Lecture 6:

Recall:

Discrete Fourier Transform:

Definition:

The 2D DFT of a M×N image
$$g = (g(k, l))_{k,l}$$
, where $0 \le k \le M-1$, $0 \le l \le N-1$ is defined as:
$$\widehat{g}(m, n) = \frac{1}{MN} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k, l) e$$
(where $j = J-1$, $e^{j\theta} = \cos\theta + j \sin\theta$)

Remark: The inverse of DFT is given by:

$$g(p,q) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{g}(m,n) \in A^{-1} \left(\frac{pm}{M} + \frac{qn}{N}\right)$$

$$\left(no \frac{1}{Mn}!\right) \qquad \left(no -ve \text{ sign}\right)$$

DFT in Matrix form

where
$$U = (Ukl)_{0 \le k, l \le N-1} \in M_{NNN}$$
 and $Ukl = \frac{1}{N}e^{-j\frac{2\pi kl}{N}}$

Theorem:
$$U^*U = \frac{1}{N}I$$
 where $U^* = (\overline{U})^T$ (conjugate transpose)
$$UU^* = \frac{1}{N}I.$$

$$(\overline{a+jb} = a-jb)$$

$$(\overline{e}^{j\theta} = \overline{cos\theta+jsin\theta} = \overline{cos\theta-jsin\theta}$$

$$(e^{j\theta} = \cos\theta + j\sin\theta = \cos\theta - j\sin\theta = e^{-j\theta})$$

Theorem:
$$u^*u = \frac{1}{N}I$$
 where $u^* = (\overline{u})^T$ (conjugate transpose)

 $uu^* = \frac{1}{N}I$.

 $u^* = \frac{1}{N}I$.

 $u^* = (Nu)^*$
 $u^* = (Nu)^*$

$$\mathcal{U}^*\mathcal{U}(k,l) = \begin{cases} \frac{1}{N} & \text{if } k=l \\ 0 & \text{if } k\neq l \end{cases}$$

$$\Rightarrow 21 \times 21 - 1$$

$$\Rightarrow u^* u = \frac{1}{1} I$$

Similarly, UU* = 1 I

Image decomposition by DFT

Suppose
$$\hat{g} = DFT(g) = UgU$$

where
$$\vec{\omega}_{g} = k^{th} \cot of (Nu)^{*}$$

Remark:

Note that $UU^* = \frac{1}{N}I$ unitary.

If we normalize U to U = JNU. Then U is unitary!

Some other definition of DFT:

(2D)
$$\hat{f}(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k,l) e^{-j2\pi \left(\frac{mk+nl}{N}\right)}$$

In this case, let $\widetilde{\mathcal{U}} = (\widetilde{\mathcal{U}}_{kl})_{0 \le k, l \le N-1}$; $\widetilde{\mathcal{U}}_{kl} = \frac{1}{JN} e^{-j\frac{2\pi kl}{N}}$ Then: Then, $\widetilde{\mathcal{U}} = JN \mathcal{U}$ $\widehat{f} = \widetilde{\mathcal{U}} f \mathcal{U}$

i. Normalizing the definition of DFT => unitary U can be applied!

BUT: Inverse DFT must be adjusted!

Mathematics of JPEG (Optional)

Consider a $M \times N$ image f. Extend f to a $2M \times 2N$ image \tilde{f} , whose indices are taken from [-M, M-1] and [-N, N-1].

Define f(k, l) for $-M \le k \le M - 1$ and $-N \le l \le N - 1$ such that

$$f(-k-1,-l-1) = f(k,l)$$
 } Reflection about $(-1/2,-1/2)$
 $f(-k-1,l) = f(k,l)$ } Reflection about the axis $k = -1/2$ and $l = -1/2$

(-1/2,-1/2). l--3 l--2 l--1 l-0 l-1 l=2

$$f(k,l-1) = f(k,l)$$
The nection about the axis $k = -1/2$ and $l = -1/2$

$$\begin{cases} 1 = -1/2 \\ 2 = -1/2 \end{cases}$$

$$\begin{cases} 9 & 8 & 7 & 7 & 8 & 9 \\ 6 & 5 & 4 & 4 & 5 \\ 6 & 5 & 4 & 4 & 5 \end{cases}$$

$$\begin{cases} 3 & 2 & 1 & 1 & 2 & 3 \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 2 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 4$$

Make the extension as a reflection about (0,0), the axis k=0 and the axis l=0. Done by shifting the image by $(\frac{1}{2},\frac{1}{2})$

After shifting							
9	8	7	7	8	9	$\frac{1}{2}$ + (-3)	
6	5	4	4	5	6	$\frac{1}{2}$ + (-2)	
3	2	1	1	2	3	1/2 +(-1)	
3	2	1	1	2	3	1 + 0	· k
6	5	4	4	5	6	1 + (
9	8	7	7	8	9	1 + 2	
-3 -14	1 + -2	1 + -1	1 2 + 0	1 + (12 + 2 ,		
		\sim					

Before shifting: DFT of f, denoted by F is given by. $F(m,n) = \int_{0}^{\infty} (m,n) = \frac{1}{(2m)(2N)} \sum_{k=-M}^{M-1} \int_{0}^{M-1} (k,l) e^{-\frac{1}{2} 2\pi \left(\frac{km}{M} + \frac{ln}{N}\right)}$ shifting, the image becomes: $f(k+\frac{1}{2}, l+\frac{1}{2}) = f(k, l)$ where $-M \le k \le M-1$ -N= L = N-1 F is given by: $-j^{2\pi}\left(\frac{\left(\frac{1}{K}+\frac{1}{2}\right)m}{M}+\frac{\left(\frac{1}{k}+\frac{1}{2}\right)n}{N}\right)$ $F(m,n) = \frac{1}{(2m)(2n)} \sum_{k=-M}^{M-1} \sum_{l=-N}^{N-1} \int_{-N}^{\infty} (k+\frac{1}{2}, l+\frac{1}{2}) e$ Sik, W)

Now, we compute the DFT of (shifted) \tilde{f} :

$$F(m,n) = \frac{1}{(2M)(2N)} \sum_{k=-M}^{M-1} \sum_{l=-N}^{N-1} f(k,l) e^{-j\frac{2\pi}{2M}m(k+\frac{1}{2})} e^{-j\frac{2\pi}{2N}n(l+\frac{1}{2})}$$

$$= \frac{1}{4MN} \sum_{k=-M}^{M-1} \sum_{l=-N}^{N-1} f(k,l) e^{-j(\frac{\pi}{M}m(k+\frac{1}{2}) + \frac{\pi}{N}n(l+\frac{1}{2}))}$$

$$= \frac{1}{4MN} (\sum_{k=-M}^{-1} \sum_{l=-N}^{-1} + \sum_{k=-M}^{-1} \sum_{l=0}^{N-1} + \sum_{k=0}^{M-1} \sum_{l=-N}^{-1} + \sum_{k=0}^{M-1} \sum_{l=0}^{N-1})$$

$$f(k,l) e^{-j(\frac{\pi}{M}m(k+\frac{1}{2}) + \frac{\pi}{N}n(l+\frac{1}{2}))}$$

After some messy simplication, we can get:

$$A_1 + A_2 + A_3 + A_4 = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k,l) \cos \left[\frac{m\pi}{M} \left(k + \frac{1}{2} \right) \right] \cos \left[\frac{n\pi}{N} \left(l + \frac{1}{2} \right) \right]$$

Definition: (Even symmetric discrete cosine transform [EDCT])

Let f be a $M \times N$ image, whose indices are taken as $0 \le k \le M - 1$ and $0 \le l \le N - 1$. The **even symmetric discrete cosine transform (EDCT)** of f is given by:

$$\hat{f}_{ec}(m,n) = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k,l) \cos\left[\frac{m\pi}{M} \left(k + \frac{1}{2}\right)\right] \cos\left[\frac{n\pi}{N} \left(l + \frac{1}{2}\right)\right]$$

with $0 \le m \le M - 1, 0 \le n \le N - 1$

Remark: Smart idea to get a decomposition consisting only of cosine function (by reflection and oblifting!)

- · Can be formulated in matrix form
- · Again, it is a separable image transformation.

• The inverse of EDCT can be explicitly computed. More specifically, the **inverse EDCT** is defined as:

$$f(k,l) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} C(m)C(n)\hat{f}_{ec}(m,n)\cos\frac{\pi m(2k+1)}{2M}\cos\frac{\pi n(2l+1)}{2N} \tag{**}$$

where C(0) = 1, C(m) = C(n) = 2 for $m, n \neq 0$

Also involving cosine ion: functions only!

• Formula (**) can be expressed as matrix multiplication:

$$f = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{f}_{ec}(m,n) \vec{\nabla}_m \vec{T}'_n$$
 elementary images under EDCT!

Why is DFT useful in imaging:

1. DFT of convolution:

Recall:
$$g * W(n, m) = \sum_{n'=0}^{N-1} \sum_{m'=0}^{N-1} g(n-n', m-m') W(n', m')$$

pixel-wise multiplication

Then, the DFT of g*w = MN DFT(g)ODFT(w)

in DFT of convolution can be reduced to simple multiplication!

Proof:

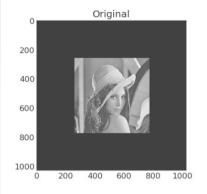
Proof:

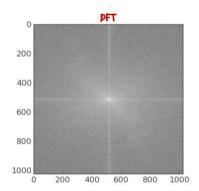
DFT of
$$g*w$$
 at (p, g)

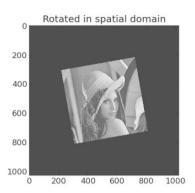
$$= \frac{1}{NM} \sum_{n=0}^{N-1} \frac{M-1}{m-2} \sum_{m=0}^{M-1} \frac{M-1}{m} \sum_{n=0}^{N-1} \frac{M-1}{m} \sum_{m=0}^{M-1} \frac{M-1}{m} \frac{M-1}{m} \sum_{m=0}$$

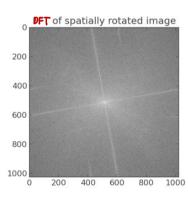
Note that: g and w are periodically extended.

$$g(n-N, m) = g(n, m)$$
 and $g(n, m-M) = g(n, m)$

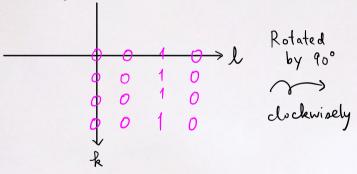

Consider
$$\sum_{n''=-n'}^{-1} g(n'', m'') e^{-j 2\pi \frac{p n''}{N}} = \sum_{n'''=N+n''}^{N-1} g(n''-N, m'') e^{-j 2\pi \frac{p n''}{N}} e^{j 2\pi \frac{p}{N}}$$

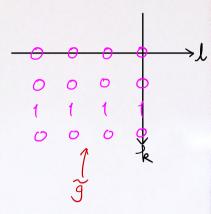

[Also can do similar thing for index m''.


We can do similar thing for index m".


Note. (Spatial domain) Linear filtering: I x g Cinear combination of heighborhood pixel

DFT values) Modifying the MNIO 9 (frequency domain) Fourier coefficients pixel-wise by multiplication) multiplication





Example: Let
$$g = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
. Then: $\hat{g} = \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Note that g in the coordinate system:

Note that indices of g are taken as= 3= l=0 {0 < k = 3.

Now, DFT of $\tilde{g} = \hat{g}$ (given by: $\frac{3}{2} = \frac{5}{9} (R, L) e^{-j2\pi (\frac{Rm+ln}{4})}$ $= \begin{pmatrix} 0 & 0 & 0 & 1/4 \\ 0 & 0 & 0 & -1/4 \\ 0 & 0 & 0 & -1/4 \end{pmatrix} \begin{vmatrix} 0 & 0 & 0 & 1/4 \\ 0 & 0 & 0 & -1/4 \\ 0 & 0 & 0 & -1/4 \end{vmatrix} \begin{vmatrix} 0 & 0 & 0 & 1/4 \\ 0 & 0 & 0 & -1/4 \\ 0 & 0 & 0 & -1/4 \end{vmatrix} \begin{vmatrix} 0 & 0 & 0 & 1/4 \\ 0 & 0 & 0 & -1/4 \\ 0 & 0 & 0 & -1/4 \end{vmatrix} \begin{vmatrix} 0 & 0 & 0 & 1/4 \\ 0 & 0 & 0 & -1/4 \\ 0 & 0 & 0 & -1/4 \end{vmatrix}$