Lecture 7:

Recall:

Discrete Fourier Transform:

Definition:

The 2D DFT of a M×N image
$$g = (g(k, l))_{k,l}$$
, where $0 \le k \le M-1$, $0 \le l \le N-1$ is defined as:
$$\widehat{g}(m, n) = \frac{1}{MN} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k, l) e$$
(where $j = J-1$, $e^{j\theta} = \cos\theta + j \sin\theta$)

Remark: The inverse of DFT is given by:

$$g(p,q) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{g}(m,n) \in \int_{0}^{j2\pi} \left(\frac{pm}{M} + \frac{qn}{N}\right)$$

$$\left(no \frac{1}{Mn}!\right) \qquad \left(no -ve \text{ sign}\right)$$

Why is DFT useful in imaging:

1. DFT of convolution:

Recall:
$$g * \omega(n, m) = \sum_{n'=0}^{N-1} \sum_{m'=0}^{N-1} g(n-n', m-m') \omega(n', m')$$

Then,
$$\hat{x}(k, l) = \sum_{p=0}^{N-1} \sum_{q=0}^{M-1} \hat{g}(p,q) \hat{w}(k-p, l-q)$$
 (Convolution of g and w)

Note. (Spatial domain) Linear filtering: I x g Cinear combination of heighborhood pixel

DFT values) Modifying the MNIO 9 (frequency domain) Fourier coefficients pixel-wise by multiplication) multiplication

2. Average value of image

Average value of
$$g = \overline{g} = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k, l) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k, l) e^{-j2\pi(0)}$$

3. DFT of a rotated image

Consider a NXN image g.

Then:
$$\hat{g}(m,n) = \frac{1}{N^2} \sum_{k=0}^{N-1} \frac{N-1}{k} g(k, k) e^{-j2\pi \left(\frac{km+ln}{N}\right)}$$

Write k and I in polar coordinates:

Similarly, write m= wcos &; n= wsin .

Note that:
$$km + ln = rw(cos\theta cos\phi + sin\theta sin\phi) = rwcos(\theta - \phi)$$
.

Denote $\mathcal{P}(g) = \{(r, \theta) : (r\cos\theta, r\sin\theta) \text{ is a pixel of } g\}$ (Polar coordinate net of g)

If
$$\{x = r\cos\theta, \text{ then } (r, \theta) \in \mathcal{P}(g).$$

Then: $\hat{g}(m, n) = \hat{g}(\omega, \theta) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(r, \theta)$

Identify $\hat{g}(m, n)$ with

Then:
$$\hat{g}(m,n) = \hat{g}(\omega,\phi) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(r,\theta) e^{-j2\pi \left(\frac{r\omega\cos(\theta-\phi)}{N}\right)}$$

Identify $\hat{g}(\omega,\phi)$
 $\hat{g}(\omega,\phi)$

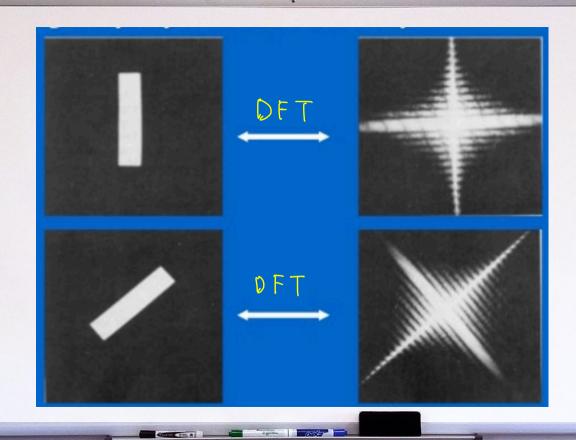
Identify $g(r,\theta)$

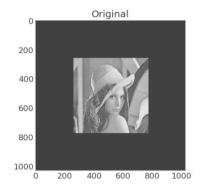
Consider a rotated image
$$\tilde{g}(r,\theta) = g(r,\theta+\theta_0)$$
 where θ is defined between $-\theta_0$ to $\frac{\pi}{2}-\theta_0$.

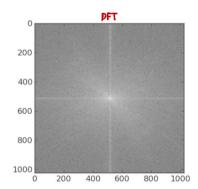
i image g is rotated clockwisely by Do.

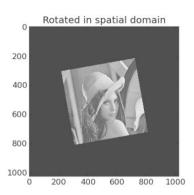
$$\widehat{\widehat{g}}(\omega, \phi) = \frac{1}{N^{2}} \sum_{(r,\theta) \in \mathcal{H}(\widehat{g})} \widehat{\widehat{g}}(r,\theta) e^{-j2\pi \left(\frac{r\omega\cos(\theta-\phi)}{N}\right)} = \frac{1}{N^{2}} \sum_{(r,\widetilde{\theta}) \in \mathcal{P}(\mathfrak{z})} \widehat{g}(r,\widetilde{\theta}) e^{-j2\pi \left(\frac{r\omega\cos(\widetilde{\theta}-\theta_{0}-\phi)}{N}\right)}$$

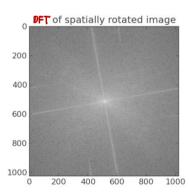
$$\therefore \hat{g}(\omega, \phi) = \hat{g}(\omega, \phi + \theta_0). \quad (\phi \text{ is also defined between } -\theta_0 \text{ to } \sqrt[7]{2} - \theta_0)$$





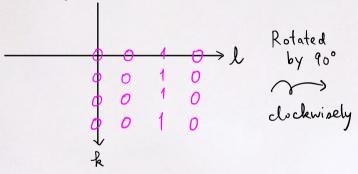




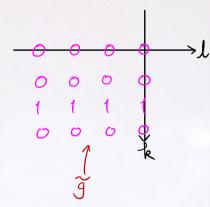


Example: Let
$$g = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
. Then: $\hat{g} = \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Note that g in the coordinate system:



Note that indices of g are taken as= 3= l=0 {0 < k = 3.



4. DFT of a shifted image Let g = (g(k', l')) be a N×N image, where the indices are taken as: $-k_0 \le k' \le N-1-k_0$ and $-l_0 \le l' \le N-1-l_0$ Let \widetilde{g} be shifted image of g defined as: $\widetilde{g}(k, l) = g(k-k_0, l-l_0)$ where $0 \le k \le N-1$

Then: $\hat{g}(m,n) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k-k), l-l_0) e^{-j2\pi(\frac{km+ln}{N})}$ $= \frac{1}{N^2} \sum_{k'=-k}^{N-1-k} \sum_{l'=-l_0}^{N-1-l_0} g(k',l') e^{-j2\pi(\frac{k'm+l'n}{N})} e^{-j2\pi(\frac{k\cdot m+l\cdot n}{N})}$

ĝ (m,n)

$$\hat{g}(m,n) = \hat{g}(m,n) e^{-j2\pi \left(\frac{k_0 m + l_0 n}{N}\right)}$$

Remark:
$$\hat{g}(m-m_0, n-n_0) = DFT(\hat{g})$$
 with carefully chosen indices!
Where $\tilde{g}(k, l) = g(k, p) \times e^{j2\pi(\frac{m_0k+n_0l}{N})}$

Note. (Spatial domain) Linear filtering: I x g Cinear combination of heighborhood pixel

DFT values) Modifying the MNIO 9 (frequency domain) Fourier coefficients pixel-wise by multiplication) multiplication

Image enhancement in the frequency domain:

Goal: 1. Remove high-frequency components (low-pass filter) for image denoising.

2. Remove low-frequency components (high-pass filter) for the extraction of image details.

Let F be the DFT of an NXN image F. (indices taken

 $F(m,n) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \hat{F}(k,l) e^{-\frac{1}{N}(km+ln)}$

Goal: Remove "jumpy" components by setting Suitable $\hat{f}(k,l)$ to zero.

mm = a m + b m + c mm To remove noise, truncate c ([et c=0)

Observation:	

I. When k and l are close to 0, $\hat{F}(k,l)$ is associated to $g(m,n) = e^{j\frac{2\pi}{N}(kmtln)}$ i. Fourier coefficients at the bottom left are associated to ≈ 1 (constant)

low frequency components!

2. When & and L are close to N, $\hat{F}(k,l)$ is associated to $g(m,n) = e^{j\frac{2\pi}{N}(km+ln)} \approx e^{j\frac{2\pi}{N}(km+ln)} \approx 1$ (Not "jumpy") (Not "jumpy")

: Fourier coefficients at the bottom right are associated to low frequency components!
2. Similarly, we can check that Fourier coefficients at the 4 corners are associated to low frequency components.

3. Fourier coefficients in the middle are associated to high frequency i'. High - pass fittering

When kand I are close to 1/2 Low ! Low F(k,l) is associated to: $g(m,n) = e^{j\frac{2\pi}{N}(km+ln)} \approx e^{j\frac{2\pi}{N}(\frac{N}{2}m+\frac{N}{2}n)} - \frac{1}{2}$ = e j I (m+n) = (-1) m+n

Remove coefficients at 4 corners Low-pass filtering = (-1)
(most "jumy")

Low Low
No Remove coefficients at the center

Centralisation:

Let F be an image whose indices are taken between $-\frac{N}{2}$ to $\frac{N}{2}$. Then, DFT(F) is a matrix whose indices are also taken between $-\frac{N}{2}$ to $\frac{N}{2}$.

In this case, Fourier coefficients located at 4 corners of DFT(F) are associated to high-frequency components (jumpy)

Fourier coefficients located in the middle of DFT(F) are associated to low-frequency components (less jumpy)

Procedures for image processing by modifying Fourier coefficients image I = (Ii;)-Mesi, ; sk. Given an DFT of I (Denote I = DFT(I)) Then: obtain a new DFT matrix, Înew, by: $\hat{I}^{\text{new}} = H \odot \hat{I} \quad \left(\text{Here } H \odot \hat{I}(u,v) = H(u,v) \hat{I}(u,v) \right)$ pixel-wish multiplication a suitable filter. Finally, obtain an improved image by inverse DFT: I new = iDFT (I new)

inverse DFT

Note: Let h = iDFT(H)inverse DFT

HOI inverse DFT Ch * I

normalizing

constant

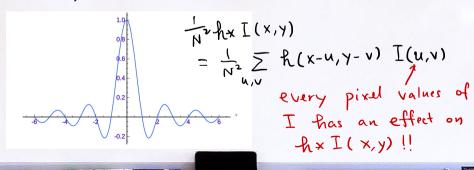
Example of Low-pass filters for image denoising

Assume that we work on the centered spectrum!

That is, consider $\hat{F}(u,v)$ where $-\frac{1}{2} \le u \le \frac{1}{2} - 1$, $-\frac{1}{2} \le v \le \frac{1}{2} - 1$. 1 Ideal low pass filter (ILPF):

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) := u^2 + v^2 \le D_0^2 \\ 0 & \text{if } D(u,v) > D_0^2 \end{cases}$$

In 1-dim cross-section, iDFT(H(u,v)) looks like:

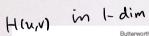


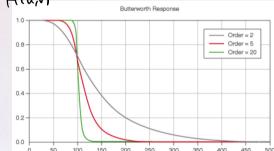
Bad: Produce ringing effect!

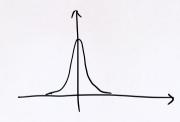
2. Butterworth low-pass filter (BLPF) of order n (n = 1 integer):

$$H(u,v) = \frac{1}{1 + \left(\frac{D(u,v)}{D_o}\right)^n}$$

$$D(u,v) = u^2 + v^2$$







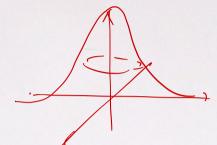
Good: Produce less / no visible ringing effect if n is carefully chosen!

3. Gaussian low-pass filter

$$u^2 + v^2$$

$$H(u, v) = \exp\left(-\frac{D(u, v)}{2 \delta^2}\right)$$

 $\delta = \text{Spread of the Gaussian function}$



F. T. of Gaussian is also Gaussian!

Good: No visible ringing effect!