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ABSTRACT. This note gives introduction to the conjudate gradient method. Main refer-
ences are [3, Chapter 5] and [1].
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The conjugate gradient method developed by Hestenes and Stiefel in 1950s [2] is an
iterative method for solving a linear system of equations

(1) Ax = b,

where A is a symmetric positive definite (SPD) operator defined on an n-dimensional
Hilbert space V with inner product (·, ·), and b ∈ V . The problem (1) can be stated equiv-
alently as the following minimization problem:

(2) min
x

f(x) =
1

2
(x,Ax)− (b, x),

As f is strongly convex, the global minimizer x∗ exists and is unique and satisfies ∇f(x∗) =
0, which is exactly equation (1). This equivalence will allow us to interpret the conjugate
gradient method either as an algorithm for solving linear systems or as a technique for
minimizing convex quadratic functions. For future reference, we note that the gradient of
f equals the residual of the linear system, that is,

∇f(x) = Ax− b := r(x).

We use (·, ·)A for the inner product introduced by the SPD operator A :

(x, y)A = (Ax, y) = (x,Ay) = x⊤Ay = y⊤Ax,

which induces a norm ∥x∥A =
√

(x, x)A.
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1. CONJUGATE DIRECTION METHODS

A set of nonzero vectors {pi} is said to be conjugate with respect to the symmetric
positive definite matrix A if

(3) (pi, pj)A = p⊤i Apj = 0, ∀ i ̸= j,

which is the same to say pi and pj are A-orthogonal for i ̸= j.
We shall derive conjugate direction method from the A-orthogonal projection to sub-

spaces. Given a vector x ∈ V , the A-orthogonal projection of x to a subspace S ⊆ V is a
vector in S, denoted by ProjAS x, by the relation(

ProjAS x, y
)
A
= (x, y)A, ∀y ∈ S.

Suppose we can find an A-orthogonal basis, i.e.

Vk = span {p0, p1, · · · , pk} ,

the projection can be found component by component

ProjAVk
(x∗ − x0) =

k∑
i=0

αipi, αi =
(x∗ − x0, pi)A

(pi, pi)A
, for i = 0, · · · k.

Then the approximation

xk+1 = x0 +

k∑
i=0

αipi

is the ‘best’ approximation in the sense that

(4) ProjAVk
(x∗ − xk+1) = ProjAVk

(x∗ − x0)−
k∑

i=0

αipi = 0,

that is, xk+1 is the A-orthogonal projection of x∗ onto Vk. To summarize, we give the
conjugate direction method in Algorithm 1.

Algorithm 1 Conjugate direction method for solving Ax = b.

1: Parameters: x0 ∈ Rn and a set of conjugate directions {p0, p1, . . . , pn−1}.
2: for k = 0, 1, . . . , n− 1 do
3: rk = Axk − b

4: xk+1 = xk + αkpk with αk = − r⊤0 pk

p⊤
k Apk

= − r⊤k pk

p⊤
k Apk

5: end for
6: return xn

Theorem 1.1. For any x0 ∈ Rn, the sequence {xk} generated by the conjugate direction
algorithm 1 converges to the solution x∗ of the linear system (1) in at most n steps.

Proof. It is not hard to check that {pi}ni=0 are linearly independent and they span the whole
space Rn. By the orthogonality, we can write:

x∗ − x0 = α0p0 + α1p1 + · · ·+ αn−1pn−1.

□
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FIGURE 1. Successive minimizations along the coordinate directions
find the minimizer of a quadratic with a diagonal Hessian in n itera-
tions.

The coefficient αk can be simplified using

xk = x0 + α0p0 + α1p1 + · · ·+ αk−1pk−1.

By premultiplying this expression by p⊤k A and using the conjugacy property, we have
that

p⊤k A (xk − x0) = 0

and therefore

p⊤k A (x∗ − x0) = p⊤k A (x∗ − xk) = p⊤k (b−Axk) = −p⊤k rk.

There is a simple interpretation of the properties of conjugate directions. If the matrix
A is diagonal, the contours of the function f(·) are ellipses whose axes are aligned with the
coordinate directions, as illustrated in Figure 1. We can find the minimizer of this function
by performing one-dimensional minimization along the coordinate directions.

When A is not diagonal, its contours are still elliptical, but they are usually no longer
aligned with the coordinate directions. We can, however, recover the nice behavior of
Figure 1 if we transform the problem to make A diagonal and then minimize along the
coordinate directions. Suppose we transform the problem by defining new variables x̂ as

x̂ = S−1x,

where S is the n× n matrix defined by

S =
[
p0 p1 · · · pn−1

]
.

The quadratic f defined by (2) now becomes

f̂(x̂) := f(Sx̂) =
1

2
x̂⊤ (S⊤AS

)
x̂−

(
S⊤b

)⊤
x̂.

By the conjugacy property (3), the matrix S⊤AS is diagonal, so we can find the min-
imizing value of f̂ by performing n one-dimensional minimizations along the coordinate
directions of x̂. Because of the relation x = Ŝx̂, however, the i th coordinate direction in
x̂-space corresponds to the direction pi in x-space. Hence, the coordinate search strategy
applied to f̂ is equivalent to the conjugate direction algorithm on f .
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Theorem 1.2 (Expanding Subspace Minimization). Let x0 ∈ Rn be any starting point and
suppose that the sequence {xk} is generated by the conjugate direction algorithm 1. Then

(5) r⊤k pi = 0, i = 0, 1, . . . , k − 1

and xk is the minimizer of f(x) = 1
2x

⊤Ax− b⊤x over the set

(6) {x | x− x0 ∈ Vk−1 = span {p0, p1, . . . , pk−1}}

Proof. We shall show rk is orthogonal to Vk−1. Notice that x∗ − xk is A-orthogonal to
Vk−1 by (4), for all v ∈ Vk−1,

(x∗ − xk, v)A = (b−Axk, v) = −(rk, v) = 0,

which implies (5).
To complete the proof, we show that a point x̃ minimizes f over the set (6) if and only

if r(x̃)⊤pi = 0, for each i = 0, 1, . . . , k − 1. Let us define h(σ) = ϕ (x0 + σ0p0 + · · ·+
σk−1pk−1), where σ = (σ0, σ1, . . . , σk−1)

⊤. Since h(σ) is a strictly convex quadratic, it
has a unique minimizer σ∗ that satisfies

∂h (σ∗)

∂σi
= 0, i = 0, 1, . . . , k − 1,

and
x̃ = x0 + σ∗

0p0 + σ∗
1p2 + · · ·+ σ∗

k−1pk−1.

By the chain rule, this equation implies that

∇ϕ (x̃)
⊤
pi = r(x̃)⊤pi = 0, i = 0, 1, . . . , k − 1.

□

2. CONJUGATE GRADIENT METHOD

The conjugate gradient (CG) method is a conjugate direction method with a very special
property: In generating its set of conjugate vectors, it can compute a new vector pk by
using only the previous vector pk−1. It does not need to know all the previous elements
p0, p1, . . . , pk−2 of the conjugate set; pk is automatically conjugate to these vectors. This
remarkable property implies that the method requires little storage and computation.

In the conjugate gradient method, each direction pk is the conjugate direction from the
negative residual −rk (which is the steepest descent direction for the function f ) and the
previous direction pi’s. If rk = 0, which means xk = x∗ is the solution, then we stop.
Otherwise we expand the subspace to a larger one Vk+1 = span {p0, p1, · · · , pk,−rk+1}.

Then apply Gram-Schmit process to make new added vector −rk+1 to be A-orthogonal
to others. The new conjugate direction is

pk+1 = −rk+1 +

k∑
i=0

βipi, βi =
(rk+1, pi)A
(pi, pi)A

The magic of CG algorithm is that only βk is needed due to the orthogonality we shall
explore now.

Lemma 2.1. r⊤k pk = −r⊤k rk, k = 0, 1, . . . .

Lemma 2.2. The residual rk+1 is A-orthogonal to Vk−1.
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Proof. If the algorithm stops at the k-th step, then rk+1 = 0 and the statement is true.
Otherwise the algorithm does not stop at the k-th step implies ri ̸= 0 and consequently
αi ̸= 0 for i ≤ k − 1. By the recursive formula for the residual ri+1 = ri + αiApi. As
αi ̸= 0, we get Api ∈ span {ri, ri+1} ⊂ Vk for 0 ≤ i ≤ k − 1. Since we have proved
rk+1 ⊥ Vk (Theorem 1.2), we get (rk+1, pi)A = (rk+1, Api) = 0 for 0 ≤ i ≤ k − 1, i.e.
rk+1 is A-orthogonal to Vk−1.

□

Therefore, we conclude that

pk+1 = −rk+1 + βkpk, βk =
r⊤k+1Apk

p⊤k Apk
.

The conjugate gradient method is summarized in Algorithm 2.

Algorithm 2 Conjugate gradient method for solving Ax = b.

1: Parameters: x0 ∈ Rn

2: Set r0 = Ax0 − b, p0 = −r0
3: for k = 0, 1, . . . do

4: xk+1 = xk + αkpk with αk = − r⊤k pk
p⊤k Apk

=
r⊤k rk
p⊤k Apk

5: rk+1 = Axk+1 − b

6: pk+1 = −rk+1 + βkpk with βk =
r⊤k+1Apk

p⊤k Apk
=

r⊤k+1rk+1

r⊤k rk
7: end for
8: return xk+1

Theorem 2.3 (Properties of Conjugate Gradient Method). Suppose that the kth iterate
generated by the conjugate gradient method is not the solution point x∗. The following
properties hold:

Vk = span {p0, p1, . . . , pk} = span {r0, r1, . . . , rk} = span
{
r0, Ar0, . . . , A

kr0
}
,

(7a)

r⊤k ri = 0, i = 0, 1, . . . , k − 1.

(7b)

Therefore, the sequence {xk} converges to x∗ in at most n steps.

Proof. Vk = span {r0, r1, . . . , rk} is straightforward by construction.
We prove by induction. (7a) holds trivially for k = 0. Assuming now that (7a) is true

for some k (the induction hypothesis), we show that they continue to hold for k + 1.
Because of the induction hypothesis,

{rk, pk} ∈ span
{
r0, Ar0, . . . , A

kr0
}
,

we obtain
rk+1 = rk + αkApk ∈ span

{
r0, Ar0, . . . , A

k+1r0
}
.

Therefore, we conclude that

span {r0, r1, . . . , rk, rk+1} ⊂ span
{
r0, Ar0, . . . , A

k+1r0
}
.
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To prove that the reverse inclusion holds as well, we use the induction hypothesis to
deduce that

Ak+1r0 = A
(
Akr0

)
∈ span {Ap0, Ap1, . . . , Apk}

Since Api = (ri+1 − ri) /αi for i = 0, 1, . . . , k, it follows that

Ak+1r0 ∈ span {r0, r1, . . . , rk+1} .

By combining this expression with the induction hypothesis, we find that

span
{
r0, Ar0, . . . , A

k+1r0
}
⊂ span {r0, r1, . . . , rk, rk+1} .

(7b) follows by rk ⊥ Vk−1.
□

The space span
{
r0, Ar0, . . . , A

kr0
}

is called Krylov subspace. The CG method be-
longs to a large class of Krylov subspace iterative methods for solving linear algebraic
equation.

3. CONVERGENCE ANALYSIS

Theorem 3.1. Let A be SPD and let xk be the kth iteration in the CG method with an
initial guess x0. Then

∥x∗ − xk∥A = inf
v∈Vk−1

∥x∗ − (x0 + v)∥A ,(8a)

∥x∗ − xk∥A = inf
pk∈Pk,pk(0)=1

∥pk(A) (x∗ − x0)∥A ,(8b)

∥x∗ − xk∥A ≤ inf
pk∈Pk,pk(0)=1

sup
λ∈σ(A)

|pk(λ)| ∥x∗ − x0∥A ,(8c)

where Pk denotes the set of at most k-degree polynomials and σ(A) denotes the set of
eigenvalues of A.

Proof. The first identity is from the fact x∗ − xk =
(
I − ProjAVk−1

)
(x∗ − x0). For

v ∈ Vk−1, it can be expanded as

v =

k−1∑
i=0

ciA
ir0 =

k∑
i=1

ci−1A
i (x0 − x∗) .

Let pk(t) = 1 +
∑k

i=1 ci−1t
i. Then

x∗ − (x0 + v) = pk(A) (x∗ − x0) .

The identity (8b) then follows from (8a). Since Ai is symmetric in the A-inner product,
we have

∥pk(A)∥A = ρ (pk(A)) = sup
λ∈σ(A)

|pk(λ)|

which leads to the estimate (8c). □

The polynomial pk ∈ Pk with constraint pk(0) = 1 will be called the residual poly-
nomial. Various convergence results of CG method can be obtained by choosing specific
residual polynomials.

Theorem 3.2. If A has only r distinct eigenvalues, then the CG iteration will terminate at
the solution in at most r iterations.
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Proof. Suppose that the eigenvalues λ1, λ2, . . . , λr take on the r distinct values. We define
a polynomial pr(t) by

pr(t) =
(−1)r

λ1λ2 · · ·λr
(t− λ1) (t− λ2) · · · (t− λr)

and note that pr (λi) = 0 for i = 1, 2, . . . , n and pr(0) = 1. □

Remark 3.3. CG method can be also applied to symmetric and positive semi-definite
matrix A. Let {ϕi}ki=1 be the eigenvectors associated to λmin (A) = 0. Then from Theorem
3.1 , if b ∈ range(A) = span {ϕk+1, ϕk+2, · · · , ϕn}, then the CG method with x0 ∈
range(A) will find a solution Ax = b within n− k iterations.

CG is invented as a direct method but it is more effective to use as an iterative method.
The rate of convergence depends crucially on the distribution of eigenvalues of A and could
converge to the solution within certain tolerance in steps k ≪ n.

Theorem 3.4. Let xk be the k-th iteration of the CG method with x0. Then

∥x∗ − xk∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

∥x∗ − x0∥A

Proof. Introduce Tk(x), the Chebyshev polynomial of degree k,

Tk(t) =

{
cos(k · arccos t) if |t| ≤ 1,
cosh(k · arccosh t) if |t| ≥ 1.

To show Tk(t) is indeed a polynomial of x, we can denote by θ = arccos t and use

(cos θ + i sin θ)k =
(
eiθ
)k

= eikθ = cos kθ + i sin kθ.

On the left hand side, the real part will contain (sin θ)2ℓ =
(
1− cos2 θ

)ℓ
=
(
1− t2

)ℓ
which is a polynomial of t. For |t| ≥ 1, verification is similar.

Let a = λmin(A) and b = λmax(A). We use the transformation t 7→ b+a−2t
b−a to

change the interval [a, b] to [1,−1] and can use Chebyshev polynomial to define a residual
polynomial

pk(t) =
Tk((b+ a− 2t)/(b− a))

Tk((b+ a)/(b− a))
.

The denominator is introduced to satisfy the condition pk(0) = 1. For t ∈ [a, b], the
transformed variable ∣∣∣∣b+ a− 2t

b− a

∣∣∣∣ ≤ 1.

Hence the numerator is cos kθ and | cos kθ| ≤ 1 which leads to the bound

inf
pk∈Pk,pk(0)=1

sup
λ∈σ(A)

|pk(λ)| ≤
[
Tk

(
b+ a

b− a

)]−1

.

We set
b+ a

b− a
= coshσ =

eσ + e−σ

2
Solving this equation for eσ , we have

eσ =

√
κ(A) + 1√
κ(A)− 1
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with κ(A) = b/a. We then obtain

Tk

(
b+ a

b− a

)
= cosh(kσ) =

ekσ + e−kσ

2
≥ 1

2
ekσ =

1

2

(√
κ(A) + 1√
κ(A)− 1

)k

,

which complete the proof. □

The estimate in Theorem 3.4 shows that CG is in general better than the gradient
method. Furthermore if the condition number of A is close to one, CG iteration will con-
verge very fast. In some scenario, even if κ(A) is large, the iteration will perform well if
the majority of eigenvalues are clustered in a few small intervals.

Corollary 3.5. Assume that σ(A) = σ0(A) ∪ σ1(A) and l is the number of elements in
σ0(A). Then

∥x∗ − xk∥A ≤ 2M

(√
b/a− 1√
b/a+ 1

)k−l

∥x∗ − x0∥A

where
a = min

λ∈σ1(A)
λ, b = max

λ∈σ1(A)
λ, and M = max

λ∈σ1(A)

∏
µ∈σ0(A)

|1− λ/µ|

Proof. Take pk(t) =
(−1)l

λ1λ2···λl
(t− λ1) (t− λ2) · · · (t− λl)

Tk−l((b+a−2t)/(b−a))
Tk−1((b+a)/(b−a)) . □

This result shows that if there are only few (say 2 or 3) small eigenvalues and others
are well conditioned (in the sense that the so-called effective condition number b/a is not
too large), then after few steps, the convergence rate of CG is governed by the effective
condition number b/a.
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