Lecture 11: I mage sharpening in the frequency domain Goal: Enhance image so that it shows more obvious edges. Method 1: Laplacian masking Recall that: $\triangle f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$. In the discrete case, $\Delta f(x,y) \approx f(x+1,y) + f(x,y+1) + f(x,y-1) + f(x-1,y) - 4f(x,y)$ or $\Delta f \approx P * f$ where $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ We can observe that - Af captures the edges of the image add more edges (leaving other region zero) \therefore Shapen image = $f + (-\Delta f)$ In the frequency domain: DFT(g) = DFT(f) - DFT(Af) = DFT(f) - c DFT(p).DFT(f) $\therefore DFT(g) = [1 - H_{laplacian}(u, v)] DFT(f)(u, v)$

Method 2: Unsharp masking Idea: Add high-frequency Component <u>Definition</u>: Let f = input image (blurry) Let fsmooth = smoother image (using mean filter / Gaussian filter etc) Define a sharper image as: g(x,y) = f(x,y) + k(f(x,y) - fsmooth (x,y)) When k=1, the method is called unsharp masking. When k>1, the method is called highboost filtering.

Then: DFT(g) = $[1 + k(1 - H_{CP}(u, v)]DFT(f)(u, v)$

I mage denoising in the spatial domain

<u>Definition</u>: Linear filter = modify pixel value by a linear combination of pixel values of local neighbourhood.

Example 1: Let f be an $N \times N$ image. Extend the image periodically. Modify f to \tilde{f} by: $\tilde{f}(x,y) = f(x,y) + 3f(x-1,y) + 2f(x+1,y).$

This is a linear filter.

Example 2: Define

$$\tilde{f}(x,y) = \frac{1}{4} \left(f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) \right)$$

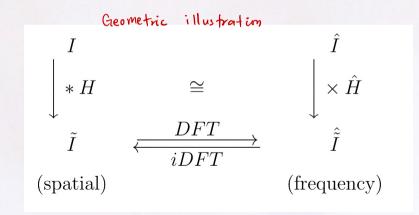
This is also a linear filter.

Recall: The discrete convolution is defined as:

$$I * H(u, v) = \sum_{m=-M}^{M} \sum_{n=-N}^{N} I(u - m, v - n) H(m, n)$$

(Linear combination of pixel values around (u, v))

Therefore, Linear filter is equivalent to a discrete convolution.



Example 3: In Example 1, if f is defined on $[-M, M] \times [-N, N]$, then:

$$\tilde{f} = f * H$$

where

$$H = \left(\begin{array}{ccc} 0 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 0 \end{array}\right)$$

In Example 2, $\tilde{f} = f * H$ where

$$H = \frac{1}{4} \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

H is called the filter

• Mean filter:

$$H = \frac{1}{9} \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right)$$

(Here, we only write down the entries of the matrix for indices $-1 \le k, l \le 1$ for simplicity. All other matrix entries are equal to 0.)

This is called the mean filtering with window size 3×3 .

• Gaussian filter: The entries of H are given by the Gaussian function $g(r) = exp\left(-\frac{r^2}{2\sigma^2}\right)$, where $r = \sqrt{x^2 + y^2}$.

Properties of linear filtering

- Associativity: A * (B * C) = (A * B) * C
- Commutativity: I * H = H * I
- Linearity:

$$(s \cdot I) * H = I * (s \cdot H) = s \cdot (I * H)$$

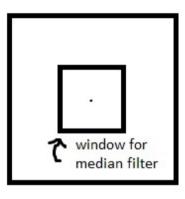
 $(I_1 + I_2) * H = (I_1 * H) + (I_2 * H)$

Remark: Convolution of Gaussian with a Gaussian is also a Gaussian

: Successive Gaussian filter = Gaussian filter with larger of.

Non-linear spatial filter

• Median filter

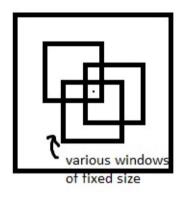


Take a window with center at pixel (x_0, y_0) . Update the pixel value at (x_0, y_0) from $I(x_0, y_0)$ to $\tilde{I}(x_0, y_0) = \text{median}(I \text{ within the window})$

Example 4: If pixel values within a window is 0, 0, 1, 2, 3, 7, 8, 9, 9, then the pixel value is updated as 3 (median).

CONTRACT NO -

• Edge-preserving filter



- Step 1: Consider all windows with certain size around pixel (x_0, y_0) (not necessarily be centered at (x_0, y_0));
- Step 2: Select a window with minimal variance;
- Step 3: Do a linear filter (mean filter, Gaussian filter and so on).

· Non-local mean filter Let g be a NXN image. X = (x,y) } Two pixels. Define: Sx = { (x+s, y+x) =-a < s, t < a }; Sx' = { (x'+s, y'+x) = -a < s, t < a } Define: $g_x = g|_{Sx}$ and $g_{x'} = g|_{Sx'}$. (20+1) x(20+1) image Let $\tilde{g}_{x} = smoothed image of <math>g_{x}$ by Gaussian smoothing gx = smoothed image of gx by Gaussian smoothing. Define the weight: $\omega(X, X') = e^{-\frac{\|\tilde{g}_X - \tilde{g}_{X'}\|_F^2}{\hbar^2}}$ (Small when X and X' are far away) noise level parameter tar away in Non-local mean filter of g. $\hat{q} = \frac{\sum_{x' \in \text{image domain } W(X, X')} g(X')}{2}$ term of small ZX'E image domain W(X,X')

Image denoising by solving Anisotropic heat diffussion Consider the PDE: $(X) \frac{\Im I(x,y,d)}{\Im G} = d \left[\frac{\Im^2 I(x,y,d)}{\Im x^2} + \frac{\Im^2 I(x,y,d)}{\Im y^2} \right] = d \nabla \cdot (\nabla I)$ $(\nabla \cdot = \text{divergence} \ \ \nabla \cdot (\nabla_1, \nabla_2) = \frac{\partial \nabla_1}{\partial x} + \frac{\partial \nabla_2}{\partial y}) \quad (\nabla \underline{I} = (\frac{\partial \underline{I}}{\partial x}, \frac{\partial \underline{I}}{\partial y}))$ Then: $g(x,y,\sigma) = \frac{1}{2\pi \sigma^2} e^{-(x^2+y^2)/2\sigma^2}$ Satisfies (*). Observation: We'll see that Gaussian filter is approximately solving (x). Given an image I(x,y) (Assume I is continuously defined on the whole 2D Gaussian filter = convolution of I with the Gaussian function: $I(x,y,r) = I \times g(x,y,r) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x-u,y-v) I(u,v) dudv$ (Analogous to discrete= 50 50 g(u,v; r) I(x-u,y-v) dudv convolution)