
Lecture 13:
Image processing by minimization

(Variational approach

⑦ Consider a minimization model (usually in continuous

sense)

② Derive a PDE related to minimization model

③ Discretize the PDE to get a linear system.

e . g. Total-variation (TV) denoising
model

. (ROF)

(Rudin-Osher - Fatemi)



Theorem :

jog" (kx, y) Df(x
, y)) · xgx , y)dxdy = - D.(k(X,

4) Pf(x,y)g(x, y)axdy

where K : (a ,
b] x (a .

b] + IR.

↳

Proof :

(b (k(y + k(x -yaxdy

=_b(k))9dxdy+
G

-bb(kgdx
=-x(k(x ,y)) + (k(X ,y))gdxd

~

4 . (k(x, y)xf)



In general , we have :

UsefulTool : (Integration by partic
Jef . Daddy = -Stf1)gdaydivergenc

where i = (4 , 42) = outward normal on the boundary.

or more generally,

Sn K(x, y) &f (x, y) . g(x ,y)dxdy =
- JD . (k(X,y)4f(X,y)g(x, y)dxdy

M

+ Sen g(x,3) (k(X, y)Pf(x, y)on)d



Another useful fact :

If Su Th
,y)v(, y) dady = o for all was

,y)

then
,

we can conclude Tac, y) = 0 in -

Example : Suppose we have the following integral equation :

dxdy

(b) (f(x , y) - g(x,y))v(x, y) + JDOXf(X,y)((x, y) v(x
, 3)axdy =

for all v(X, ).
Then : we have :

(bb ((f(x, y) - g(x,y)) + k(x,y) D - Df(x,y))v(x , y)dxdy-
for all v(X ,y

We can conclude : (f(x, Y) - g(x,y) + k(X , y) D . Df(x , y) = 0

for all (X,y)Etaby T



Remark: More generally ,
if we do not enforce f(x, y) = g(x, y) = 0 on

the boundary of the image domain t .
Then

,
we do not enforce

v(X
, y) = 0 on 21

.

In this case
,

we have :

0 = S'(0) = S2(f(x, y) - g(x, y)) v(X
,y) + J24f(x, y) - Tv(X,y)dxdy

dxdy
= S2(f(x, y) - g(x,y))v(X,y)dxdy - S 2 Af(x,y)v(X, y)dxdy

- Sor(Df(x, y) . n (x,y) vcxyI

Overall ,
we get : Self-g-Af)vdidy-S(4foneds = 0 forall

f - g - Af = 0 in -

We conclude : [ nf . m = 0 in ze
(PDE)



Example: Consider an image denoising model to find Fax(a,
b) -> IR

that minimizes :

Elf) = S(f(x, 21 - g(x, x))+ 14 f(x,
x)" axay-

dxdy

Supposef minimizes ECf) .

Assume f(x, y) = g(x , y) = 0 for all

(x, y) ECD . Find a partial differential equation thatf must

Satisfy.

Solution : Suppose f minimizes Elf). For any v : D-IR such

that VIX
, y) = 0 on 2D

,
we

have :

f3def f + Su is an image with

S fi(x, y) = f(x, y) + gv(X, y) = 0 on
ED.



Consider S : /R + IR where S(3)E(f)) = Elf + 3r)

Then
, S(0) = Elf) = minimum of E

.

Thus
,

s attains minimum

at E = 0.

/ = 0 for all w : DR

Now,

0=
0

=)p(f(x, x) + 22(x, y) - g(x, y)) axdy

+ J
,

1P(f + gr)(X, x))
*

dxdy)Ll

(4f + 240/2)2
17

((4f + 3Dv) - (xf + 2Dv))2
I 2

(4foXf + 22Df · Du +EDr . Dr (

(14f(2 + 2 Df . Dr + &Y 1DUR)



: 0 =S(0) =((f(x,y + Er(X,y) - g(x)) vilodya

+S 2 (1+(+ 239f . Du + a 12(2)(2DfoDr + 29142M/s
dxdy

=> 0 =S2(f(x, y) - g(x,y))v(x, y)dxdy +S4(14f() Df Drdxdy

=(
,
z(f(x,y) - g(x,y)) v(x,y)dxdy -Sp(4D - )(x+)

-

xf)(x, y)v(x,y)dxdy

SoDf(X,y)o(x,3) waxy axy



All together , we have :

0 = Sp (2(f(x, y) - g(x, y) -
44 . (kf(x- y, + f(x, x))v(x, y)dxdy

for all V(X, y) .

We can conclude that :

f(x
,y) - g(x,y) - 4X . )(Df(x, 3)) xf(x,y) = 0 in D.

(Partial differential equation



Total variation (TV) denoising
~
Invented by : Rudin

,
Oster

,

Fal
Motivation: Previous model : f = g + Af

.

Solve for f from noisy 9.

Disadvantage : Smooth out edge .

Modification : f = g + D . (kDf)
K is small on edges !!

-Goal: Given a noisy image gi , y) ,
we look for f(x,y) that solves :

- = 9 +)(*)

&

Remark: Problem arises if IMf(x
, y11 = 0. Take care of it later.

We'll show that (*) must be satisfied by a minimizer of :

J(f) =Self(,) - ga, y1) + &Su 14fy/dxdy
constant parameter > 0.



Sameidea: Let S(3) : = E(f + 30)

Say = (+1

If f is a minimizer,(2) = 0 forall e

i Si0) = 0 = Self-g)v + XS
= (n(f- g) - x)D . ()v + Som() v

= Su((f-g) - xD . (i))v + So() for all w

We conclude : (f-g) - xD.) = 0 !



In the discrete case,

J can be regarded as a multi-variable function depending on :

f(1
,

1)
,
f( ,2) ,

... ,
f(1,

N)
,
f(,,

, ...,
f(N

, ... ,
f(N

, N)
.

If f is a minimizer, theny
= 0 for all (2)



By simplification :

-
-
=

Discretization of f-g = &. (i) "



How to minimise 
~

the consider throblem of finding - that minimizes JCf).

In the discrete case
,

J depends on f(x, 4) for X = 1
,

2, ...,
N

&

y = 1 ,2, ...,
N

Consider a time-dependent image f(x,YA · Assuming that f(x, yit) satisfies

flit = -TJ(fooit ( **)
We can show that J(f) it) decreases as t increases.

Note that :

J(f) .. it) = XJ (f( . . it)· fl . . ; +) = - XJ(f) .. · : t) . XJ(f -, it)
=

- (TJ(f) . it)))"0 .

: J(f) · jt) is decreasing as t increases !!



In the discrete case,

(Gradient descent algorithm)

For the ROF model :

A
Discretization of

75

(Gradient descent algorithm for ROF)



In the continuous case
,

consider :

E(f) =Se(f-g(2dxdy + x)(xf)dxdy
We want to find a sequence fo8

,

f
, ....

In
, ...

such that :

E(fo) = E(fi) =
. . . : Elfn) = E(fn+

)-

Define S(E)Elfu + EW) for some suitable w
. (Assuming that Tfn = o on

2)
For small <o by Taylor expansion,

S(z) = S(0) + S'(0)E +)
Il

It neglible
E(fn+1) E(fn)

If saso ,
then Elfun) -

> E(fu)

Now , elgo(3)=zo))m(f + 2v - 9)axay + x)axyEnter
1



: S'0) =]n (fn-gDry/

Iful
= Se Hfn-gay-4]D.raxdy +1
=Sa)(fn-g) - ↑4.)]raxay

Put v = - ((fn-9) - 1D . )). Then : sco) 0·

Gradient descent algorithm :

f
"

= f+-D
. (l) for n=o

, 1...

This is called the gradient descent algorithm.


