Lecture 9: Image deblurring

Atmospheric turbulence

Motion

Speeding problem

Image deblurring in the frequency domain:

Mathematical formulation of image blurring

Let g be the observed (blurry) image. Let f be the original (good) image. Model g as = g = D(f) + n f

Clean, blurry image of f

image

(not a matrix just a transformation)

where D is the degradation function/operator and n is the additive noise.

Assumption on D:

1. D is position invariant:

Let
$$g(x,y) = D(f)(x,y)$$
 and let $\widetilde{f}(x,y) := f(x-d,y-\beta)$.

Then:
$$D(\tilde{f})(x,y) = g(x-\lambda, y-\beta) = D(f)(x-\lambda, y-\beta)$$

2. Linear:
$$D(f_1+f_2) = D(f_1) + D(f_2)$$

 $D(\lambda f) = \lambda D(f)$ where λ is a scalar multiplication.

With the above assumption, we can show that: (assume indices taken between - N to N -1) With the above D(f) = f * h where if (x,y)=(0,0) $\mathcal{H} = D(8) \qquad \delta(x,y) = \begin{cases} 0 \\ 0 \end{cases}$ NXN matrix

i. With the above assumption,

Degradation/Blur = Convolution

Remark:

• g(x,y)= h*f(x,y)

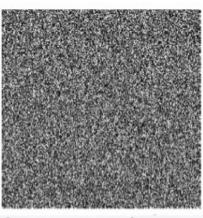
In the frequency domain, G(u,v) = c H(u,v) F(u,v) Constant Debluring can be done by: $Compute: F(u,v) \approx \frac{G(u,v)}{cH(u,v)} - from observe.$ $Compute: F(u,v) \approx \frac{G(u,v)}{cH(u,v)} - from Renown degradation$

Obtain: f(x,y) = DFT-1 (F(u,v))

Image deblurring in the frequency domain: (Assume H is known) (Assuming central spectrum) Method 1: Direct inverse Siltering Let $T(u,v) = \frac{1}{H(u,v) + \varepsilon \, sgn(H(u,v))}$ (sgn(z) = 1 if $Re(z) \ge 0$ and sgn(z) = -1 otherwise) Compute $\hat{F}(u,v) = G(u,v) T(u,v)$. Find inverse DFT of F(u,v) to get an image f(x,y). Good: Simple Bad: Boast up noise $F(u,v) = G(u,v) T(u,v) \approx F(u,v) + N(u,v)$ H(u,v) + & sgn(H(u,v)) H(u,v)F(u,v) + N(u,v) Note: H(u,v) is big for (u,v) close to (0,0) (keep low frequencies) is Small for (u,v) far away from (0,0) $\frac{N(u,v)}{H(u,v)+\epsilon sgn(H(u,v))} is sign for (u,v) far away from (0,0)$ Boast up noises!

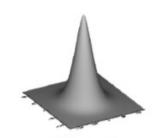
Original

Blurred image

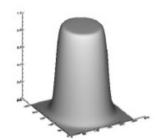


Direct inverse Siltering

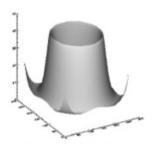
Bad: Has to choose D and n carefully.



H(u,v)



B(u, v): D = 90, n = 8



Inverse B/H

Original Image G(u,v)

Blurred using D = 90, n = 8

Restored with a best D and n.

Method 3: Wiener filter

Let
$$T(u, v) = \frac{\overline{H(u, v)}}{|H(u, v)|^2 + \frac{S_n(u, v)}{S_g(u, v)}}$$
 where

Let $T(u,v) = \frac{H(u,v)}{|H(u,v)|^2 + \frac{S_n(u,v)}{S_f(u,v)}}$ where $S_n(u,v) = |N(u,v)|^2$ If $S_n(u,v)$ and $S_f(u,v)$ are not known, then we let $K = \frac{S_n(u,v)}{S_f(u,v)}$ to get:

$$\overline{ | (u,v) = \frac{\overline{H(u,v)}}{|H(u,v)|^2 + K}}$$

Let $\hat{F}(u,v) = T(u,v) G(u,v)$. Compute $\hat{f}(x,y) = inverse DFT of <math>\hat{F}(u,v)$.

In fact, the Wiener filter can be described as an inverse filtering as follows:

$$\hat{F}(u,v) = \left[\left(\frac{1}{H(u,v)} \right) \left(\frac{\left| H(u,v) \right|^2}{\left| H(u,v) \right|^2 + K} \right) \right] G(u,v)$$

Behave like "Modified inverse of H(u,v) =0 (if (u,v) far away filtering" =0 if H(u,v) =0 (if (u,v) far away ≈ 1 if H(u,v) is large (if (u,v) ≈ (0,01)

What does Wiener filtering do mathematically? We can show: Wiener filter minimizes, the mean square error: $\mathcal{E}^{2}(f,\hat{f}) = \sum_{x=-\frac{N}{2}} \frac{N}{y-\frac{N}{2}} |f(x,y) - \hat{f}(x,y)|^{2}$ original Restoration degradation
Observed
Let g = h * f + n k noise Then, the restored image f(x,y) can be written as: f(x,y) = w(x,y) * g(x,y) for some w(x,y) Recall: f is obtained as follows Step 1: Let $\hat{F}(u,v) = \underbrace{W(u,v)}_{F(u)} G(u,v)$ (G(u,v) = DFT(g)(u,v)) Step 2: Compute iFT of F to get f : f=cw*g for some w. (or F=DFT(f) = WOG) Thus, f denpends on W

We can regard $\mathcal{E}'(\hat{f}, f)$ as a functional depending on W:

$$\xi^{2}(f,f) = \xi^{2}(W)$$

Under Suitable condition (Spatially correlated), the minimizer

W is given by:

$$W(u,v) = \frac{\overline{H(u,v)}}{|\overline{H(u,v)}|^2 + \frac{S_n(u,v)}{S_{\mathfrak{f}}(u,v)}} \quad \text{where} \quad \frac{S_n(u,v) = |N(u,v)|^2}{|S_{\mathfrak{f}}(u,v)|^2}$$

Method 4: Constrained least square filtering Disadvantages of Wiener's filter: 1) IN(u,v) and IF(u,v) must be known / guessed 2 Constant estimation of ratio is not always suitable Goal: Consider a least Square minimization model. Let g = h * f + n noise degradation In matrix form, $\vec{g} = D\vec{f} + \vec{n}$, \vec{g} , \vec{f} , $\vec{n} \in \mathbb{R}^{N^2}$, $D \in M_{N^2 \times N^2}$ Stacked image of g transformation matrix of $h \neq f$

Constrained least square problem:

Given
$$\vec{g}$$
, we need to find an estimation of \vec{f} such that it minimizes:
$$E(f) = \sum_{x=0}^{M-1} \frac{N^{-1}}{2} |\Delta f(x,y)|^2 \text{ subject to the constraint :}$$

$$||\vec{g} - D\vec{f}||^2 = E$$

What is $\triangle f$?

In the discrete case, we can estimate:
$$\triangle f(x,y) \approx f(x+1,y) + f(x,y+1) + f(x-1,y) + f(x,y-1) - 4f(x,y)$$

Taylor expansion:
$$\frac{\partial^{2}f(x,y)}{\partial x^{2}} \approx \frac{f(x+k,y) - 2f(x,y) + f(x-k,y)}{k^{2}} \xrightarrow{Put \ h=1} \Delta f(x,y) \left(\frac{\partial^{2}f}{\partial x^{2}} + \frac{\partial^{2}f}{\partial y^{2}}\right)(x,y)}{\frac{\partial^{2}f}{\partial y^{2}}(x,y)} \approx \frac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^{2}}$$

in A is the Laplacian in the discrete case

Remark:

· More generally, $\Delta J = p * f \leftarrow$ discrete convolution

where

$$P = \begin{pmatrix} 0 & - & - & 0 \\ \vdots & 1 & -4 & 1 & \vdots \\ 0 & \dots & 0 \end{pmatrix} X^{-0}$$

- · Minimizing $\sum_{x=0}^{N-1} \sum_{y=0}^{N-1} | \triangle f(x,y)|^2$ is to denoise.
- Also, $\vec{g} = D\vec{f} + \vec{n} \Leftrightarrow \vec{g} D\vec{f} = \vec{n} \Rightarrow ||\vec{g} D\vec{f}||^2 ||\vec{n}||^2$
 - : the constraint $||\vec{g} D\vec{f}||^2$ is to solve the deblurring problem.

• $\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} |\triangle f(x,y)|^2$ Denoise

· || g - Df || = E - Deblur

Remark: $\|\vec{g} - D\vec{f}\|^2 = \varepsilon$ means we Allow some fixed level of noise.

Let
$$\overline{p*f} = S(p*f) = L\overline{f}$$
 transformation matrix representing the convolution We will prove:

Theorem: The constrained least square problem has the optimal solution in the Spatial domain that satisfies:

(DTD + 8LTL)
$$\vec{f} = D^T \vec{g}$$

for some suitable parameter 8.

In the frequency domain,

$$\widehat{F}(u,v) := DFT(f)(u,v) = \frac{1}{N^2} \frac{H(u,v)}{\left[H(u,v)\right]^2 + 8\left[P(u,v)\right]^2} G(u,v)$$