Math 6082 3025-03-14

\$5 Topological entropy and topological pressure.

\$5.1 Topological entropy.

Alder, Konheim and Mc Andrew (1965) introduced topological entropy as an invariant of topological conjugacy and an analogue of measure theoretic entropy.

Def. Let X be a compact metric space. Let d, 13 be two open Covers of X. set

avp = { Unv: ued, ve B }.

We call dup the join of d and B.

Similarly, we define

the join of any finite collection of open covers of X.

Def. For two open covers d, B of X, write

if every member in \$ is a subset of a member in d. We say that & is a refinement of d.

clearly, 2 < 2 v B.

Def If d is an open cover of X, let N(d) denote the number of sets in a finite subcover of a with smallest cardinality. We define

 $H(\alpha) = \log N(\alpha)$

(3)
$$H(a \lor \beta) \leqslant H(a) + H(\beta)$$

 $H(T^{\dagger}Q) \leq H(Q)$. If T is surjective, then, $H(T^{\dagger}Q) = H(Q)$.

It is possible that
$$H(T^1a) < H(a)$$

$$d = \{ [0, \frac{3}{3}), (\frac{1}{3}, 1] \}$$

Thm 5.1 If d is an open cover of X and T: X > X is cts,

then
$$\lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} d \right)$$
exists.

Pf. Write
$$Q_n = H\left(\bigvee_{j=0}^{n-1} T^{-j} d \right) V T^{-n} \left(\bigvee_{j=0}^{m-1} T^{-j} d \right)$$
Then
$$Q_{n+m} = H\left(\left(\bigvee_{j=0}^{n-1} T^{-j} d \right) V T^{-n} \left(\bigvee_{j=0}^{m-1} T^{-j} d \right) \right)$$

$$\leq Q_n + Q_m.$$
Def. If d is an open cover of X and T: X > X is cts,

set
$$f_n(T, d) := \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} T^{-j} d \right)$$
and we coll it the entropy of T relative to d

Def. (topological entropy)

Let $T: X \rightarrow X$ be cts. The topological entropy of Xis defined by $R(T) = \sup_{A} R(T, A)$,

where a ranges over all open covers of X.

Thm 5.2. If X_1 , X_2 are compact metric spaces, and $T_i: X_i \to X_i$ are cts, and if $T_i: X_i \to X_2$ is cts and surjective s.t the following diagram commutes,

then $h(T_1) = h(T_2)$. If π is a homeomorphism,

then $h(T_1) = h(T_2)$.

Remark. The above result shows that topological entropy is an invariant of topological conjugacy.

Let d be an open cover of X_2 . Then $h(T_2,d) = \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{i=0}^{n-1} T_2^{-i} d)$

=
$$\lim_{n\to\infty} \frac{1}{n} H(\pi^{-1}(\bigvee_{i=0}^{n-1} T_{2i} A))$$
 (here we use that π is surjective).

$$=\lim_{n\to\infty}\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\overline{T_1}\stackrel{-i}{T_2}d\right)$$

Thm 5.3. Let $T: X \to X$ be cts and d is an open cover of X.

Suppose that diam $\bigvee_{i=0}^{n-1} T^i d \to 0$ as $n \to \infty$. Then

$$f(T) = f(T, d)$$
.

Pf. Let β be an open cover of X , and let δ be a

Let B be an open cover of X, and let B be a

Lebesque number of B (i.e. & A < X with diam A <

Lebesgue number of β (i.e. \forall $A \subset X$ with diam $A < \delta$, \exists $B \in \beta$ s.t $A \subset B$)

Take n s.t diam V Take S.

Then
$$\beta < \bigvee_{i=0}^{h-1} T_{i}$$

Hence
$$R(T, \beta) \leq \lim_{m \to \infty} \frac{1}{m} H(V T^{-1}d)$$

$$= R(T, d).$$

Thus $H\left(\bigvee_{j=0}^{m-1} T^{-j} \beta \right) \in H\left(\bigvee_{j=0}^{m-1} T^{-j} \left(\bigvee_{j=0}^{n-1} T^{-j} \lambda \right) \right)$

Examples: Topological entrops of full shifts & Markou shifts