Review.

· Poincaré recutrence Thm.

Let $T: (X, \beta, \mu) \rightarrow (X, \beta, \mu)$ be a measure preserving map. Let $B \in \beta$ with $\mu(B) > 0$. Then for μ -a.e $\times \in B$, $T^n \times B$ for infinitely many n > 1.

· Birkhoff recurrence Thm.

Let (X, T) be a topological dynamical system, i.e.

T: X > X is a continuous map on a Compact metric space X.

Then $\exists x \in X$ such that $\exists n_i \to \infty$ with

 $T^{n_i}x \rightarrow x$

Def. such point x is called recurrent.

2.3. Minimality

Def. A TDS (X,T) is called to be minimal, if

 $\left\{\begin{array}{ll} T^{h}x: n \ge 1 \end{array}\right\} \quad \text{is dense in } X$ $\int_{0}^{\infty} v \text{ all } x \in X.$

A simple fact: (X,T) is minimal (=> there exists no proper T-invariant subset

Thm 2.3. Let (X, T) be a TDS. There exists a closed subset Y of X such that TY=Y and (Y, T) is minimal.

Pf. Construct of as in the proof of Thm 2.1.

Let Yo E of be the minimal element of of The details.

Notice that TYO = Yo. We claim that TYO = Yo.

Notice that | [o = [o] We Claim that | lo = lo

Since if TYo = Yo, then TYO is a proper T-inu subset of Yo. Example 2.4. Let $d \in (0,1)$ be an irrational number. Let $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be rotation map

Let T: $\mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be rotation map $x \mapsto x + d \pmod{1}$

Then (X,T) is minimal.

Due to the fact that { nd (mod 1) } is dense in R/Z.

Def. A TDS (Y, S) is called a factor of

Def. A TDS (Y, S) is Called a factor of

(X, T) if there exists π: X → Y which is

continuous and onto such that the following diagram

commutes.

$$\begin{array}{c} X \xrightarrow{T} X \\ \pi \downarrow & \downarrow \pi \\ Y \xrightarrow{S} Y \end{array}$$

§ 2.4 Factors and extensions.

i.e. $\pi \circ T = S \circ \pi$

In this case, (X, T) is called an extension of (Y,S).

Def. (Kronecker system) Let K be a compact group

and $a \in K$. Define $T: K \rightarrow K$ by

Tx = ax (left multiplication)

We call (K,T) a Kronecker system.

Thm 2.5. Every point in a Kronecker system is recurrent.

This was proved in the last class.

Below is a simple property.

Prop 2.6. Let (Y, S) be a fa for of (X, T), and $\Pi: X \rightarrow Y$ is the factor map. If $x \in X$ is recurrent for (X, T), then $\Pi \times is$ recurrent for (Y, S).

Pf. Suppose $x \in X$ is recurrent for (X,T), then $\exists n_i \stackrel{\wedge \infty}{s.t} T^{n_i} x \to x$

So
$$\pi \circ T^{n_i} \to \pi \times$$

But $\pi \circ T^{n_i} = S^{n_i} \pi \times \to \pi \times$

$$\Rightarrow S^{n_i} \pi \times \to \pi \times$$

We show below that if Y_0 is recurrent for (Y, S) ,

then any preimage of Y_0 is recurrent, if (X, T)

is a group extension.

Def: Let (Y,S) be a TDS and K is a compact group.

1//

Let y: Y → K be a continuous map.

Set
$$X = Y \times K$$
 and $T : Y \times K \rightarrow Y \times K$ by
$$T(y, R) = (sy, \Psi(y) \cdot R).$$

Then (X, T) is an extension of (Y, S) Which is

Called a group extension of (Y,S).

Thm 2.7. Let Yo be a recurrent point of
$$(Y, S)$$
 and (X, T) be a group extension of (Y, S) , $X = Y \times K$. Then (Y_0, R) is recurrent for (X, T) for all $R \in K$.

Pf. For $R_1 \in K$, let $R_{R_1} : X \to X$ be defined by $R_{R_1}(Y, R) = (Y_1, R_{R_1})$.

Then R_{R_1} commutes with T .

Indeed

$$R_{k_{1}} T(s, k) = R_{k_{1}}(ss, \psi(s)k)$$

$$= (ss, \psi(s)kk_{1}).$$

 $TR_{k_{1}}(y,k) = T(y,kk_{1})$ $= (sy, \psi(y)kk_{1}).$

Let e be the identity of K. We first show that (yo, e) is recurrent.

For a ∈ X, let Q(x) = { T'x : n ≥ 1} Then TQ(x) = Q(x), and

x is recurrent \Leftrightarrow xe Q(x).

Since 4. is recurrent,

Q(y, e) contains (yo, k,) for some RIEK.

(Notice T(40,e) = (540, 4(50)e)

T'(40,0) = T(540, 4(50)0)

= (s'4) + (s'4) + (5) =

 $T^{n}(y_{\bullet}, e) = (S^{n}y_{\bullet}, \Psi(S^{n-1}y_{\bullet}) \Psi(S^{n-2}y_{\bullet})$... $\Psi(Y_{\bullet}) \cdot e$

Since
$$R_{k_i}$$
 commutes with T , we have
$$R_{k_i} Q(x) = Q(R_{k_i}(x)).$$
 Hence
$$(y_0, k_i^2) = R_{k_i} (y_a, k_i)$$

However, since
$$\exists n_i \rightarrow \omega \text{ s.t. } R_i^{n_i} \rightarrow e$$
, we obtain that $(50, e) \in Q(50, e)$.

Then
$$(y_{\bullet,k}) = R_{k}(y_{\bullet,e}) \in G(R_{k}(y_{\bullet,e}))$$

= $G(y_{\bullet,k})$.

Therefore, (40, k) is recurrent.

Let us give an application in number theory.

M

• Let d∈(0,1). Define T: The by

T(x,y) = (x+d, y+2x+d)

Then (TT, T) is a group extension of

 (π', s) given by $x \mapsto x + d$.

By Thm 2.7, every point of The is recurrent.

of with solution

Consider the orbit of (0,0):

 $(0,0) \xrightarrow{T} (3,d) \xrightarrow{T} (2d,4d) \xrightarrow{T} (3d,9d)$

 $\rightarrow \cdots \rightarrow (nd, n^2d) \rightarrow \cdots$

As a consequera, YESO, I n, m EZ s.t.

(n²d -m | <ε.

We can extend the above proposition to polynomials of Righer degree.

Let P(x) be a polynomial of degree d.

Set $P_d(x) = P(x)$,

 $P_{d-1}(x) = P_d(x+1) - P_d(x),$

 $P_{d-2}(x) = P_{d-1}(x+1) - P_{d-1}(x),$

 $P_{o}(x) = P_{i}(x+1) - P_{i}(x),$

where $P_0(x) = Constant d$

Consider T: Td → Td by

$$(\theta_1, \theta_2, \dots, \theta_d) \mapsto (\theta_1 + d_1, \theta_2 + \theta_1, \theta_3 + \theta_4)$$

$$\dots, \theta_d + \theta_{d-1}$$

have
$$\theta_d + \theta_{d-1}$$
).

 $T^{h}(P_{1}(0), P_{2}(0), ..., P_{d}(0)) = (P_{1}(h), P_{2}(h), ..., P_{d}(h))$

-... Pel(n) + Pel-1

= (P1(n+1), P2(n+1), ..., Pd(n+1))

We have $T(P_{i}(n), \dots, P_{d}(n)) = (P_{i}(n) + P_{o}(n), P_{a}(n) + P_{i}(n),$

In particular

Hence 3 n; >00 s.t

This leads to the following

 $P_{d}(n_{i}) \rightarrow P_{d}(0)$.

Thm 2.8. Let p(x) be a real polynomial with p(0)=0. Then for any E>0, $\exists n\in\mathbb{N}$ s.t $|p(n)|<\epsilon$.