Real Analysis

24-09-27

Review

- Outer measure $(\mu(\phi)=0, \mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i) if$ $A \subseteq \bigcup_{i=1}^{\infty} A_i$
- · (Caratheodory's Thm) Let μ be an outer measure on X.

Then (X, M_c, μ) is a complete measure space, where $M_c = \{E \subset X : E : \beta \mu - measurable \}$

§ 2.2 Topological and metric spaces.

- · Topological spaces
- · Metric spaces.

Prop. 2.3 Let (X, M, μ) be a measure space, where X is a topological space and assume that $M \geq \beta_X$ (where β_X is the Borel 5-algebra on X)

Then any continuous function $f: X \to \mathbb{R}$ (or \mathbb{R}) is M-measurable.

pf. \forall open $G \subseteq \mathbb{R}$ (or \mathbb{R}), by continuity, f'(G) is open in Xhence $f'(G) \in \mathcal{B}_X \subseteq \mathcal{M}$. \square .

Def. (Borel measure)

An outer measure μ on a topological space χ is said to be a Borel measure if all Borel sets

are μ -measurable.

Prop 2.4 (Caratheodory's Criterion).

Let (X, d) be a metric space. Let μ be an outer measure on X. Suppose that μ satisfies

(*) $\mu(A \cup B) = \mu(A) + \mu(B)$ if d(A, B) > 0.

where $d(A,B) = \inf \{ d(x,y) : x \in A, y \in B \}$

(An outer measure & satisfying (*) is called a metric outer measure) Then M is a Borel measure. Proof. It suffices to show that all closed sets in X are 11- measurable. Let A be a closed set. We need to show $\mu(c) \geq \mu(c \cap A) + \mu(c \setminus A), \forall c \subset X.$ For n ∈ IN, define $A_n = \left\{ x \in X : d(x, A) \leq \frac{1}{n} \right\}$ where $d(x,A) := \inf \{ d(x,y) : y \in A \}$ Then An are closed, An VA. Notice that d(A, An) > 1. So $d(cnA, c|A_n) \ge \frac{1}{n}$ Hence $\mu(C) \geq \mu(C \cap A) \cup (C \setminus An)$ = $\mu(c \cap A) + \mu(c \setminus An)$, $\forall n$.

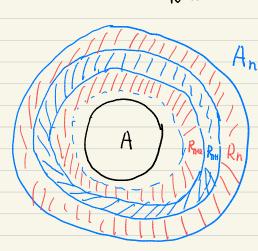
Next we show that

$$\lim_{n\to\infty}\mu(C\backslash A_n)>\mu(C\backslash A),$$

which implies $\mu(c) > \mu(c \cap A) + \mu(c \setminus A)$.

To prove (**), define for $k \in \mathbb{N}$, $R_{k} = \left\{ x \in X : \frac{1}{1+k} < d(x,A) \le \frac{1}{k} \right\}.$

Then $A_n = A \cup \left(\bigcup_{k=n}^{\infty} R_n \right) \quad \text{with Union} \quad \text{being diajoint}$



Then $A^{c} = A_{n}^{c} \cup (A_{n} \setminus A)$

So
$$C \setminus A \subseteq (C \setminus An) \cup (cn(An \setminus A))$$

$$= (C \setminus An) \cup (C \cap (\bigcup_{k=n}^{\infty} R_k)).$$
Hence
$$\mu(C \setminus A) \leq \mu(C \setminus An) + \mu(C \cap (\bigcup_{k=n}^{\infty} R_k)).$$
To show that $\lim_{n \to \infty} \mu(C \setminus An) > \mu(C \setminus A)$,
it is enough to show
$$\sum_{k=1}^{\infty} \mu(C \cap R_k) < \infty$$

$$k=1$$
(which implies $\mu(C \cap \bigcup_{k=n}^{\infty} R_k) \to 0$ as $n \to \infty$.)

Notice that Rz, R4, ..., Rzk, ..., have positive distance between them,

So are
$$R_1$$
, R_3 , R_5 ,...

Hence
$$\mu(c)$$

$$\geq \mu((cnR_2) \cup (cnR_4) \cup \cdots (cnR_{2k}))$$

$$= \mu(cnR_2) + \mu((cnR_4) \cup \cdots \cup (cnR_{2k}))$$

$$= \cdots$$

$$= \mu(cnR_2) + \cdots + \mu(cnR_{2k}).$$

Hence
$$\sum_{k=1}^{\infty} \mu(cnR_{2k}) \leq \mu(c) < \infty.$$

$$\sum_{k=1}^{\infty} \mu(cnR_{2k}) \leq \mu(c) < \infty.$$

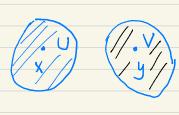
Therefore
$$\sum_{k=1}^{\infty} \mu(cnR_k) \leq \mu(c) < \infty.$$

Therefore
$$\sum_{R=1}^{\infty} \mu(cnR_R) \leq 2 \cdot \mu(c) < \infty$$

\$ 2.3 Locally compact Hausdorff spaces.

Def. A topological space X is said to be a Hausdorff space if $\forall x, y \in X$ with $x \neq y$,

 \exists open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.



Def. A topological space is said to be locally compact if $\forall x \in X$, \exists an open \cup such that

XEU and U is compact.

(closure of U)

Notation: X is said to be a LCHS

if X is a Hausdorff space and locally compact.

Remark: R is a LCHS.

· All compact metric spaces are LCHS.

Prop 2.5. Let X be a LCHS.

Let K = G where K is compact,

G is open in X.

Then I open V such that V is compact and

KCVCVCG.

Thm 2.6 (Urysohn's lemma). Let X beaLCHS. Let K = G, K compact, G open. Then there exists a cts $f: X \to \mathbb{R}$ such that . Supp(f) is a compact subset of G. · 0 < f < 1 on X • f(x) = 1 for all $x \in K$ where $supp(f) = \left\{ x : f(x) \neq 0 \right\}.$ Thm 2.7 (partition of Unity). Let X be a LCHS. Suppose K = U Gk, with Gk open where K is compact.

There exist
$$\{P_j\}_{j=1}^N \subset C(X)$$
,

such that

 $P_j < G_j$ and $\sum_{j=1}^N P_j = 1$ on K

where $P_j < G_j$ means that

 $P_j < Q_j$ is a compact subset of Q_j .

 $P_j < Q_j$ on X .

• For a topologial space X, let $C_c(X) = \left\{ f \in C(X) : supp(f) \text{ is compact} \right\}.$

clearly, $C_c(x)$ is a vector space.

(that is, afthg & Cc(x) if f, g & Cc(x) and a, b & IR)

- · A linear functional on a vector space is simply a linear map from the vector space to R.
- A linear functional \(\lambda \) on \(C_c(X) \) is called positive if

$$\Lambda(f) \geq 0$$
 if $f \geq 0$.

Example: Let X be a topological space.

Let \(\mu \) be a Borel measure on \(\chi \)

such that \(\mu(K) \le \infty \) for all compact sets \(K \)

efina $\Lambda(f) = \int_{X} f d\mu, \forall f \in C_{c}(X)$

Then Λ is a positive linear functional on Cc(X).

Justification: It is easy to show the positivity and linearity of Λ .

Below we show that $\Lambda(f) \in \mathbb{R}$, for $f \in C_c(X)$.

Below we show that $\Lambda(f) \in \mathbb{R}$ for $f \in C_c(X)$.

Let $f \in C_c(X)$ and K = Supp(f).

Then K is compact.

Hence C

 $sup[f(x)] = sup|f(x)| < \infty$

xeX xeK

It follows that

SfdH = SfdM.

and $|\int_{K} f d\mu| \leq \int_{K} |f| d\mu$

≤
$$\mu(K)$$
 . Sup $|f\infty|$

< 6.

Thm 2.8 (Riesz representation Thm) Let X be a LCHS. Let Λ be a positive linear functional on Cc(X) Then I a Borel measure fl on X such that μ is finite on every compact set, and $\Lambda(f) = \int f d\mu, \quad \forall f \in C_c(X).$ · Before the proof, we construct a measure & from 1. Let G = X be non-empty and open. We define $\mu_{\circ}(G) = \sup \{ \wedge(f) : f < G \}$ (Recall f < G means $f \in C_c(X)$, o < f < I, $Supp(f) \subset G$, By Urysohn Lem, I f & Cc(X) such that f < G) Next set $\mu_0(\emptyset) = 0$.

 $\mu(E) = \inf \{ \mu_{\circ}(G) : G \text{ is open, } G \supset E \}.$ Proof of Riesz representation Thm (Thm 2.8): First observe that μο(G1) ≤ μο(G2) for open set G1, G2 with G1 = G2. As a direct consequence, we have (i) µ(G) = µo(G) for open G⊂X. (ii) $\mu(E_1) \leq \mu(E_2)$ if $E_1 \subset E_2$. Next we prove the theorem in 4 steps 1) M is an outer measure. 2 all Borel sets are 1- measurable. 3 $\mu(K) < \infty$ for compact K.

Now for any ECX, define

$$\Phi \wedge (f) = \int f d\mu, f \in C_{c}(X)$$

Step 1. µ is an outer measure.

We need to show that
$$\mu(E) \leq \sum_{j=1}^{\infty} \mu(E_j) \text{ if } E \subset \bigcup_{j=1}^{\infty} E_j.$$

We may assume $\sum_{j=1}^{\infty} \mu(E_j) < \infty$.

Let E>O. Pick open G; > E; such that $\mu(E_j) > \mu_o(G_j) - \frac{\epsilon}{2^j}, j=1,2,...$

Set $G = \bigcup_{j=1}^{\infty} G_j$. Then G is open.

Now we estimate $\mu_0(G)$. Let f < G. Let K = supp(f). Then K is compact. Since $K = G = \bigcup_{j=1}^{\infty} G_j$, by Compactness of K,

$$\exists N$$
 such that $K \subset \bigcup_{j=1}^{N} G_{j}$. Then by the theorem of Pav

Then by the theorem of partition of unity,

$$\sum_{j=1}^{N} \varphi_{j} = 1 \quad \text{on } K.$$

We obtain that

 $f = \sum_{i=1}^{N} f \cdot \varphi_i$ on X.

$$\Lambda(f) = \sum_{j=1}^{N} \Lambda(f\varphi_j)$$

$$\leq \sum_{j=1}^{N} \mu_{o}(G_{j}) \quad \text{(since } f\varphi_{j} < G_{j})$$

$$\leq \sum_{j=1}^{\infty} \mu_{\circ}(G_{j}).$$

Since
$$f$$
 is arbitrarily taken with $f \leqslant G$, we obtain ω

$$\mu_0(G) \leqslant \sum_{j=1}^{\infty} \mu_0(G_j)$$
Hence ω

Hence
$$\mu(E) \leq \mu_0(G) \leq \sum_{j=1}^{\infty} \mu_0(G_j)$$

$$\{\sum_{j=1}^{\infty} \left(H(E_j) + \frac{z_j}{\xi} \right) \}$$

$$\leq \sum_{j=1}^{\infty} \left(\mu(E_j) + \frac{\xi}{2^j} \right)$$

$$= \left(\sum_{j=1}^{\infty} \mu(E_j) \right) + \xi$$

Letting
$$\xi \to 0$$
 gives
$$\mu(E) \leq \sum_{i=1}^{\infty} \mu(E_i).$$

$$\mu(E) \leq \sum_{j=1}^{\infty} \mu(E_j)$$

Step 2. µ is a Borel measure.

Equivalently, we need to show that all open sets are μ -measurable.

Let U = X be open. We need to prove

$$\mu(c) > \mu(C \cap U) + \mu(C \setminus U), \forall ccX$$

By the definition of μ , it is enough to prove (*) $\mu(G) > \mu(G \cap U) + \mu(G \setminus U)$, \forall open G

(because if this is true, then \$ 2>0, pick open G > C

Such that
$$\mu(C) \ge \mu(G) - \varepsilon$$
. Then by (*),
 $\mu(c) \ge \mu(G) - \varepsilon$ $\ge \mu(G \cap U) + \mu(G \setminus U) - \varepsilon$
 $\ge \mu(C \cap U) + \mu(C \setminus U) - \varepsilon$

9 + 4 < G. Hence $\mu(G) = \mu_0(G) > \Lambda(\varphi + \psi)$. $= \Lambda(\varphi) + \Lambda(\psi)$ We obtain μ(G) > μ(GnU) -ε+ μ(G/K)

To prove (*), we may assume
$$\mu(G) < \infty$$
.

Let $E > 0$, and $Pick \ \varphi < G \cap U$ such that

 $\Lambda(\varphi) \ge \mu_0 (G \cap U) - E$.

Let $K = \text{Supp}(\varphi)$. $Pick \ \Psi < G \setminus K$.

Since $\text{Supp}(\psi)$ and K are disjoint,

 $\varphi + \Psi < G$.

Hence

 $\mu(G) = \mu_0(G) \ge \Lambda(\varphi + \Psi)$.

 $= \Lambda(\varphi) + \Lambda(\Psi)$.

 $\ge \mu(G \cap U) - E + \Lambda(\Psi)$.

Recall that $\Psi < G \setminus K$ is arbitrily taken,

we obtain

 $\mu(G) \ge \mu(G \cap U) - E + \mu(G \setminus K)$

$$\geq \mu(G \cap U) - E + \mu(G \setminus U)$$
(since $G \setminus K > G \setminus U$).

Letting $E \rightarrow 0$ gives
$$\mu(G) \geq \mu(G \cap U) + \mu(G \setminus U).$$

Step3. Mis finite on compact sets.

We shall prove

$$\mu(K) = \inf \left\{ \Lambda(f) : K < f \right\}$$
for all compact sets K ,
where $K < f$ means $f \in C_{c}(X)$,

 $0 \le f \le 1$ on X and f = 1 on K.

We first show
$$\mu(K) \leq \inf \{ \Lambda(f) : K < f \}$$
,
Let $f \in C_c(X)$ such that $K < f$.
For $d \in (0,1)$, define

 $G_{\alpha} = \{x \in X : f(x) > d\}$

Then Ga is open and Ga > K.

Let
$$\varphi < G_d$$
. Then $\varphi < \frac{f}{d}$ on G_d

 $\varphi \in \frac{f}{\alpha}$ on X.

Henre

$$V(\phi) \leqslant V(\frac{1}{\varphi}) = \frac{1}{\varphi}V(f)$$

(here we used the possitivety of Λ)

Hence
$$\mu(G_a) \leq \frac{1}{a} \wedge (f)$$
.

In particular
$$\mu(K) \leqslant \mu(Ga) \leqslant \frac{1}{d} \Lambda(f).$$
 Letting $d \uparrow 1$ gives $\mu(K) \leqslant \Lambda(f)$. This showes $\mu(K) \leqslant \inf \{ \Lambda(f) : K \}$

This showes $\mu(k) \leq \inf_{k \in \mathbb{Z}} \{ \Lambda(f) : k < f \}$

To show the other direction, & E>O, we can find open G > K such that

$$\mu(K) > \mu(G) - E = \mu(G) - E.$$

By Urysohn's lemma, I f Cc(X) such that

Letting 270 gives the desired inequality Step 4. $\Lambda(f) = \int f d\mu, \ \forall \ f \in C_c(X)$.

(To be proved in the next class)