Image processing by minimization (Variational approach) 1) Consider a minimization model (usually in continuous sense) 2 Derive a PDE relater to minimization model (3) Discretize the PDE to get a linear system. e.g. Total - variation (TV) denoising model, (R6F) (Rudin - Osher - Fatemi)

Theorem:
$$\int_{a}^{b} \int_{a}^{b} \left(k(x,y) \, \nabla f(x,y)\right) \cdot \nabla g(x,y) \, dxdy = -\int_{a}^{b} \int_{a}^{b} \nabla \cdot \left(k(x,y) \, \nabla f(x,y)\right) g(x,y) \, dxdy$$
where $k: [a,b] \times [a,b] \to IR$.

$$\frac{Proof}{\int_{a}^{b} \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial x} \, \frac{\partial g}{\partial x} + k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) \, dx \, dy}{\int_{a}^{b} \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial x} \, \frac{\partial g}{\partial x}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y}\right) g \, dxdy} + \int_{a}^{b} \left(k(x,y) \, \frac{\partial f}{\partial y}\right) g \, dxdy} dxdy$$

$$=-\int_{a}^{b}\int_{a}^{1}\left[\frac{\partial}{\partial x}\left(k(x,y)\frac{\partial f}{\partial x}\right)+\frac{\partial}{\partial y}\left(k(x,y)\frac{\partial f}{\partial y}\right)\right]g\,dx\,dy$$

$$\nabla\cdot\left(k(x,y)\nabla f\right)$$

In general, we have: (7. (V,(X,y), V2 (X,y)) Useful Tool: (Integration by part) $\int_{\Omega} \nabla f \cdot \nabla g \, dx \, dy = -\int_{\Omega} \left(\nabla \cdot (\nabla f) \right) g \, dx \, dy + \int_{\partial \Omega} g \left(\nabla f \cdot \vec{n} \right) ds = \frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y}$ where $\vec{n} = (n_1, n_2) = \text{outward normal on the boundary}$. or more generally, $\int_{\Omega} k(x,y) \nabla f(x,y) \cdot \nabla g(x,y) dx dy = -\int_{\Omega} \nabla \cdot (k(x,y) \nabla f(x,y)) g(x,y) dx dy + \int_{\partial \Omega} g(x,y) (k(x,y) \nabla f(x,y) \cdot \vec{n}) ds$

Another useful fact: If: $\int_{\Omega} T(x,y) v(x,y) dx dy = 0$ for all v(x,y)then, we can conclude T(x,y) = 0 in Ω Example: Suppose we have the following integral equation: $\int_{a}^{b} \int_{a}^{b} \left(f(x,y) - g(x,y)\right) v(x,y) + \int_{a}^{b} \int_{a}^{b} \nabla \cdot \nabla f(x,y) K(x,y) v(x,y) dxdy = 0$ for all v(x,y). Then we have: $\int_{a}^{b} \int_{a}^{b} \left[(f(x,y) - g(x,y)) + k(x,y) \nabla \cdot \nabla f(x,y) \right] v(x,y) dx dy = 0$ for all v(x,y)We can conclude: $(f(x,y) - g(x,y)) + k(x,y) \nabla \cdot \nabla f(x,y) = 0$ for all (x,y) = [a,6] x

 $f(x,y) = g(x,y) = 0 \quad \text{on}$ Remark: More generally, if we do not enforce do not enforce the boundary of the image domain so. Then, we V(x,y) = 0 04 J.S. In this case, we have: $0 = S'(0) = \int_{\Omega} 2 \left(f(x,y) - g(x,y) \right) V(x,y) + \int_{\Omega} 2 \nabla f(x,y) \cdot \nabla V(x,y) dxdy$ = $\int_{\Omega} 2(f(x,y) - g(x,y)) v(x,y) dxdy - \int_{\Omega} 2 \Delta f(x,y) v(x,y) dxdy$

$$+\int_{\partial\Omega} \left(2 \nabla f(x,y) \cdot \hat{n}(x,y)\right) v(x,y) ds$$
Overall, we get:
$$\int_{\Omega} \left(f - g - \Delta f\right) v dx dy - \int_{\partial\Omega} \left(\nabla f \cdot \hat{n}\right) v ds = 0 \quad \text{for all } v$$

We conclude: $\begin{cases} f-g-\Delta f = 0 \text{ in } \Omega \\ \nabla f \cdot \hat{n} = 0 \text{ in } \partial \Omega \end{cases}$ (PDE)

Example: (onsider an image denoising model to find $f: [a,b] \times [a,b] \rightarrow \mathbb{R}$ that minimizes:

$$E(f) = \int_{a}^{b} \int_{a}^{b} (f(x,y) - g(x,y))^{2} + \int_{a}^{b} \int_{a}^{b} |\nabla f(x,y)|^{4} dxdy.$$

Suppose f minimizes E(f). Assume f(x,y) = g(x,y) = 0 for all $(x,y) \in \partial D$. Find a partial differential equation that f must satisfy.

Consider S: IR - IR where S(E) = E(fE) = E(f+Ev) Then, S(0) = E(f) = minimum of E. Thus, S attain minimum $\frac{dS}{d\xi}\Big|_{\xi=0} = 0 \quad \text{for all } V: D \to IR$ $0 = \frac{ds}{d\epsilon}\Big|_{\epsilon=0} = \frac{d}{d\epsilon}\Big|_{\epsilon=0} \int_{D} \left(f(x,y) + \epsilon v(x,y) - g(x,y)\right)^{2} dx dy$ + $\int_{D} |\nabla(f+\varepsilon v)(x,y)|^{4} dxdy$ $(|\nabla f+\varepsilon \nabla v|^{2})^{2}$ $((\nabla f + \epsilon \nabla v) \cdot (\nabla f + \epsilon \nabla v))^2$ ([\text{Tf|2} + 2\text{2\text{F}. }\text{VV} + \text{2^2 |\text{VV}|^2})^2

$$0 = \frac{dS}{dE}(0) = \int_{P}^{2} (f(x,y) + Ev(x,y) - g(x,y)) v(x,y) \Big|_{E=0} dxdy$$

$$+ \int_{P}^{2} 2 (|\nabla f|^{2} + 2E \nabla f \cdot \nabla v + E^{2} |\nabla v|^{2}) (2 \nabla f \cdot \nabla v + 2E |\nabla v|^{2}) \Big|_{E=0} dxdy$$

$$\Rightarrow 0 = \int_{P}^{2} 2 (f(x,y) - g(x,y)) v(x,y) dxdy + \int_{P}^{2} 4 (|\nabla f|^{2}) \nabla f \cdot \nabla v dxdy$$

$$= \int_{P}^{2} 2 (f(x,y) - g(x,y)) v(x,y) dxdy - \int_{P}^{2} 4 |\nabla \cdot (|\nabla f|^{2}) \nabla f \cdot \nabla v dxdy$$

$$+ \int_{P}^{2} 4 (|\nabla f|^{2}) |\nabla f(x,y)| v(x,y) dxdy$$

$$+ \int_{P}^{2} 4 (|\nabla f|^{2}) |\nabla f(x,y)| v(x,y) dxdy$$

All together, we have:

$$0 = \int_{D} \left(2(f(x,y) - g(x,y)) - 4 \nabla \cdot \left(|\nabla f(x,y)|^{2} \nabla f(x,y) \right) v(x,y) dx dy \right)$$
for all $v(x,y)$.

We can conclude that:

$$f(x,y) - g(x,y) - 4 \nabla \cdot \left(|\nabla f(x,y)|^2 \nabla f(x,y) \right) = 0 \quad \text{in } D.$$

(Partial differential equation)

Total variation (TV) denoising (ROF)

Invented by : Rudin, Osher, Fatemi

Motivation: Previous model: S = g + Af. Solve for f from noisy g.

Disadvantage: Smooth out edge.

Modification: $f = g + \nabla \cdot (k \nabla f)$

K is small on edges!!

Goal: Given a noisy image g(x,y), we look for f(x,y) that solves:

$$f = g + \lambda \frac{\partial}{\partial x} \left(\frac{1}{|\nabla f|(x,y)} \frac{\partial f}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{|\nabla f|(x,y)} \frac{\partial f}{\partial y} \right) \tag{\times}$$

Remark: Problem arises if 17f(x,y)=0. Take care of it later.

We'll show that (*) must be satisfied by a minimizer of:

$$\overline{J}(f) = \frac{1}{2} \int_{\Omega} (f(x,y) - g(x,y))^{2} + \lambda \int_{\Omega} |\nabla f(x,y)| dx dy$$

$$constant parameter > 0.$$

Same idea: Let
$$S(\epsilon) := E(f + \epsilon v)$$

$$= \int_{\Omega} (f + \epsilon v - g)^{2} + \lambda \int_{\Omega} |\nabla f + \epsilon \nabla v|$$

$$\frac{d}{d\epsilon}S(\epsilon) = \left[\int_{\Omega} (f + \epsilon v - g) \nabla + \lambda \int_{\Omega} \frac{\nabla f \cdot \nabla v + 2\epsilon \nabla v \cdot \nabla v}{|\nabla f + \epsilon \nabla v|} \cdot (\nabla f + \epsilon \nabla v)\right]$$
If f is a minimizer, $\frac{d}{d\epsilon}|_{\epsilon=0} S(\epsilon) = 0$ for all V .
$$S'(0) = 0 = \int_{\Omega} (f - g) \nabla + \lambda \int_{\Omega} \frac{\nabla f \cdot \nabla v}{|\nabla f|}$$

$$= \int_{\Omega} (f - g) \nabla - \lambda \int_{\Omega} \nabla \cdot \left(\frac{\nabla f}{|\nabla f|}\right) \nabla + \lambda \int_{\partial\Omega} \left(\frac{\nabla f}{|\nabla f|} \cdot \vec{n}\right) \nabla$$

 $=\int_{\Omega} \left[(f-g) - \lambda \nabla \cdot \left(\frac{|\nabla f|}{|\nabla f|} \right) \right] \nabla + \lambda \int_{\Omega} \left(\frac{|\nabla f|}{|\nabla f|} \cdot \vec{n} \right) \nabla \qquad \text{for all } \nabla$

We conclude:
$$(f-g) - \lambda \nabla \cdot \left(\frac{\nabla f}{|\nabla f|}\right) = 0!$$

In the discrete case,

$$J(f) = \frac{1}{2} \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y) - g(x,y))^{2} + \lambda \sum_{x=1}^{N} \sum_{y=1}^{N} \sqrt{(f(x+1,y) - f(x,y))^{2} + (f(x,y+1) - f(x,y))^{2}}$$

J can be regarded as a multi-variable function depending on: $f(1,1), f(1,2), \ldots, f(1,N), f(2,N), \ldots, f(2,N), \ldots, f(N,N)$

If f is a minimizer, then $\frac{\partial J}{\partial f(x,y)} = 0$ for all (x,y).

$$\frac{\partial J}{\partial f(x,y)} = (f(x,y) - g(x,y)) + \lambda \frac{2(f(x+1,y) - f(x,y))(-1) + 2(f(x,y+1) - f(x,y))(-1)}{2\sqrt{(f(x+1,y) - f(x,y))^2 + (f(x,y+1) - f(x,y))^2}} + \lambda \frac{2(f(x,y) - f(x-1,y))}{2\sqrt{(f(x,y) - f(x-1,y))^2 + (f(x-1,y+1) - f(x-1,y))^2}} + \lambda \frac{2(f(x,y) - f(x,y-1))}{2\sqrt{(f(x+1,y-1) - f(x,y-1))^2 + (f(x,y) - f(x,y-1))^2}} = 0$$

By simplification:

$$f(x,y) - g(x,y) = \lambda \left\{ \frac{f(x+1,y) - f(x,y)}{\sqrt{(f(x+1,y) - f(x,y))^2 + (f(x,y+1) - f(x,y))^2}} \right\} \frac{f(x,y) - f(x,y)}{\sqrt{(f(x,y) - f(x-1,y))^2 + (f(x-1,y+1) - f(x-1,y))^2}}$$

$$+ \lambda \left\{ \frac{f(x,y+1) - f(x,y)}{\sqrt{(f(x+1,y) - f(x,y))^2 + (f(x,y+1) - f(x,y))^2}} = \frac{2f(x,y)}{\sqrt{(f(x+1,y) - f(x,y))^2 + (f(x,y+1) - f(x,y))^2}} \right\} \frac{f(x,y) - f(x,y)}{\sqrt{(f(x+1,y-1) - f(x,y))^2 + (f(x,y+1) - f(x,y))^2}}$$

$$- \frac{f(x,y) - f(x,y-1)}{\sqrt{(f(x+1,y-1) - f(x,y-1))^2 + (f(x,y) - f(x,y-1))^2}}$$

Discretization of
$$f-g=\lambda \ \nabla \cdot \left(\frac{\nabla f}{(\nabla f)}\right)$$
 $\frac{2f}{2y}(x,y-1)$

How to minimise J(f)

We consider the problem of finding f that minimizes Jlf).

In the discrete case, J depends on f(x,y) for x=1,2,..., N y=1,2,...,N

Consider a time-dependent image f(x,y;t). Assuming that f(x,y;t) satisfies:

$$\frac{df(\cdot,\cdot;t)}{dt} = -\nabla J(f(\cdot,\cdot;t)) \qquad (\chi\chi)$$

We can show that J(f(;t)) decreases as t increases.

Note that:

$$\frac{d}{dt} \mathcal{J}(f(\cdot,\cdot;t)) = \nabla \mathcal{J}(f(\cdot,\cdot;t)) \cdot \frac{d}{dt} f(\cdot,\cdot;t) = -\nabla \mathcal{J}(f(\cdot,\cdot;t) \cdot \nabla \mathcal{J}(f\cdot,\cdot;t))$$

$$= -|\nabla \mathcal{J}(f(\cdot,\cdot;t))|^{2} \leq 0.$$

.. J(f(·,·;t)) is decreasing as t increases!

In the discrete case,

$$\frac{f^{n+1}-f^n}{\Delta t} = -\nabla J(f^n) \qquad \text{(Gradient descent algorithm)}$$

For the ROF model:

$$\begin{split} \frac{f^{n+1}(x,y)-f^n(x,y)}{\Delta t} &= -(f^n(x,y)-g(x,y)) + \lambda \frac{f^n(x+1,y)-f^n(x,y)}{\sqrt{(f^n(x+1,y)-f^n(x,y))^2 + (f^n(x,y+1)-f^n(x,y))^2}} \\ &- \lambda \frac{f^n(x,y)-f^n(x-1,y)}{\sqrt{(f^n(x,y)-f^n(x-1,y))^2 + (f^n(x-1,y+1)-f^n(x-1,y))^2}} \\ &+ \lambda \frac{f^n(x,y+1)-f^n(x,y)}{\sqrt{(f^n(x+1,y)-f^n(x,y))^2 + (f^n(x,y+1)-f^n(x,y))^2}} \\ &- \lambda \frac{f^n(x,y)-f^n(x,y-1)}{\sqrt{(f^n(x+1,y-1)-f^n(x,y-1))^2 + (f^n(x,y-1)-f^n(x,y-1))^2}} \\ &- \left(\frac{f^n(x,y)-f^n(x,y-1)}{\sqrt{(f^n(x+1,y-1)-f^n(x,y-1))^2 + (f^n(x,y)-f^n(x,y-1))^2}} \right) \end{split}$$

In the continuous case, consider: $E(f) = \int_{\Omega} (f - g)^2 dx dy + \lambda \int |\nabla f| dx dy$ We want to find a sequence 50, fi, ..., In, ... such that: $E(f_0) \geqslant E(f_1) \geqslant \dots \geqslant E(f_n) \geqslant E(f_{n+1}) \geqslant \dots$ Define $s(\varepsilon) \stackrel{\text{def}}{=} E(f_n + \varepsilon v)$ for some suitable v. (Assuming that $\nabla f_n = 0$ on For small E? by Taylor expansion, $S(\xi) = S(0) + S'(0) \xi + O(\xi^{2})$ $= (\frac{1}{2}) + \frac{1}{2} + O(\xi^{2})$ neglible If $S(0) \le 0$, then $E(f_{n+1}) \le E(f_n)$ Now, $\frac{d}{d\epsilon} \left[S(\epsilon) = \frac{d}{d\epsilon} \right]_{\epsilon=0} \left[\left(\int_{n} + \epsilon v - g \right)^{2} dx dy + \lambda \int_{\Omega} \left[\nabla \int_{n} + \epsilon \nabla v \right] dx dy \right]$ (Vfn+EDV)·(Dfn+EDV)

$$S'(0) = \int_{\Omega} (f_{n} - g) v + \lambda \int_{\Omega} \frac{\nabla f_{n} \cdot \nabla v}{\nabla f_{n} \cdot \nabla f_{n}} dx dy$$

$$= \int_{\Omega} (f_{n} - g) v - \eta \int_{\Omega} \nabla \cdot \left(\frac{\nabla f_{n}}{|\nabla f_{n}|} \right) v dx dy + \lambda \int_{\partial\Omega} \frac{\nabla f_{n} \cdot \nabla f_{n}}{|\nabla f_{n}|} v dx dy$$

$$= \int_{\Omega} (f_{n} - g) - \lambda \nabla \cdot \left(\frac{\nabla f_{n}}{|\nabla f_{n}|} \right) v dx dy$$

$$+ v = -\left[(f_{n} - g) - \lambda \nabla \cdot \left(\frac{\nabla f_{n}}{|\nabla f_{n}|} \right) \right] v dx dy$$

.. Gradient descent algorithm:

$$\int_{0}^{n+1} = \int_{0}^{n} + \varepsilon \left[-\left(2(f_{n} - g) - \lambda \nabla \cdot \left(\frac{\nabla f_{n}}{|\nabla f_{n}|}\right)\right) \right] \quad \text{for } n = 0, 1, 2, \dots$$

This is called the gradient descent algorithm.