\$5.3 Variational principle between topological and measure theoretic entropies.

Thm (Goodwyn, 1968)

Let (X, T) be a TDS. Then

 $\Re(T) = \sup \left\{ \Re_{\mu}(T) : \mu \in M(X,T) \right\}$

we proved the direction h(T) ≥ hµ(T) for all µ&M(x,T) in the last lecture. Today we will prove the other direction

We first give some equivalent definitions for h(T).

Def. (Bowen metric and Bowen balls).

Let T: X→X be a cts map on a compact metric space (Xd)

For nEIN, define a metric dn on X by

 $d_n(x, y) = \max_{0 \le i \le n-1} d(T^i x, T^i y).$

We can do the n-th Bowen metric.

$$B_{n}(x, \varepsilon) = \left\{ \begin{array}{l} 4 \in X : d_{n}(x, y) < \varepsilon \end{array} \right\}$$

$$= \bigcap_{i=n}^{n-1} T^{-i} B(T^{i}x, \varepsilon).$$

We call
$$B_n(x, \xi)$$
 an (n, ξ) -Bowen ball centered at x .

Def. A subset F of X is said
to be
$$(n, \Sigma)$$
-spanning w.r.t. T if $\forall x \in X$, $\exists y \in F$
s.t. $d_n(x, y) \in \Sigma$, i.e.

s.t.
$$d_n(x,y) \leq \varepsilon$$
, he.
 $X \subset \bigcup_{x \in F} \overline{B_n(x,\varepsilon)}$

Def. A subset
$$E \subset X$$
 is said to be (n, Σ) -separated if $d_n(x, y) > \Sigma$ for all $x, y \in E$ with $x \neq y$.

• $S_n(x) = the largest cardinality of any (n, x)-$ separated subset of X.

Lem 1 $Y_n(\xi) \leq S_n(\xi) \leq Y_n(\xi/2)$

Pf. Let E be an (n, Σ) -separated set of maximal cardinality. Then E is also (n, Σ) -spanning set for X. If not, then $\exists y \in X$ s.t.

dn(x,y) > E for all xe E.

Then EU{y} is a new (n, E)-separated set with larger cardinality, leading to a contradiction.

Hence $r_n(s) \in S_n(s)$.

Next we show that $S_n(\Sigma) \leq r_n(\Sigma/2)$.

Let E be an (n, ξ) - separated set and F an (n, ξ_{λ}) spanning set for X. Then $\forall x \in E$, \exists some point $\varphi(x) \in F$ sit. $d_n(x, \varphi(x)) \in \xi_{\lambda}$.

Then
$$g: E \to F$$
 is injective, which implies that $\#F \ge \#E$

Hence
$$S_n(\Sigma) \in Y_n(\Sigma/\Sigma)$$
.

Prop 2. (1) If d is an open cover of X with Lebesque number
$$S$$
, then
$$N(\bigvee_{i=0}^{n-1} T_{i}^{-i}) \leq r_{n}(S/2) \leq S_{n}(S/2).$$

ohiam
$$(7) \le \Sigma$$
, then
$$r_n(\Sigma) \le S_n(\Sigma) \le N(V_0 T^{-1} Y).$$

Pf. (1) By Lem 1, it suffices to show
$$N(\frac{N-1}{2}, T^{\frac{1}{2}}) \leq r_n(\delta/2).$$

Let F be an
$$(n, 8/2)$$
 - spanning set for X of cardinality $r_n(8/2)$.

Then $X = \bigcup_{x \in F} B_n(x, 8/2) = \bigcup_{x \in F} \bigcap_{i=0}^{n-1} F(T^ix, 8/2)$

Since each ball $B(\tau^i x, \delta x)$ is a set of a member of d, we have $N(\bigvee_{i=0}^{n-1}T^ia) \leq \#F = r_n(s/a).$ (2). Let E be an (n, Σ) -separated set of Cardinality $S_n(\Sigma)$. Since Y is an open cover of diameter diam $(Y) < \Sigma$, each member of 1 T B Contains at most 1 point in E. Hence $N(\sum_{i=0}^{n-1}T^{-i}b^i) \geq S_n(\epsilon) \geq Y_n(\epsilon)$

Cor 4 Let $\epsilon>0$. Let d_{ϵ} be an open cover of χ by balls of radius 2ϵ , and β_{ϵ} an open cover of χ by balls of radius $\epsilon \chi$.

Then
$$N(\bigvee_{i=0}^{n-1}T^i\partial_{\xi}) \leqslant r_n(\xi) \leqslant S_n(\xi)$$

 $\leqslant N(\bigvee_{i=0}^{n-1}T^{-i}\beta_{\xi}).$

 $h(T) = \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log r_n(\epsilon)$

Here, we use

Cor. 5

$$h(T) = \lim_{\varepsilon \to 0} h(T, d_{\varepsilon}) = \lim_{\varepsilon \to 0} h(T, \beta_{\varepsilon}).$$

Lem 6. Let $V \in M(X)$. Suppose $\xi = \{A_1, \dots, A_k\}$ is a partition of $(X, \beta(X))$. Then for any integers n, ℓ with $n \ge 2\ell$, we have

with
$$n \ge 2l$$
, we have
$$\frac{1}{n} H_{\nu} \left(\bigvee_{i=0}^{n-1} T^{-i} \xi \right) \le \frac{1}{l} H_{\nu_{n}} \left(\bigvee_{i=0}^{l-1} T^{-i} \xi \right) + \frac{2l}{n} \log k,$$

when $\nabla_n = \frac{1}{h} (\nabla + \nu \cdot \vec{\Gamma}^{1} + \dots + \nu \cdot \vec{\Gamma}^{(h-1)})$.

Pf. For any $0 \le j \le l-1$, let t_j be the largest whiteger t s.t $t \cdot l + j \le n$. Then

$$i=0 \qquad i=0 \qquad i=0 \qquad mtS_j$$

$$(t_j-)_{k-j}$$

$$(t_j-)_{$$

where 5j is a subset of 50, 1, ..., n of cardonality ≤ 2.1 .

Hence

$$H_{\nu}\left(\begin{array}{c} V_{i=0}^{n-1} T^{-i} \\ V_{i=0}^{n-1} T^{-i} \end{array}\right) \leqslant \sum_{r=0}^{t_{j-1}} H_{\nu}\left(T^{-r\ell-j} \left(\begin{array}{c} \ell^{-1} \\ V_{i=0} \end{array}\right)^{-i} \right) + 2\ell \log k.$$

$$= \sum_{p=0}^{N-l} H_{\sqrt{0}} - P\left(\bigvee_{j=0}^{l-1} T^{-j} \right) + 2l^{2} \log k$$

$$\leq \sum_{p=0}^{N-l} H_{\sqrt{0}} - P\left(\bigvee_{j=0}^{l-1} T^{-j} \right) + 2l^{2} \log k$$

$$\varphi=0$$

$$\Leftrightarrow n H_{V_n} \left(\bigvee_{i=0}^{\ell-1} T^{-i} \right) + 2\ell^2 \log k$$
where we use the concavity of $\varphi(x) = -x \log x$ in the la

where we use the concavity of $\phi(x) = -x \log x$ in the last inequality.

Pf of the inequality
$$R(T) \leq \sup \left\{ R_{\mu}(T) : \mu \in M(X,T) \right\}$$

Let $\epsilon > 0$. We will prove that $\exists \mu \in \mathcal{M}(x,T)$ s.t.

liminf $\frac{1}{n} \log S_n(\epsilon) \leq h_{\mu}(T)$

For
$$n \in \mathbb{N}$$
, let E_n be an (n, ϵ) -separated set for X with cardinality $S_n(\epsilon)$. Let

$$G_n = \frac{S_n(z)}{S_n(z)} \sum_{x \in E_n} S_x$$

Set $\mu_n = \frac{1}{n} \sum_{i=0}^{n-1} \sigma_n \circ T^{-i}.$

$$\mu_{nj} \rightarrow \mu \in \mathcal{M}(X,T)$$

$$\frac{1}{n_j}\log S_{n_j}(\Sigma) \to \liminf_{N\to\infty} \frac{1}{n}\log S_n(\Sigma).$$

Choose a partition
$$\S = \{A_1, \dots, A_k\}$$
 of $(X, \beta(X))$ with diam $\S < \Sigma$ and $\mu(\partial A_i) = 0$ for all $\lfloor x \mid \leq k$.

Since no member of $\bigvee_{i=0}^{n-1} T^i \S$ contains move than 1 point of E_n ,

$$H_{\S_n}(\bigvee_{i=0}^{n-1} T^i \S) = \log S_n(\Sigma).$$

By Lem 6, for each l,

$$\frac{1}{n_{j}} \log S_{n_{j}}(z) = \frac{1}{n_{j}} H_{\sigma_{n_{j}}} \left(\bigvee_{i=0}^{n_{j}-1} T^{-i} z_{3} \right)$$

$$\leq \frac{1}{\ell} H_{\mu_{n_{j}}} \left(\bigvee_{i=0}^{\ell-1} T^{-i} z_{3} \right) + \frac{2\ell}{n_{j}} \log \ell$$

$$\Rightarrow \frac{1}{\ell} H_{\mu} \left(\bigvee_{i=0}^{\ell-1} T^{-i} z_{3} \right) \qquad \text{on } j \to \infty$$

tense $\lim_{h\to\infty} \frac{1}{h} \log S_n(z) \leq \frac{1}{L} H_{\mu}(\begin{array}{c} L^{-1} \\ \downarrow \\ i=0 \end{array})$ $\rightarrow R_{\mu}(\tau, s) \cdot \square$ Henve