MATH 6222 LECTURE NOTE 4:
CONJUGATE GRADIENT METHOD

JINGRONG WEI

ABSTRACT. This note gives introduction to the conjudate gradient method. Main refer-
ences are [3, Chapter 5] and [1].
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The conjugate gradient method developed by Hestenes and Stiefel in 1950s [2] is an
iterative method for solving a linear system of equations

(1) Az =b,

where A is a symmetric positive definite (SPD) operator defined on an n-dimensional
Hilbert space V with inner product (-, -), and b € V. The problem (1) can be stated equiv-
alently as the following minimization problem:

(2) an f(z) = %(m, Az) — (b, z),

As f is strongly convex, the global minimizer x* exists and is unique and satisfies V f (z*) =
0, which is exactly equation (1). This equivalence will allow us to interpret the conjugate
gradient method either as an algorithm for solving linear systems or as a technique for
minimizing convex quadratic functions. For future reference, we note that the gradient of
f equals the residual of the linear system, that is,

Vf(x)=Ax —b:=r(x).
We use (-, ) 4 for the inner product introduced by the SPD operator A :
(z,9)a = (Az,y) = (z, Ay) =z Ay =y Az,

which induces a norm ||z||4 = \/(z, ).
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1. CONJUGATE DIRECTION METHODS

A set of nonzero vectors {p;} is said to be conjugate with respect to the symmetric
positive definite matrix A if

3) (pispj)a =pi Ap; =0, Yi#j,

which is the same to say p; and p; are A-orthogonal for ¢ # j.

We shall derive conjugate direction method from the A-orthogonal projection to sub-
spaces. Given a vector x € V, the A-orthogonal projection of x to a subspace S C Vis a
vector in S, denoted by Pro j‘g x, by the relation

(PI‘Oj?ZL’,y)A = (x,y)Aa Vyg S.
Suppose we can find an A-orthogonal basis, i.e.

Vi = span {po,p1,- -+ , Pk}

the projection can be found component by component

k *
T* — X0, pi )
Projék (" —x9) = Z%‘pi, o; = M, fori =0,---k.
i—0 (i, Pi) A
Then the approximation
k
Tk+1 = To + Z Q;ip;

i=0

is the ‘best’ approximation in the sense that
k
4) Projf})c (2" —xpqq1) = Proj‘ék (" —xo) — Z%‘pi =0,
i=0

that is, zr41 is the A-orthogonal projection of z* onto Vi. To summarize, we give the
conjugate direction method in Algorithm 1.

Algorithm 1 Conjugate direction method for solving Ax = b.

1: Parameters: xy € R™ and a set of conjugate directions {po,p1,...,pn—1}-
2. fork=0,1,...,n—1do
3 r, = Az, — b
4: Tp1 = T + ogpr With « TPk TEPk
- k+1 k kPk k p;Apk ;D,IApk
5: end for
6: return z,,

Theorem 1.1. For any xo € R", the sequence {x},} generated by the conjugate direction
algorithm 1 converges to the solution x* of the linear system (1) in at most n steps.

Proof. Itis not hard to check that {p; }?:0 are linearly independent and they span the whole
space R™. By the orthogonality, we can write:

¥ — 29 = agpo + a1p1 + - + 0 1Pn—1-
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FIGURE 1. Successive minimizations along the coordinate directions
find the minimizer of a quadratic with a diagonal Hessian in n itera-
tions.

The coefficient g, can be simplified using
Tk = To + Qopo + a1p1 + -+ + Qk_1Pk—1.

By premultiplying this expression by pZA and using the conjugacy property, we have

that
pp Az —x0) =0
and therefore
pr A (2" —wo) = pl A(x" —ay) = pf (b— Azy) = —p 7.

There is a simple interpretation of the properties of conjugate directions. If the matrix
A is diagonal, the contours of the function f(-) are ellipses whose axes are aligned with the
coordinate directions, as illustrated in Figure 1. We can find the minimizer of this function
by performing one-dimensional minimization along the coordinate directions.

When A is not diagonal, its contours are still elliptical, but they are usually no longer
aligned with the coordinate directions. We can, however, recover the nice behavior of

Figure 1 if we transform the problem to make A diagonal and then minimize along the
coordinate directions. Suppose we transform the problem by defining new variables z as

&=S"ta,
where S is the n X n matrix defined by
S = [Po pr - pn—ﬂ-
The quadratic f defined by (2) now becomes

f(@) = f(52) = 527 (STAS) 3~ (STh) 4.

By the conjugacy property (3), the matrix ST AS is diagonal, so we can find the min-
imizing value of f by performing n one-dimensional minimizations along the coordinate
directions of 7. Because of the relation z = S T, however, the 7 th coordinate direction in
Z-space corresponds to the direction p; in z-space. Hence, the coordinate search strategy
applied to f is equivalent to the conjugate direction algorithm on f.
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Theorem 1.2 (Expanding Subspace Minimization). Let ¢ € R™ be any starting point and
suppose that the sequence {x} is generated by the conjugate direction algorithm 1. Then

6) repi=0, i=01,....,k—1

and wy, is the minimizer of f(x) = 1o Az — b" x over the set

(6) {1’ |£L'—fE0 € Vi1 :Spall{p()vplv"wpkfl}}
Proof. We shall show 7, is orthogonal to V1. Notice that * — zj, is A-orthogonal to
Vi—1 by (4), forallv € Vj,_1,

(2" —zp,v)a = (b— Azg,v) = —(rg,v) =0,

which implies (5).
To complete the proof, we show that a point & minimizes f over the set (6) if and only
if r(Z) "'p; = 0,foreachi = 0,1,...,k — 1. Let us define h(c) = ¢ (xo + oopo + -+ +

Ok—1Pk—1), where o = (09,071, ..., O’k_l)T. Since h(o) is a strictly convex quadratic, it
has a unique minimizer ¢* that satisfies
Oh (c*)

=0, +=0,1,...,k—1
80'1' ) ? [ 9 9

and
T=x0+04po+0ip2+ -+ 05 _1Dk-1-

By the chain rule, this equation implies that

Vo () pi=r@)Tpi=0, i=01,... k-1

2. CONJUGATE GRADIENT METHOD

The conjugate gradient (CG) method is a conjugate direction method with a very special
property: In generating its set of conjugate vectors, it can compute a new vector pj by
using only the previous vector py_;. It does not need to know all the previous elements
Do, P1, - - -, Pk—2 Of the conjugate set; py is automatically conjugate to these vectors. This
remarkable property implies that the method requires little storage and computation.

In the conjugate gradient method, each direction py, is the conjugate direction from the
negative residual —ry, (which is the steepest descent direction for the function f ) and the
previous direction p;’s. If rp = 0, which means x;, = z* is the solution, then we stop.
Otherwise we expand the subspace to a larger one Vi1 = span {pg, p1, - » Pks —Tk+1}-

Then apply Gram-Schmit process to make new added vector —r 1 to be A-orthogonal
to others. The new conjugate direction is

k
Tk+1,Di
Dkt1 = —Th1 + Zﬁﬂ% Bi = GEST
=0 (Pispi) 4

The magic of CG algorithm is that only 3} is needed due to the orthogonality we shall
explore now.

Lemma 2.1. 7/ pp = —r] 7,k =0,1,....

Lemma 2.2. The residual 11 is A-orthogonal to V1.
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Proof. If the algorithm stops at the k-th step, then ;41 = 0 and the statement is true.
Otherwise the algorithm does not stop at the k-th step implies r; # 0 and consequently
a; # 0 fori < k — 1. By the recursive formula for the residual 7,11 = r; + a; Ap;. As
a; # 0, we get Ap; € span{r;,r;y1} C Vi for0 < i < k — 1. Since we have proved
Tkt1 L Vi (Theorem 1.2), we get (rp41,0i) 4 = (kt1, Api) = 0for0 <i <k —1,ie.
Tg+1 is A-orthogonal to Vy,_1.

O

Therefore, we conclude that
r];r +14pk
i Apk

The conjugate gradient method is summarized in Algorithm 2.

Pkl = —Thy1 + BkPk, Br =

Algorithm 2 Conjugate gradient method for solving Ax = b.

1. Parameters: zo € R"
2: Setrg = Axg — b,pg = —7rg
3: fork=0,1,... do
T‘]ka o rkTrk
prApe Py Apk

4: Tp+1 = Tk + agpr With o, = —
5: Thkt1 = A$k+1 —b
T T
Thy1 APk ekt
T - T
Py, A T Tk

6: Dk+1 = —Th+1 + Brpr with B, =

end for
8: return xyq

~

Theorem 2.3 (Properties of Conjugate Gradient Method). Suppose that the kth iterate
generated by the conjugate gradient method is not the solution point x*. The following
properties hold:
(7a)

Vk = Spall {p07P17 s 7pk} = span {7"0,7’1, B ark} = span {T()vATOv o aAkTO} )
(7b)

riri =0, i=0,1,....k—1.

Therefore, the sequence {xy} converges to x* in at most n steps.

Proof. Vy, = span{rg,r1,...,7} is straightforward by construction.
We prove by induction. (7a) holds trivially for £ = 0. Assuming now that (7a) is true
for some k (the induction hypothesis), we show that they continue to hold for k£ + 1.
Because of the induction hypothesis,
{r,pr} € span {ro, Aro, ..., Akro} ,
we obtain
Tke1 = Tk + ap Apr € span {7’0, Arg, ..., Akﬂro} .

Therefore, we conclude that

k+1
span {ro,r1,...,Tk, Tk+1} C Span {ro,Aro,...,A + 7"0}.
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To prove that the reverse inclusion holds as well, we use the induction hypothesis to
deduce that

AFtlrg = A (AFro) € span {Apo, Ap, ..., Api}
Since Ap; = (ri41 — 1) /oy fori =0,1,. .., k, it follows that

k+1
AFtlrg € span {ro,r1,. .., The1} -

By combining this expression with the induction hypothesis, we find that

k+1
., AR+

span{ro,Aro,.. ro} C Span {7, 71, .+, "k, Tht1] -

(7b) follows by 75, L Vj_1.
O

The space span {rq, Arq, ..., A¥rq} is called Krylov subspace. The CG method be-
longs to a large class of Krylov subspace iterative methods for solving linear algebraic
equation.

3. CONVERGENCE ANALYSIS

Theorem 3.1. Let A be SPD and let xj, be the kth iteration in the CG method with an
initial guess xo. Then

(8a) 2" —aplly = inf 2% = (2o +v)ll4,
VEVE 1
8b ¥ — x|, = inf A)(z* — =z ,
e ot —anlla = _inf (A " o)l
8¢ ¥ —x < inf su Mz* — = ,
50 o~ S i s O e ol

where Py, denotes the set of at most k-degree polynomials and o(A) denotes the set of
eigenvalues of A.

Proof. The first identity is from the fact z* — x}, = (I — Projékﬂ) (x* — xg). For
v € V1, it can be expanded as

k-1 k
v = E c; A'rg = E ci—1 A" (xg — z¥).
i=0 i=1

Let p(t) = 1+ 3% | ¢; 1. Then
¥ — (xg +v) = prp(4) (¥ — o) .

The identity (8b) then follows from (8a). Since A’ is symmetric in the A-inner product,
we have
[pk(A)lla = p(pe(A)) = sup [pr(N)|
A€o (A)
which leads to the estimate (8c). [l

The polynomial pi, € Py with constraint p(0) = 1 will be called the residual poly-
nomial. Various convergence results of CG method can be obtained by choosing specific
residual polynomials.

Theorem 3.2. If A has only r distinct eigenvalues, then the CG iteration will terminate at
the solution in at most r iterations.
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Proof. Suppose that the eigenvalues A1, As, . . ., A, take on the r distinct values. We define
a polynomial p,.(t) by

pe(t) = i (=) (= ) (6 )

and note that p, (A\;) = 0fori =1,2,...,nand p.(0) = 1. U

Remark 3.3. CG method can be also applied to symmetric and positive semi-definite
matrix A. Let {@}le be the eigenvectors associated t0 i, (A) = 0. Then from Theorem
3.1, if b € range(A) = span{Qr1, Pkt2,  ,On}, then the CG method with xg €
range(A) will find a solution Ax = b within n — k iterations.

CG is invented as a direct method but it is more effective to use as an iterative method.
The rate of convergence depends crucially on the distribution of eigenvalues of A and could
converge to the solution within certain tolerance in steps k < n.

Theorem 3.4. Let x; be the k-th iteration of the CG method with x¢. Then

k
lo* —aply <2 [ VA TI) e oy
4 VE(A)+1 A

Proof. Introduce Ty (x), the Chebyshev polynomial of degree k,

Tu(t) = cos(k - arccost) if |t <1,
U7 cosh(k - arccosht) if |t > 1.

To show T§(t) is indeed a polynomial of x, we can denote by § = arccost and use
(cosf +isin )% = (eig)]C = % = cos k6 + isin k6.

On the left hand side, the real part will contain (sin6)?* = (1 — cos? 9)6 = (1- tQ)Z
which is a polynomial of ¢. For |¢| > 1, verification is similar.

Let a = Apmin(A) and b = A\pax(A). We use the transformation ¢ — % to
change the interval [a, b] to [1, —1] and can use Chebyshev polynomial to define a residual
polynomial
T((b+a—2t)/(b—a))

pi(t) =
Ti((b+a)/(b—a))
The denominator is introduced to satisfy the condition p;(0) = 1. For ¢ € [a,b], the
transformed variable

b+a—2t
b—a
Hence the numerator is cos k6 and | cos k6| < 1 which leads to the bound

1
inf  sup |pk<A>|s[Tk(zfj)] .

Pe€PE,Pe(0)=1 \co(A)

’gl.

We set

b+a L e +e 7
=cosho = ——
b—a 2

Solving this equation for e?, we have

, R 41

k(A) -1

e
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with x(A) = b/a. We then obtain
E
b ko peko 1 1 [ vk(A)+1
Ty bra) cosh(ko) = er e ™ > _eko = = VaA) +1 ,
b—a 2 2 2 k(A) =1
which complete the proof. (I

The estimate in Theorem 3.4 shows that CG is in general better than the gradient
method. Furthermore if the condition number of A is close to one, CG iteration will con-
verge very fast. In some scenario, even if x(A) is large, the iteration will perform well if
the majority of eigenvalues are clustered in a few small intervals.

Corollary 3.5. Assume that c(A) = o¢(A) U o1(A) and [ is the number of elements in

oo(A). Then
k—1
. Vb/a—1 .
E —xknAﬁM(mH) o* — ol o
where

= i A b= A, and M = 1—X
a= min Ab= max A and M= max [ =2kl

nEop(A)
1) e — a— —a
Proof. Take pi(t) = x5li (t = A1) (= Xo) -+ (8 — \) Bptlhas0/=a)

This result shows that if there are only few (say 2 or 3) small eigenvalues and others
are well conditioned (in the sense that the so-called effective condition number b/a is not
too large), then after few steps, the convergence rate of CG is governed by the effective
condition number b/a.
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