Lecture 12:

Image denoising by solving Anisotropic heat diffussion

Consider the PDE:

$$(X) \frac{\partial I(x,y,t)}{\partial t} = t \left[\frac{\partial^2 I(x,y,t)}{\partial x^2} + \frac{\partial^2 I(x,y,t)}{\partial y^2} \right] = t \nabla \cdot (\nabla I)$$

$$(\nabla \cdot = \text{divergence} \ ; \ \nabla \cdot (v_1, v_2) = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} \right) \left(\nabla I = \left(\frac{\partial I}{\partial I}, \frac{\partial I}{\partial y} \right) \right)$$

Then:
$$g(x,y,t) = \frac{1}{2\pi t^2} e^{-(x^2 + y^2)/2t^2}$$
 satisfies (*).

Observation: We'll see that Gaussian filter is approximately solving (*)

Gaussian filter = convolution of I with the Gaussian function:

$$\widetilde{\mathbf{I}}(\mathbf{x},\mathbf{y},t) = \mathbf{I} * g(\mathbf{x},\mathbf{y},t) = \int_{\mathbf{x}}^{\mathbf{x}} \mathbf{y}(\mathbf{x}-\mathbf{y},\mathbf{y}-\mathbf{y}) \, \mathbf{I}(\mathbf{u},\mathbf{v}) \, d\mathbf{v} \, d\mathbf{v}$$

(Analogous to discrete =
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u,v;t) I(x-u,y-v) dudv$$
 convolution)

$$\frac{\partial \widetilde{I}}{\partial t} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial g(u,v,t)}{\partial t} I(x-u,y-v) du dv$$

$$= t \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^{2} g(u,v;t)}{\partial u^{2}} I(x-u,y-v) du dv + t \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^{2} g}{\partial v^{2}} (u,v;t) I(x-u,y-v) du dv$$

$$= t \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u,v;t) \frac{\partial I}{\partial x^{2}} (x-u,y-v) du dv + t \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u,v;t) \frac{\partial I}{\partial y^{2}} (x-u,y-v) du dv$$

$$= t \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^{2} g(u,v;t)}{\partial x^{2}} I(x-u,y-v) du dv.$$

$$= r\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \int \int_{-\infty}^{\infty} g(u, v; t) \, \underline{I}(x-u, y-v) \, du \, dv$$

$$= r \cdot \left(\nabla \cdot (\nabla \cdot \underline{I})(x, y, t)\right)$$

Diffussion equation can be used for image denoising. Consider a sequence of images: I°, I', I2, ... E MNXN(IR) We can regard $I^{k}(x, y)$ as $I(x, y, \frac{k}{T})$ in the diffusion. T(x,y,t) = t A I (x,y,t) can be discretized Then: $\frac{I^{k+1}(x,y)-I^{k}(x,y)}{\left(\frac{1}{T}\right)}=\frac{k}{T}p*I^{k}(x,y)$ I', we get I' from (\$) Given I', " J2 from (*)

For Anisotopic diffusion, considers It can be discretized: $\frac{\partial}{\partial t} I(x,y,t) = t \nabla (k(x,y) I(x,y,t))$ $\frac{\mathbf{I}^{k+1}(x,y) - \mathbf{I}^{k}(x,y)}{(1)} = \frac{k}{T} \nabla \cdot (k(x,y) \mathbf{I}(x,y,t)) (\mathbf{X})$ I', we get I' from (\$)

I', " I' from (\$) K(x,y) can be choosen as: $K(x,y) = \frac{1}{|\nabla I(x,y)|}$ for edge-proserving image denoising.

Image denoising using energy minimization

Let g be a noisy image corrupted by additive noise n. Then: g(x,y) = f(x,y) + n(x,y)Clean image noise

Recall: Laplacian masking: $g = f - \Delta f$ (Obtain a sharp image from Conversely, to get a smooth image f from a non-smooth image g,

We can solve the PDE for $f: -\Delta f + f = g$ unknown known

We will show that solving the above equation is equivalent to minimizing something:

$$\overline{E}(f) = \iint \left(f(x,y) - g(x,y) \right)^2 dx dy + \iint \left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 dx dy$$

In the discrete case, the PDE can be approximated (discretized) to get: f(x,y) = g(x,y) + [f(x+1,y) + f(x,y+1) + f(x-1,y) + f(x,y-1) - 4f(x,y)]for all (x,y) (Linear System) Direct method Iterative method (Big linear system)

Consider:
$$E_{discrete}(f) = \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y) - g(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x+1,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{x=1}^{N} (f(x+1,y) - f(x,y))^2 + \sum_$$

Remark:

- · Solving f = g + Af is equivalent to energy minimization
- · The first term in Ediscrete is called the fidelity term.

 Aim to find f that is close to g.
- · The second term is called the regularization term. Aim to enhance Smoothness.
- $-\Delta f + f = g$ can also be solved in the frequency domain = DFT(f) = DFT(g + Δf)
 - $\therefore DFT(f)(u,v) = DFT(g)(u,v) + cDFT(p)(u,v)DFT(f)(u,v)$

$$\Rightarrow DFT(f)(u,v) = \left[\frac{1}{1 - cDFT(p)(u,v)}\right]DFT(g)(u,v)$$
\(\text{inverse DFT}\)

f (x,y) !!

02/2

Image processing by minimization (Variational approach)

- (1) Consider a minimization model (usually in continuous sense)
- Denve a PDE relater to minimization model
- 3) Discretize the PDE to get a linear system.
- e.g. Total vaniation (TV) denoising midel, (R6F) (Rudin - Osher - Faterni)

2D integration by part formula

Let
$$f: [a,b] \times [a,b] \rightarrow \mathbb{R}$$
 and $g: [a,b] \times [a,b] \rightarrow \mathbb{R}$.

Assume
$$f(a,y) = f(b,y) = f(x,a) = f(x,b) = 0$$
.

$$g(a,y) = g(b,y) = g(x,a) = g(x,b) = 0.$$

Then:
$$\int_{a}^{b} \nabla f(x,y) \cdot \nabla g(x,y) dx dy = -\int_{a}^{b} \int_{a}^{b} \Delta f(x,y) g(x,y) dx dy$$

Proof:
$$\int_{a}^{b} \int_{a}^{b} \frac{\partial g}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial g}{\partial y} dxdy = -\int_{a}^{b} \int_{a}^{b} \left(\frac{\partial^{2} f}{\partial x^{2}}\right) g dxdy + \int_{a}^{b} \left(\frac{\partial f}{\partial x}\right) g \Big|_{x=a}^{x=b} dy$$

$$-\int_{a}^{b} \int_{a}^{b} \left(\frac{\partial^{2} f}{\partial y^{2}}\right) g dxdy + \int_{a}^{b} \frac{\partial f}{\partial y} g \Big|_{y=a}^{x=b} dx$$

$$C_{a}^{b} C_{b}^{b} C_{b}^{2} C_{b}^{c} C_{b}^{c} C_{b}^{2} C_{b}^{c} C_$$

$$= -\int_{a}^{b} \int_{a}^{b} \left(\frac{2^{2}f}{2x^{2}} + \frac{2^{2}f}{2y^{2}} \right) g dx dy$$

Also,
$$\int_{a}^{b} \int_{a}^{b} \left(k(x,y) \, \nabla f(x,y) \right) \cdot \nabla g(x,y) \, dx dy = -\int_{a}^{b} \int_{a}^{b} \nabla \cdot \left(k(x,y) \, \nabla f(x,y) \right) g(x,y) \, dx dy$$
Where $k: [a,b] \times [a,b] \to IR$.

$$\frac{Proof:}{\int_{a}^{b} \int_{a}^{b} \left[k(x,y) \, \frac{\partial f}{\partial x} \, \frac{\partial g}{\partial x} + k(x,y) \, \frac{\partial f}{\partial y} \, \frac{\partial g}{\partial y} \right] \, dx \, dy}$$

$$= -\int_{a}^{b} \int_{a}^{b} \frac{\partial}{\partial x} \left(k(x,y) \, \frac{\partial f}{\partial x} \right) g \, dx dy + \int_{a}^{b} k(x,y) \, \frac{\partial f}{\partial x} g \left(k(x,y) \, \frac{\partial f}{\partial y} \right) g \, dx dy + \int_{a}^{b} k(x,y) \, \frac{\partial f}{\partial y} g \, dx dy$$

$$= -\int_{a}^{b} \int_{a}^{b} \frac{\partial}{\partial y} \left(k(x,y) \, \frac{\partial f}{\partial x} \right) + \frac{\partial}{\partial y} \left(k(x,y) \, \frac{\partial f}{\partial y} \right) g \, dx dy$$

$$\nabla \cdot \left(k(x,y) \, \nabla f \right)$$

In general, we have: (7. (V,(X,y), V2 (X,y)) Useful Tool: (Integration by part) $\int_{\Omega} \nabla f \cdot \nabla g \, dx \, dy = -\int_{\Omega} \left(\nabla \cdot (\nabla f) \right) g \, dx \, dy + \int_{\partial \Omega} g \left(\nabla f \cdot \vec{n} \right) ds = \frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y}$ where $\vec{n} = (n_1, n_2) = \text{outward normal on the boundary}$. or more generally, $\int_{\Omega} k(x,y) \nabla f(x,y) \cdot \nabla g(x,y) dx dy = -\int_{\Omega} \nabla \cdot (k(x,y) \nabla f(x,y)) g(x,y) dx dy + \int_{\partial \Omega} g(x,y) (k(x,y) \nabla f(x,y) \cdot \vec{n}) ds$

Another useful fact: If: $\int_{\Omega} T(x,y) v(x,y) dx dy = 0$ for all v(x,y)then, we can conclude T(x,y) = 0 in Ω Example: Suppose we have the following integral equation: $\int_{a}^{b} \int_{a}^{b} \left(f(x,y) - g(x,y)\right) v(x,y) + \int_{a}^{b} \int_{a}^{b} \nabla \cdot \nabla f(x,y) K(x,y) v(x,y) dxdy = 0$ for all v(x,y). Then we have: $\int_{a}^{b} \int_{a}^{b} \left[(f(x,y) - g(x,y)) + k(x,y) \nabla \cdot \nabla f(x,y) \right] v(x,y) dx dy = 0$ for all v(x,y)We can conclude: $(f(x,y) - g(x,y)) + k(x,y) \nabla \cdot \nabla f(x,y) = 0$ for all (x,y) = [a,6] x

Image denoising by solving PDE (derived from energy minimisation problem)

Consider the harmonic - L2 minimization model:

minimize
$$E(f) = \int_{aa}^{bb} (f(x,y) - g(x,y))^2 dxdy + \int_{aa}^{bb} |\nabla f|^2 dxdy$$

(Look for (continuous) image domain

(Look for (continuous) image f) Observed

Smoothness of f

Assume that f(x,y) = g(x,y) = 0 on the boundary of $[a,b] \times [a,b]$. Suppose f minimizes E(f). Let $v: [a,b] \times [a,b] \to |R|$ such that

v(x,y) = 0 on the boundary of [a,b] x [a,b].

Consider $f = f + \varepsilon v : [a,b] \times [a,b] \to IR$, which is another image with

fE(x,y) = 0 on the boundary of [a,b] x [a,b].

$$f^{\epsilon}_{(x,y)} = f^{(x,y)} + \epsilon v(x,y) = 0$$
 on $\partial(a,b) \times (a,b)$.

Consider S: IR > IR defined by: $S(\varepsilon) \stackrel{\text{def}}{=} E(f^{\varepsilon}) = E(f + \varepsilon v).$ Note that S(0) = E(f) = minimum of E. Thus, S attains its minimum $\frac{ds}{ds}(0) = 0.$ Now, $\frac{d}{d\epsilon} | s(\epsilon) = \frac{d}{d\epsilon} | \frac{E}{\epsilon = 0} \left(f + \epsilon v \right) = \frac{d}{d\epsilon} | \frac{1}{\epsilon = 0} \int_{a/a}^{b/b} \left(f(x,y) + \epsilon v(x,y) - g(x,y) \right)^2 dx dy$ $= \int_{a}^{b} \int_{c}^{b} 2(f(x,y) + \varepsilon v(x,y) - g(x,y)) v(x,y) dxdy$ (Vf+EVV)·(Vf+EVV) 7f.7f + 28 7f.7r + 227v.7v 17f12 + 2ε ∇f. Dv + ε2/70/2 $=\int_{a}^{b}\int_{a}^{b} 2\left(f(x,y)-g(x,y)\right)v(x,y)+\int_{a}^{b}\int_{a}^{b} 2\nabla f(x,y)\cdot\nabla v(x,y)dxdy$

 $S'(0) = 0 = 2 \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) V(x,y) dx dy + 2 \int_{0}^{\infty} \left(\frac{\partial f}{\partial x}(x,y) \frac{\partial v}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) \frac{\partial v}{\partial y}(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) V(x,y) dx dy + 2 \int_{0}^{\infty} \left(\frac{\partial f}{\partial x}(x,y) \frac{\partial v}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) \frac{\partial v}{\partial y}(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) V(x,y) dx dy + 2 \int_{0}^{\infty} \left(\frac{\partial f}{\partial x}(x,y) \frac{\partial v}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) \frac{\partial v}{\partial y}(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) V(x,y) dx dy + 2 \int_{0}^{\infty} \left(\frac{\partial f}{\partial x}(x,y) \frac{\partial v}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) \frac{\partial v}{\partial y}(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) V(x,y) dx dy + 2 \int_{0}^{\infty} \left(\frac{\partial f}{\partial x}(x,y) \frac{\partial v}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) \frac{\partial v}{\partial y}(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) V(x,y) dx dy + 2 \int_{0}^{\infty} \left(\frac{\partial f}{\partial x}(x,y) \frac{\partial v}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) \frac{\partial v}{\partial y}(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) V(x,y) dx dy + 2 \int_{0}^{\infty} \left(\frac{\partial f}{\partial x}(x,y) \frac{\partial v}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) \frac{\partial v}{\partial y}(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx dy + 2 \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} \left(f(x,y) - g(x,y) \right) dx$ $= \int_{0}^{\infty} \int_{0}^$

 $\int_{a}^{b} \int_{a}^{b} T(x,y) v(x,y) = 0 \quad \text{for all } v(x,y),$

then we can conclude that T(x,y) = 0 in [a,b] x [a,b].

Remark: . First term is in the form SaSa T(x,y) v(x,y).

1 Second term is NOT.

Need to reformulate the second term. Strategy: integration by part.

Second term:
$$\int_{a}^{b} \int_{a}^{b} \nabla f(x,y) \nabla v(x,y) dx dy = 2\int_{a}^{b} \int_{a}^{b} \Delta f(x,y) v(x,y) dx dy.$$
All together, we have
$$0 = S'(0) = \int_{a}^{b} \int_{a}^{b} 2 (f(x,y) - g(x,y)) v(x,y) - 2\int_{a}^{b} \int_{a}^{b} \Delta f(x,y) v(x,y) dx dy$$

$$\int_{a}^{b} \int_{a}^{b} \left(2 (f(x,y) - g(x,y)) - 2 \Delta f(x,y) \right) v(x,y) dx dy = 0 \text{ for all } v(x,y).$$
We conclude:
$$2 (f(x,y) - g(x,y)) - 2 \Delta f(x,y) = 0 \text{ for } (x,y) \in [a,b] \times [a,b]$$
or
$$f(x,y) - g(x,y) - \Delta f(x,y) = 0 \text{ (converse of Laplacian maskins !!)}$$