§ 3.4 Hausdorff measures.

Def (Hausdorff, 1918)

of A.

Let
$$A \subseteq \mathbb{R}^n$$
, $S > 0$, $S \in [0, \infty)$, define

$$\mathcal{H}_{\delta}^{s}(A) = \inf \left\{ \sum_{i=1}^{\infty} |A_{i}|^{s} : A \subset \bigcup_{i=1}^{\infty} A_{i}, |A_{i}| < \delta \right\}.$$

$$\left(\text{here } |A_{i}| := \text{diam } (A_{i}) \right)$$

$$H^{s}(A) = \lim_{s \to 0} \mathcal{H}^{s}_{s}(A) = \sup_{s \to 0} \mathcal{H}^{s}_{s}(A).$$

(Using the fact
$$H_s(A) \cap H(A)$$
 as $s \vee 0$)
We call $H(A)$ the s-dimensional Hausdorff measure

(b) Suppose
$$H^{S}(A) < \infty$$
, then \exists a Borel set B such that $B \supset A$ and

$$\mathcal{H}^{s}(B) = \mathcal{H}^{s}(A).$$

(C) For any open set
$$G \subset \mathbb{R}^n$$
,

(d) If A is a Borel set with H(A)<00, than Y 8 >0, I compact KCA such that

HS(A/K) < E.

Pf. (a). First we show that Hs is an outer measure.

This is clear since Hs is generated by a gauge (Rs, 1.15), where

 $\mathcal{X}_{\delta} = \{ A \subset \mathbb{R}^n : \operatorname{diam}(A) < \delta \}.$

We claim that Hs is also an outer measure clearly, $\mathcal{H}^{s}(\emptyset) = \lim_{s \to 0} \mathcal{H}^{s}_{\delta}(\emptyset) = 0$.

Next for $A \subset \bigcup_{i=1}^{\infty} A_i$, then

 $\mathcal{H}_{\delta}^{s}(A) \leq \sum_{i=1}^{\infty} \mathcal{H}_{\delta}^{s}(A_{i})$ $\leq \sum_{i=1}^{\infty} \mathcal{H}^{s}(A_{i})$

Letting 8 > 0 gives HS(A) < = HS(Ai)

Henra Ps is an outer measure.

Next we show that Hs is a metric outer measure.

To see this, let A, B $\subset \mathbb{R}^n$ with d(A, B) > 0.

Take or $\delta < \frac{d(A,B)}{4}$.

Suppose AUB $\subset \bigcup_{k=1}^{\infty} C_k$ with $|C_k| < \delta$.

Write
$$A_j = \{ C_j : C_j \cap A \neq \emptyset \}$$

 $B = \{ C_j : C_j \cap B \neq \emptyset \}$

Since $|C_j| < \epsilon$, $d(A,B) > 4\epsilon$, so no C_j intersects both A and B.

Hence
$$\sum_{k=1}^{10} |C_k|^s \ge \sum_{C_j \in \mathcal{H}} |C_j|^s + \sum_{C_j \in \mathcal{B}} |C_j|^s$$

Notice that
$$U \subseteq J A$$
, $U \subseteq J B$.

So
$$\sum_{k=1}^{\infty} |C_k|^s \ge \mathcal{H}_s^s(A) + \mathcal{H}_s^s(B)$$

Taking infimum over the covers { Cx} of AUB gives

 $\mathcal{H}_{s}^{s}(A \cup B) \geq \mathcal{H}_{s}^{s}(A) + \mathcal{H}_{s}^{s}(B)$

Hs (AUB) = Hs (A) + Hs (B)

Letting 8 > 0 gives

 $\mathcal{H}^{S}(A \cup B) = \mathcal{H}^{S}(A) + \mathcal{H}^{S}(B)$

Hence It's is a metric outer measure. So it is a Borel massure

This proves (a).

Now we prove (b): If H^S(A) < ∞, than I a Bovel B>A With H^S(B) = H^S(A).

Notice that for 8>0, Hos(A) & Hos(A) < w.

Moreover for $C \subset \mathbb{R}^n$, $|C| = |\overline{C}|$, where C denotes the closure of C.

Hema for any integer k >0, by definition, we can

find { C; } = such that C; are closed sets

$$|C_{j}^{k}| < \frac{1}{k}, \text{ and } A \subset \bigcup_{j=1}^{\infty} C_{j}^{k}, \text{ moreover}$$

$$\sum_{j=1}^{\infty} |C_{j}^{k}|^{s} \leq \mathcal{H}_{1/k}^{s}(A) + \frac{1}{k} \leq \mathcal{H}_{1/k}^{s}(A) + \frac{1}{k}$$

$$\text{Define } B_{k} = \bigcup_{j=1}^{\infty} C_{j}^{k}, \text{ then } B_{k} \text{ is Bond},$$

$$\text{and } A \subset B_{k}.$$

$$\text{Let } B = \bigcap_{k=1}^{\infty} B_{k}, \text{ then } B \text{ is Bond}, B \supset A.$$

$$\text{Notice that for each } R \in \mathbb{N},$$

$$\mathcal{H}_{1/k}^{s}(B) \leq \mathcal{H}_{1/k}^{s}(B_{k})$$

$$\leq \sum_{j=1}^{\infty} |C_{j}^{k}|^{s}$$

$$\leq \mathcal{H}_{1/k}^{s}(A) + \frac{1}{k}$$

$$\text{Lettry } k \to \infty \text{ gives}$$

$$\mathcal{H}_{1/k}^{s}(B) \leq \mathcal{H}_{1/k}^{s}(A).$$

 $H^{s}(B) \leq H^{s}(A),$ and so $H^{s}(B) = H^{s}(A).$ This proves (b).

(c) For open
$$G \subset \mathbb{R}^n$$
,
(*) $\mathcal{H}^S(G) = \sup \{ \mathcal{H}^S(K) : K \text{ compact}, K \subset G \}$

To prove (*), it suffices to show that

$$\exists$$
 a sequence of compact sets (K_j) such that $K_j \nearrow G$

(i.e. $K_{j+1} \supset K_j$ and $G = \bigcup_{j=1}^{\infty} K_j$)

Then
$$H^{s}(G) = \lim_{j \to \infty} H^{s}(K_{j})$$
 by the cty of measure Now we construct such K_{j} as follows:

$$K_{j} = \left\{ x \in \mathbb{R}^{n} : d(x, G^{c}) \geq \frac{1}{j}, |x| \leq j \right\}.$$

A direct further check shows that Kin AG.

Actually this is a general property for all Borel measures on Rⁿ. You are referred to

[Evans - Ganiepy] Lem II (i), P. 6.

Prop 3.8. Let ACR". Then

(1) $\mathcal{H}^{S}(TA) = \mathcal{H}^{S}(A)$ if T is a Euclidean motition (i.e. Tx = Ux + b,

where U is an orthogonal

transformation)

(2) $\mathcal{H}^{s}(\lambda A) = \lambda^{s} \mathcal{H}^{s}(A), \quad \forall \lambda > 0.$

Prop 3.9. Let
$$A = \mathbb{R}^n$$
. Then

(1) $\mathcal{H}^S(A) = 0$, if $S > n$

(2) If $\mathcal{H}^S(A) < \infty$, then $\mathcal{H}^t(A) = 0$ if $t > s$.

(3) If $\mathcal{H}^S(A) > 0$, then $\mathcal{H}^t(A) = \infty$ if $t < s$.

Let s>n.

Pf. (1) We prove that $\mathcal{H}^{S}(\mathbb{R}^{n}) = 0$.

$$\bigcup_{z \in \mathbb{Z}^n} \left([0,1]^n + \mathbb{Z} \right)$$

It is enough to show that

$$\mathcal{H}^{S}\left(\left[0,1\right]^{n}\right)=0. \tag{**}$$

Notice that for REIN, [0,1] can be covered by k many subcubes of side 1/k

Rimany subcubes of side 1/k

Each such Subcube is of diameter k.

Hence
$$\begin{aligned}
\mathcal{H}_{\sqrt{n}/k}^{S} & ([0,1]^{n}) \leq k^{n} \cdot \left(\frac{\sqrt{n}}{k}\right)^{S} \\
&= (\sqrt{n})^{S} \cdot k^{n-S} \\
&\to 0 \text{ ous } k \to \infty
\end{aligned}$$
It follows that
$$\mathcal{H}^{S}([0,1]^{n}) = 0.$$
(b) If $\mathcal{H}^{S}(A) < \infty$ then $\mathcal{H}^{t}(A) = 0$ if $t > S$.

Assume t>s. Let
$$8>0$$
. Then we can find a 8 -cover $\{C_i\}_{i=1}^{\infty}$ of A such that
$$\sum_{i=1}^{\infty} |C_i|^s \leq \mathcal{H}_{\delta}^s(A) + 1.$$

Then
$$\underset{i=1}{\infty} |C_i|^t = \sum_{i=1}^{\infty} |C_i|^s \cdot |C_i|^{t-s}$$

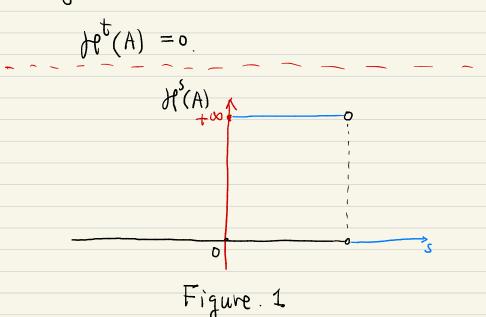
$$\leq s^{t-s} \cdot \sum_{i=1}^{\infty} |C_i|^s$$

$$\leq S^{t-s} \cdot \sum_{j=1}^{\infty} |C_j|^s$$

$$\leq (\mathcal{H}_{\delta}^{s}(A)+1) \cdot S^{t-s}$$

So
$$t \in \Sigma$$
 $|C_i|^t \leq (H_s(A)+i) \cdot s^{t-s}$

$$\leq (H_s(A)+i) \cdot s^{t-s}$$
Letting $s \to o$ gives
$$f^t(A) = o$$



Prop 3.10. (a) If is the counting measure on
$$\mathbb{R}^n$$
.

(b) $H^1 = L^1$ on \mathbb{R} .

(c) $H^n = C(n) \cdot L^n$ on \mathbb{R}^n , where $C(n)$ is a positive constant.

Pf. (a) follows from the definition.

(b) follows from the fact that

if $A \subset \mathbb{R}$, and $\{C_i\}$ is a cover of A ,

then $\{[a_i, b_i]\}$ is also a cover of A

where $a_i = \inf \{C_i\}$ $b_i = \sup \{C_i\}$

and $\sum |C_i|^1 = \sum |b_i - a_i|$.

This property implies that $\mathcal{H}^1 = \mathcal{L}^1$, using the fact $\mathcal{L}^1(A) = \inf \left\{ \sum_{i} \left[b_i - a_{i1} : A \subset \bigcup_{i=1}^{\infty} \left[a_i, b_{i1} \right] \right] \right\}$

A 8 >0.

$$\mathcal{H}^{h} = (n) \lambda^{h}$$

To see that C(n) is a positive number, it is enough to show that

$$0 < \mathcal{H}^{n}([0,1]^{n}) < \infty$$

By dividing [0,1] h into k many subcubes of side to gives

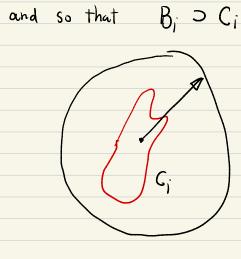
$$\mathcal{H}^{n}_{\sqrt{n}/R}\left(\left[0,1\right]^{n}\right) \leq R^{n} \cdot \left(\frac{\sqrt{n}}{R}\right)^{n} \leq \left(\sqrt{n}\right)^{n} < \infty$$

Letting k→ up gives

$$\mathcal{H}_{\mu}\left(\lceil 0^{1}\rceil_{\mu}\right) \leq \left(\sqrt{\mu}\right)_{\mu}$$

Let $\{C_i\}$ be a δ -cover of $[0,1]^n$.

For each i, let Bi be a ball of radius diam Ci



 $\sum_{i} |C_{i}|^{n} = \sum_{i}^{n} \sum_{i} |\beta_{i}|^{n}$ $= d_{n} \sum_{i}^{n} \sum_{i} \lambda^{n}(\beta_{i})$

Then

$$\geq d_n 2^n \cdot d^n ([0,1]^n)$$

= $d_n 2^n$.

 $\mathcal{H}_{\delta}^{n}\left(\left[0,i\right]^{n}\right) \geq d_{n}\cdot 2^{n} > 0$

$$\Rightarrow \mathcal{H}_{\nu}([0,1]_{\nu}) > 0$$

§ 3.5. Hausdorff dimension.

Def. Let A ⊂ IRⁿ. Define

 $dim_{H} A = \sup \left\{ S \ge 0 : \mathcal{H}^{S}(A) > 0 \right\}$ $= \inf \left\{ S \ge 0 : \mathcal{H}^{S}(A) = 0 \right\}$

We call it the Hausdorff dimension

Facts: (1) If $A \subset B$, then $\dim_H A \leq \dim_H B$ (2) If $A = \bigcup_{i=1}^{\infty} A_i$ with A_i , A_i being Borel, then

dim A = sup dim A;

Def. A function $f: A \subset \mathbb{R}^n \to \mathbb{R}^n$ is said to be Hölder continuous with exponent d if 3 M > o such that $|f(x) - f(y)| \leq M \cdot |x - y|^{\alpha},$ for all x, y ∈ A.

If d=1, then we call f is Lipschitz continuous

Prop 3.11. Let f: A ⊂ IRh > IRh be Hölder cts

with exponent 2, and const M as in (***)

Then for S≥0, $\mathcal{H}^{s_{\lambda}}(f(A)) \leq M^{s_{\lambda}} \cdot \mathcal{H}^{s}(A)$ As a consequence, dim f(A) & dim A/d.

Let
$$s \ge 0$$
.
Let $\delta > 0$. Let $\delta > 0$.
Pick a δ -cover $\{C_j\}$ of A .

$$\sum_{j} |C_j|^s \le \mathcal{H}_{\delta}^s(A) + \epsilon$$

Henu

of f(A).

Pf. Let 8>0. Let 8>0.

Then $|f(C_j)| \leq M \cdot |C_j|^d$ by the

 $\sum_{j} |f(c_{j})|^{s_{A}} \leq \sum_{j} M^{s_{A}} (|c_{j}|^{a})^{s_{A}}$

But $\{f(\zeta)\}_{s=1}^{\infty}$ is a M. S^{d} cover

 $= \sum_{i} M^{s/a} \cdot |C_{i}|^{s}$

 $\leq M^{s/\alpha} \cdot (\mathcal{H}_{\delta}^{s}(A) + \varepsilon)$

Hölder cty assumption on f.

Hence
$$S/a$$

$$\mathcal{H}_{M.8a}(f(A)) \leq M^{S/a}(\mathcal{H}_{8}^{S}(A) + E).$$
Letting $S \rightarrow 0$, then letting $E \rightarrow 0$, gives
$$\mathcal{H}^{S/a}(f(A)) \leq M^{S/a}\mathcal{H}^{S}(A).$$

Example 1: Let
$$f: [0,1] \to \mathbb{R}$$
 be a Lipschitz-function with Lip Constant M. That is,
$$|f(x) - f(y)| \le M|x-y|, \quad \forall x, y \in [0,1]$$

|f(x)-f(b)| & M |x-y|, & x, y \ [0,1]

Let
$$G_f = \{ (x, f(x)) : x \in [0,1] \} \subset \mathbb{R}^2$$
.

Then

Then
$$|\leqslant H^{1}(G_{f}) \leqslant \sqrt{M^{2}+1}.$$
So $\dim_{H} G_{f} = 1.$

pf. Define
$$g: [0,1] \rightarrow G_{f} \subset \mathbb{R}^{2}$$
 by

$$x \mapsto (x, f(x)).$$
Then
$$\left| g(x) - g(y) \right| = \sqrt{(x-y)^{2} + (f(x) - f(y))^{2}}$$

$$\leq \sqrt{M^{2} + 1} \left| x - y \right|.$$
Applying Prop 3.11,
$$\mathcal{H}^{1/1} \left(g([0,1]) \right) \leq \left(\sqrt{M^{2} + 1} \right)^{1/2} + \mathcal{H}^{1} \left([0,1] \right)$$

$$\Rightarrow \mathcal{H}^{1} \left(G_{f} \right) \leq \sqrt{M^{2} + 1}.$$

To see the other direction, notice that

 $g^{-1}: G_{f} \rightarrow [0,1], \quad (x, f(x)) \mapsto x$ Then $\left|g^{-1}(u) - g^{-1}(v)\right| \leq |u-v|, \quad \forall \quad u,v \in G_{f}$

(check it!)

Hence by Prop 3.11, (letting S=1, d=1)

$$\mathcal{H}^{1/1}(G_{5}) \leq 1 \cdot \mathcal{H}^{1}(G_{5})$$

That is,
$$I = \mathcal{H}^1([0,1]) \leq \mathcal{H}^1(G_f)$$
.

Solution:

basic interval

of order 1

H H basic interval

$$\uparrow$$

length $\left(\frac{1}{3}\right)^2$

From the construction of C, we see that for any nept,

C can be covered by 2 many basic intervals of order n

Each such interval has length 3-1.

Hence
$$\mathcal{H}_{3^{-n}}^{s}(C) \leqslant 2^{n} \cdot (3^{-n})^{s} = 2^{n} \cdot 3^{-ns}$$

$$= 2^{n(1-s.(log 3/log 2))}$$
Letting $s = log 2/log 3$ gives

Letting
$$S = log^2/log 3$$
 gives

$$\frac{los^2/log 3}{3^{-n}}(C) \leq 1.$$

$$\Rightarrow \frac{log^2/log 3}{3^{-n}}(C) \leq 1.$$
We claim that $\frac{log^2/log 3}{3^{-n}}(C) > 0.$

(Outline): Let
$$\mu$$
 be the Cantor measure,
i.e. μ is a prob. measure supported on Γ
Such that $\mu(I) = 2^{-n}$ for any basic interval

basic intervals of order
$$n$$
.

A b

Hence $\mu([a,b1]) \leq 2 \cdot 2^n = 2 \cdot 3^{-(log^2/log^3)} n$
 $= 2 \cdot (3^n)$

It follows that
$$\exists a \text{ constant } C > 0 \text{ such that}$$

$$\mu([a,b]) \leq d \cdot (b-a)$$

$$(****)$$

Let
$$\{A_i\}$$
 be a 8 -cover of C .
Let $a_i = \inf A_i$, $b_i = \sup A_i$
Thun $\{[a_i, b_i]\}$ is a 8 -cover of C

Then {[ai,bi]} is a s-cover of C with $\sum_{i} |A_{i}|^{s} = \sum_{i} |b_{i} - a_{i}|^{s}$

Let
$$S = \log 2/\log 3$$
. Then
$$\sum_{i} |A_{i}|^{S} = \sum_{i} |b_{i} - a_{i}|^{S}$$

$$\geq \frac{1}{d} \sum_{i} \mu(Ca_{i}, b_{i}) \quad (using ****)$$

$$\geq \frac{1}{d} \mu(C) \geq \frac{1}{d}.$$

Let
$$S = \log 2/\log 3$$
. Then
$$\sum_{i} |A_{i}|^{S} = \sum_{i} |b_{i} - a_{i}|^{S}$$

$$\geq \frac{1}{d} \sum_{i} \mu([a_{i}, b_{i}]) \quad (using ****)$$

$$\geq \frac{1}{d} \sum_{i} \mu([a_{i}, b_{i}]) \quad (using ****)$$

> \frac{1}{4} \mu(C) > \frac{1}{4}.

Hence $\mathcal{H}_{S}^{S}(C) \geq \frac{1}{d}$, $\forall S > 0$

Lettig 6 → o gives H'(C) ≥ d > o.