
|                   | a chair or bed?             | A lot or unable without<br>help = 2 |
| Climb stairs      | How much difficulty do you  | None = 0                            |
|                   | have climbing a flight      | Some = 1                            |
|                   | of 10 stairs?               | A lot or unable $= 2$               |
| Falls             | How many times have you     | None = 0                            |
|                   | fallen in the past year?    | 1-3  falls = 1                      |
|                   |                             | 4 or more falls $= 2$               |

<sup>&</sup>lt;sup>a</sup> Department of Neurology and Psychiatry, Saint Louis University School of Medicine, St. Louis, MO

<sup>&</sup>lt;sup>b</sup> Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO

# **Analysis & Results**



#### > Threshold deriving and predictive ability test

Table The associations of baseline FRAX and SARCF score with hip fracture risk in men and women.

|                                           |                   | Hip fracture     |                                    |                   |             |             |                    |
|-------------------------------------------|-------------------|------------------|------------------------------------|-------------------|-------------|-------------|--------------------|
|                                           | Mean ± SD / n (%) |                  | HR (95%CI) HR (95%CI) <sup>c</sup> |                   | Sensitivity | Specificity | AUC (95%CI)        |
| Men                                       | No (n=1937)       | Yes (n= 63)      |                                    |                   |             |             |                    |
| FRAX score                                | $3.40 \pm 2.51$   | $4.92 \pm 2.61$  | 1.14 (1.09, 1.20)                  |                   | -           | -           | 0.70 (0.64, 0.76)  |
| SARCF score                               | $0.37 \pm 0.83$   | $0.60 \pm 0.98$  | 1.33 (1.08, 1.63)                  | 1.24 (1.02, 1.52) | -           | -           | 0.57 (0.51, 0.63)* |
| FRAX category_high a                      | 469 (23.9)        | 37 (58.7)        | 5.42 (3.28, 8.96)                  | 5.22 (3.15, 8.64) | 58.7        | 76.1        | 0.67 (0.61, 0.74)  |
| SARCF category high <sup>b</sup>          | 479 (24.7)        | 24 (38.1)        | 2.03 (1.22, 3.38)                  | 1.82 (1.09, 3.03) | 38.1        | 75.3        | 0.57 (0.51, 0.63)* |
| FRAX category_high or SARCF category_high | 799 (41.3)        | 48 (76.2)        | 5.15 (2.88, 9.20)                  |                   | 76.2        | 58.8        | 0.67 (0.62, 0.73)  |
|                                           | The second        |                  |                                    |                   |             |             |                    |
| Women                                     | No (n=1931)       | Yes (n=69)       |                                    |                   |             |             |                    |
| FRAX score                                | $6.32 \pm 5.04$   | $10.63 \pm 6.53$ | 1.08 (1.06, 1.10)                  | -                 | -           | -           | 0.72 (0.66, 0.79)  |
| SARCF score                               | $0.91 \pm 1.34$   | $1.25 \pm 1.71$  | 1.17 (1.01, 1.35)                  | 1.15 (0.99, 1.33) | -           | - 1         | 0.55 (0.49, 0.62)* |
| FRAX category_high a                      | 579 (30.0)        | 48 (69.6)        | 5.39 (3.23, 9.00)                  | 5.24 (3.13, 8.79) | 69.6        | 70.0        | 0.70 (0.64, 0.75)  |
| SARCF category high b                     | 440 (22.8)        | 22 (31.9)        | 1.60 (0.97, 2.66)                  | 1.25 (0.75, 2.09) | 31.9        | 77.2        | 0.55 (0.49, 0.60)* |
| FRAX category_high or SARCF category_high | 843 (43.6)        | 54 (78.3)        | 4.73 (2.67, 8.38)                  | _                 | 78.3        | 56.4        | 0.67 (0.62, 0.72)  |

<sup>&</sup>lt;sup>a</sup> Threshold of FRAX score determined using CART in OS cohort for hip fx: high risk-  $\geq$  4.5 for men and  $\geq$  7.5 for women;

<sup>\*</sup> significant difference when compared with FRAX score or its category.



<sup>&</sup>lt;sup>b</sup> Threshold of SARCF score determined using CART in OS cohort for hip fx: high risk- ≥ 1.0 for men and ≥ 2.0 for women;

<sup>&</sup>lt;sup>c</sup> adjusted for FRAX score and SARC-F score or FRAX category\_high and SARC-F category\_high;

# **Analysis & Results**



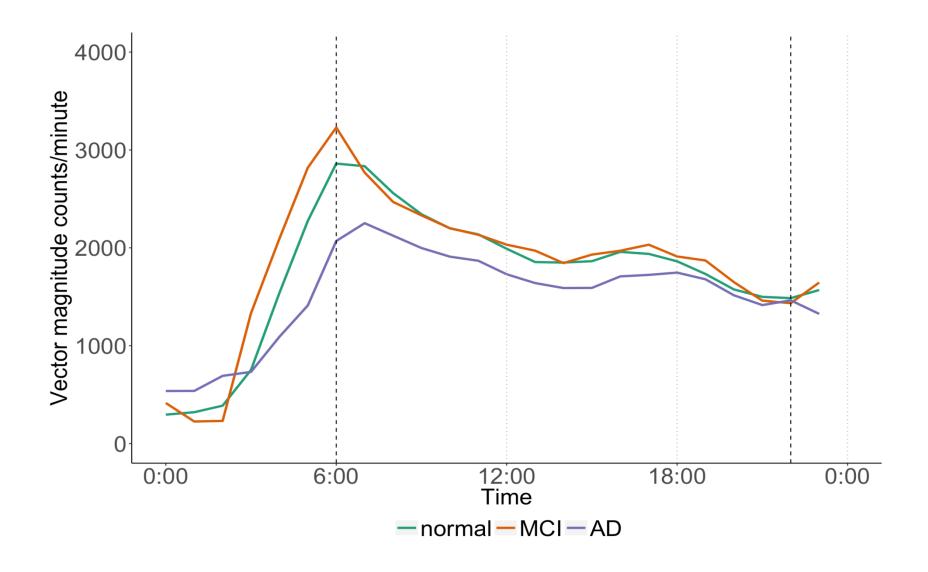
#### Performance and population effect in men



Table The predictive performance and population efect of different screen and intervention strategy for hip fracture prevention in men

| Table The predictiv | c perio | of illatice all                              | a population elect | of uniterent serven | and mich venu | on strategy it | ,, in h 11 | actur  | preventio |        |
|---------------------|---------|----------------------------------------------|--------------------|---------------------|---------------|----------------|------------|--------|-----------|--------|
|                     |         | Hip Fx (total n=63 in men)                   |                    |                     |               |                |            |        |           |        |
| Screen strategy     | Se      | ensitivity                                   | Suboptima          | al ST: presc        | reening       | with FRA       | λX а       | nd     | SARC-F,   | then   |
|                     |         | performing DXA for those with a FRAX score > |                    |                     |               |                |            |        | •         |        |
| Men                 |         |                                              | •                  | <b>O</b>            |               |                |            |        | •         |        |
| Strategy 1 (ST1)    |         | 28.6                                         | score ≥ 1.         | 0, with treatr      | nent wne      | n the FRA      | AX (Ir     | iciua  | ed abiv   | וט and |
| Strategy 2 (ST2)    |         | 41                                           | ↑ TBS) score       | > 1.0%              |               |                |            |        |           |        |
| Strategy 3 (ST3)    |         | 4.9                                          | 103/30016          | ₹ <b>2 4.</b> 070.  | ()            | ()             |            |        |           |        |
| Strategy 4 (ST4)    | 2       | 49.2                                         | 83.1               | 0.66 (0.60, 0.72)   | 31 (49.2)     | 65 (34.8)      | 3.22       | 1.94   | 10.01     | 39.8   |
| Strategy 5 (ST5)    |         | 49.2                                         | 80.8               | 0.65 (0.59, 0.71)   | 31 (49.2)     | 72 (38.5)      | 3.22       | 2.02   | 8.38      | 37.3   |
| Strategy 6 (ST6)    | 1       | 68.3                                         | 74.3               | 0.71 (0.65, 0.77)   | 43 (68.3)     | 75 (40.1)      | 3.22       | 1.36   | 8.80      | 57.8   |
|                     |         |                                              | Rest ST: no        | rforming usin       | g DXA on      | the hin a      | nd cr      | nina ' | for all n | eonle  |
| Men                 | N of    | hip fx                                       | •                  | <u> </u>            | •             | •              | •          |        | •         | ' '    |
|                     |         | <b>(-1)</b>                                  | with treatr        | ment when t         | he FRAX       | (included      | aBM        | ID ar  | nd TBS)   | score  |
| Strategy 1 (ST1)    |         | 5.04                                         | equal to or        | above 4.0%.         |               |                |            |        |           |        |
| Strategy 2 (ST2)    |         | 7.28                                         | 275                | 69                  | 39            |                |            |        |           |        |
| Strategy 3 (ST3)    |         | 6.16                                         | 325                | 138                 | 36            |                |            |        |           |        |
| Strategy 4 (ST4)    | 2       | 8.68                                         | 230                | 98                  | 41            |                |            |        |           |        |
| Strategy 5 (ST5)    |         | 8.68                                         | 0                  | 230                 | 46            |                |            |        |           |        |
| Strategy 6 (ST6)    | 1       | 12.04                                        | 0                  | 166                 | 45            |                |            |        |           |        |

NN: number needed; (-1): to prevent one incident hip fracture


Physical activity measured by Accelerometer



|                   |                                      | Robust        | Pre-frail  | Frail       |
|-------------------|--------------------------------------|---------------|------------|-------------|
| Physical activity | Average daily counts/min             | 2125.8 ± 38.5 | 1907.3 ±   | 1749.1 ±    |
|                   | % of wake time in Sedentary behavior | 54.9 ± 0.8    |            | 62.8 ± 1.1* |
| Sedentary         | No. of sedentary bouts (> 1 min)     | 92.5 ± 1.1    | 90.1 ± 0.9 | 89.6 ± 1.6  |
| behavior          | No. of sedentary bouts (≥ 30 min)    | 2.9 ± 0.1     | 3.5 ± 0.1* | 4.1 ± 0.2*  |
|                   | No. of sedentary breaks              | 58.8 ± 1.0    | 55.3 ±0.8  | 54.6 ± 1.4* |

<sup>\*</sup> p < 0.05 when comparing with robust individuals

Activity: Robust > Pre-frail > Frail Sedentary behavior: Frail > Pre-frail > Robust



Example: compare PA between cognitively normal, MCI and AD

## Areas to be explored

- Year 14
- Frozen serum, DNA
- Aortic calcification on spine X ray at baseline and year 4
- Hip X ray at year 4
- PQCT tibia and radius
- QCT spine
- Hospital admissions
- CMS records
- Spousal inter-dependence, bereavement
- Sexual health of older men (year 2)
- Sleep questionnaires
- Back and joint pain questionnaire
- Perceived social ladder
- Resilience
- Big data analysis method







# **Way Forward**

- Year 16 follow-up (pending HMRF)
- Old-old cohort
- Open access to data
- More Os investigators





# How you can use participate

- Data analysis
- Access to MrOs US data set
- Grant application frozen serum, DNA, further follow-up, new cohort
- Combine with other data sets









#### How to access data

- JOCOC website (http://www.jococ.org/en/mros-msos.php)
  - Explanatory power point
  - List of variables at various time points
  - List of themes and coordinators
  - List of publications
- Submit your analysis plan to data manager Jason Leung (jason-leung@cuhk.edu.hk)
- Feedback from relevant coordinator
- Liaise with data manager for relevant data
- Outcome of data analysis will be followed up









# **Analysis plan submission form**

 Fill in the form and attach a 1-2 page description of your analysis plan

| MrOS Analysis Plan Submission Form                        |                                              |  |  |
|-----------------------------------------------------------|----------------------------------------------|--|--|
| Date:                                                     |                                              |  |  |
| Investigator's Name:                                      |                                              |  |  |
| Clinical Center:                                          |                                              |  |  |
| Sponsor (if not a MrOS investiga Relationship to Sponsor: | tor):                                        |  |  |
| Telephone:                                                | e-mail:                                      |  |  |
| Other investigators who will be w                         | orking on this analysis:                     |  |  |
| Analysis Plan Title:                                      |                                              |  |  |
| Data sets to be used:                                     |                                              |  |  |
| Primary variables to be used in the                       | ne analysis:                                 |  |  |
| If YES,                                                   | consortium or meta-analysis project?  YES NO |  |  |
| ·                                                         | opose to use GWAS data? ?                    |  |  |

\*Please refer to Appendix\_3\_AnalysisPlanForm















