
Chapter 5

Radon-Nikodym Theorem

Signed measures come up in at least two occasions. First, for any non-negative
µ-measurable function f , the map E 7→

∫
E
fdµ is a measure. When f changes

sign, this map is still countably additive and it should be a “signed measure”.
Second, in Theorem 2.8 it is shown that every positive linear functional on Cc(X)
(X is a locally compact Hausdorff space) comes from a regular Borel measure.
From the viewpoint of functional analysis, it is desirable to characterize the dual
space of Cc(X) as the space of “signed measures”. We introduce signed measures
in Section 1. Just like the absolute value of a function is non-negative, it is shown
that the “ absolute value ” of a signed measure, its total variation, is a measure.
In Section 2 we establish the important theorem of Radon-Nikodym and discuss
how to decompose a measure or a signed measure into its absolute continuous
and singular parts with respect to another measure. Then we use this theorem to
establish the full Riesz representation theorem in Section 3. Weak∗ convergence
of sequences of signed measures is discussed in Section 4. As an application of
the Riesz representation theorem we give a characterization of weakly convergent
L1-sequences, part of the Dunford-Pettis theorem. Finally, as another application
of the Riesz representation theorem, we prove Herglotz-Riesz theorem concerning
the boundary trace of a non-negative harmonic function in Section 5.

5.1 Signed Measures

Consider M a σ-algebra on the non-empty set X. A map µ : M → R is called a
signed measure if it satisfies

µ(E) =
∞∑
j=1

µ(Ej), ∀ partitions {Ej} of E.

Here {Ej} is called a (measurable) partition of E if they are mutually disjoint,
measurable and E = ∪jEj. One immediately deduces that µ(ϕ) = 0 and µ(X) is
finite for a signed measure. The latter makes even a non-negative signed measure
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different from a measure, namely it must be a finite measure.
Given a signed measure on (X,M), its total variation (measure) is given by

|µ|(E) = sup{
∑
j

|µ(Ej)|: ∀ partitions {Ej} of E.

Clearly |µ| (E1) ≤ |µ| (E2) if E1 ⊂ E2, both in M.

Proposition 5.1. The total variation of every signed measure on (X,M) is a
finite measure on (X,M).

Proof. We need to show

|µ| (E) =
∞∑
j=1

|µ| (Ej),

whenever {Ej} is a partition of E.
First we establish subaddivity. Let {Ak} be a partition of E. We have

∑
k

∣∣∣µ(Ak)
∣∣∣ =∑

k

∣∣∣∣∣µ
(
Ak ∩

⋃
j

Ej

)∣∣∣∣∣
≤
∑
k

∑
j

|µ(Ak ∩ Ej)|

=
∑
j

∑
k

|µ(Ak ∩ Ej)|
(
use

∑
k

∑
j

αkj =
∑
j

∑
k

αkj, ∀αkj ≥ 0
)

≤
∑
j

|µ| (Ej).
(
{Ak ∩ Ej}k is a partition of Ej

)
Taking supremum over all {Ak},

|µ| (E) ≤
∑
j

|µ| (Ej).

Next, we show the reverse inequality. If |µ| (Ej) = ∞ for some j, then
|µ| (E) ≥ |µ| (Ej) = ∞, the inequality holds. Let |µ| (Ej) < ∞ ∀j. For ev-
ery ε > 0, we can find a partition

{
Ej

k

}
of Ej for each j such that

|µ| (Ej) ≤
∑
k

∣∣µ (Ej
k

)∣∣+ ε

2j
.

Now, {Ej
k}k,j forms a partition of E. We have∑

j

|µ| (Ej) ≤
∑
j

∑
k

∣∣µ (Ej
k

)∣∣+ ε

≤ |µ| (E) + ε
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and we get the desired inequality after letting ε → 0.
Finally, we show that |µ|(X) is finite. If on the contrary |µ| (X) = ∞. By the

lemma below, we can break X into A1 and B1 such that |µ(A1)| , |µ(B1)| ≥ 1. As
|µ| (A1+ |µ| (B1) = |µ| (X), at least one of µ(A1) and µ(B1) has infinite measure.
Assume |µ| (A1) = ∞. Apply the same argument to A1 to get A2, B2 such that
|µ(A2)| , |µ(B2)| ≥ 1. Assume again that A2 has infinite measure. Keep doing

this we get Bj+1 ⊂ Aj, so that Bj ∩Bk = ϕ, j ̸= k. Letting B =
⋃
j

Bj, we have

µ(B) =
∞∑
j=1

µ(Bj).

As µ(B) is finite, this infinite series converges, and, in particular, µ(Bj) → 0, but
this is in conflict with our construction that |µ(Bj)| ≥ 1 for all j.

Lemma 5.2. If |µ| (E) = ∞ for some E ∈ M, then there are disjoint measurable
sets A,B in E satisfying A ∪B = E and |µ(A)| , |µ(B)| ≥ 1.

Proof. For, let t > 0, there is some partition {Ej} of E such that
∞∑
j=1

|µ(Ej)| >

t. We fix a large N such that
N∑
j=1

|µ(Ej)| > t. Rearrange Ej’s in the order

such that E1, E2, . . . , Em, all µ(Ej) < 0 and Em+1, . . . , EN , µ(Ej) ≥ 0. Then
|µ(E1) + · · ·µ(Em)|+ |µ(Em+1) + · · ·+ µ(EN)| > t, and so, either

|µ(E1) + · · ·+ µ(Em)| >
t

2

or

|µ(Em+1) + · · ·+ µ(EN)| >
t

2
.

Assume, say, it is the former. We take A =
m⋃
j=1

Ej. Then |µ(A)| >
t

2
. Let

B = E \ A. Then

|µ(B)| = |µ(E)− µ(A)|
≥ |µ(A)| − |µ(E)|

≥ t

2
− |µ(E)|

≥ 1

if we choose t > 2 and t > 2 |µ(E)|+ 2.
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The following proposition yields a lot of signed measures from a single mea-
sure.

Proposition 5.3. Let µ be a measure on (X,M) and f ∈ L1(µ). Then

(a)

λ(E) =

∫
E

fdµ, ∀E ∈ M

is a signed measure.

(b) Its total variation is given by

|λ|(E) =

∫
E

|f |dµ.

Proof. (a) is immediate. To show (b) let {Ej} be a measurable partition of E.
Then

∑
j

|λ(Ej)| =
∑
j

∣∣∣∣∣
∫
Ej

fdµ

∣∣∣∣∣
≤

∑
j

∫
Ej

|f |dµ

=

∫
E

|f |dµ.

Taking supremum over all measurable partitions, we obtain

|λ|(E) ≤
∫
E

|f |dµ.

On the other hand, let A = {x ∈ E : f(x) ≥ 0} and B = {x ∈ E : f(x) < 0}. A
and B form a measurable partition of E. By the definition of the total variation,
we have

|λ|(E) ≥ |λ(A)|+|λ(B)|=
∫
E

|f |dµ.

Denote byM(X) orM(X,M) the collection of all signed measures on (X,M).
It is a good exercise to verify that M(X) forms a vector space and is complete
under the norm

∥µ∥ = |µ| (X).

M(X,M) is a Banach space. Given a signed measure µ, let

µ+ =
1

2
(|µ|+ µ), µ− =

1

2
(|µ| − µ).
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We can write
µ = µ+ − µ− and |µ| = µ+ + µ−,

where µ+ and µ− are finite measures. The decomposition of a signed measure
into the difference of two finite measures is called the Jordan decomposition of
the signed measure. The terminology comes from a corresponding decomposition
for functions of bounded variation.

5.2 Radon-Nikodym theorem

Let µ be a measure and λ a measure or signed measure on the same σ-algebra
M. The measure λ is called absolutely continuous with respect to µ, λ << µ
in notation, if every µ-null set is λ-null. λ is concentrated on a set A ∈ M if
λ(E) = λ(E ∩ A), for all E ∈ M. Note that the set A is not unique. When λ is
concentrated on A, it is also concentrated on any set containing A and any set
of the form A \N where N is λ-null. We call two measures/signed measures λ1

and λ2 singular to each other, λ1 ⊥ λ2 in notation, if λ1 and λ2 are concentrated
respectively on A and B where A and B are disjoint. Clearly, λ1 ⊥ µ if λ1 is
concentrated on A and µ(A) = 0.

The following proposition can be derived easily from the definitions above and
is left for you to prove.

Proposition 5.4. Let µ be a measure and λi measures or signed measures, i =
1, 2. Then

(a) λ is concentrated on A ⇒ |λ| is concentrated on A.

(b) λ1 ⊥ λ2 ⇒ |λ1| ⊥ |λ2|.

(c) λ1 ⊥ µ, λ2 ⊥ µ ⇒ λ1 + λ2 ⊥ µ.

(d) λ1 << µ, λ2 << µ ⇒ λ1 + λ2 << µ.

(e) λ << µ ⇒ |λ| << µ.

(f) λ1 << µ, λ2 ⊥ µ ⇒ λ1 ⊥ λ2.

(g) λ << µ, λ ⊥ µ ⇒ λ = 0.

Example 5.1. Consider (R,M) where M is the σ-algebra consisting of all
Lebesgue measurable sets. For f ∈ L1(R), define

ν(E) =

∫
E

f dL1.
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Then ν << L1. On the other hand, consider

λ =
N∑
j=1

αjδxj

where {x1, . . . , xN} ⊂ R and αj ∈ R. Then λ is a signed measure on (R,M) (in
fact, on (R,PR).) As L1 is concentrated on R, so does it on R \ {x1, . . . , xN}. As
λ is concentrated on {x1, . . . , xN}, λ and L1 are singular. By Proposition 5.3, all
ν’s are singular to λ too.

Absolute continuity and mutual singularity describe two extreme relations
between two measures. It is striking that they are sufficient in certain sense for
the description of the relation between two measures. This result is contained in
the following two theorems.

Theorem 5.5 (Lebesgue Decomposition). Let µ be a σ-finite measure and
λ a signed measure on (X,M). There exist a unique pair of signed measures
(λac, λs), λac << µ and λs ⊥ µ, such that λ = λac + λs.

Theorem 5.6 (Radon-Nikodym Theorem). Let µ be a σ-finite measure and λ
a signed measure on (X,M) such that λ << µ. There exists a unique h ∈ L1(µ)
such that

λ(E) =

∫
E

h dµ, ∀E ∈ M.

The function h is called the Radon-Nikodym derivative of λ with respect to µ
and will be denoted by dλ/dµ.

We will prove these two theorems in one stroke. The proof is due to von
Neumann.

Proof. Step 1. Assume that both µ and λ are finite measures. Setting ρ = µ+ λ
and define a functional on L2(ρ) by

Λφ =

∫
φdλ, φ ∈ L2(ρ).

By Cauchy-Schwarz inequality,

|Λφ| ≤
∫
|φ| dλ

≤
∫
|φ| dρ

≤
√

ρ(X) ∥φ∥L2(ρ) ,
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so Λ is a bounded linear functional on L2(ρ). By the self-duality of L2(ρ), there
exists some g ∈ L2(ρ) such that∫

φdλ =

∫
φg dρ, ∀φ ∈ L2(ρ). (5.1)

Taking φ = χE, E ∈ M, φ belongs to L2(ρ) and we have

λ(E) =

∫
E

g dρ,

and
1

ρ(E)

∫
E

g dρ =
λ(E)

ρ(E)
∈ [0, 1].

By a previous exercise, g ∈ [0, 1] ρ-a.e. By redefining g in a null set, we may
assume g(X) ⊂ [0, 1]. Let

λac(E) = λ(E ∩ A),

and
λs(E) = λ(E ∩B),

where A = {x ∈ X : g(x) ∈ [0, 1)} and B = {x ∈ X : g(x) = 1} . We have λ =
λac + λs.

We rewrite (5.1) as ∫
φ(1− g) dλ =

∫
φg dµ. (5.2)

Taking φ = χB, we get

0 =

∫
B

dµ = µ(B).

We conclude that λs ⊥ µ, since by definition λs is concentrated on B. Taking
φ = χE(1 + g + · · ·+ gn) in (5.2), we have∫

χE(1− gn+1) dλ =

∫
χE(1 + g + · · ·+ gn)g dµ.

The left hand side of this relation satisfies∫
χE(1− gn+1) dλ

=

∫
E

(1− gn+1) dλ

=

∫
E∩A

(1− gn+1) dλ

→ λ(E ∩ A) = λac(E), as n → ∞,

7



where the monotone convergence theorem has been used in the last step. On the
other hand, the right hand side becomes∫

E

(1 + g + · · ·+ gn)g dµ =

∫
E∩A

g
1− gn+1

1− g
dµ

→
∫
E∩A

g

1− g
dµ as n → ∞.

Setting h = g/(1 − g), h is non-negative and belongs to ∈ L1(µ). We conclude
that

λac(E) =

∫
E

h dµ, ∀E ∈ M,

so, λac << µ.

Step 2. Consider the case that µ is a finite measure and λ is a signed measure.
Applying what has been proved to λ+ and λ−, the Jordan decomposition of λ,
we have

λ+ = λ+
ac + λ+

s , λ− = λ−
ac + λ−

s ,

λ+
ac, λ−

ac << µ, λ+
s , λ−

s ⊥ µ.

By Proposition 5.4, λ = λac + λs, λac ≡ λ+
ac − λ−

ac, λs = λ+
s − λ−

s , and λac << µ
and λs ⊥ λac. Moreover, if

λ±
ac =

∫
h± dµ,

λac =

∫
h dµ, where h ≡ h+ − h− ∈ L1(µ).

Step 3. Let µ be a σ-finite measure and λ a signed measure. Let {Xj} be a
measurable partition of X with finite measure. Let µj = µ⌊Xj

and λj = λ⌊Xj
.

By the previous step,

λj = λj
ac + λj

s, λj
ac << µj, λj

s ⊥ µj,

λj
ac(E) =

∫
E

hj dµj =

∫
E

hjχXj
dµ, hj ∈ L1(µj), hjχXj

∈ L1(µ).

Letting λac =
∞∑
j=1

λj
ac and λs =

∞∑
j=1

λj
s, we have

λ = λac + λs, λac << µ, λs ⊥ µ,
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and

λac(E) =

∫
E

h dµ, where h =
∞∑
j=1

hjχXj
.

By Proposition 5.3,

∞ > |λ|(X) =

∫
X

|h|dµ,

so h ∈ L1(µ).

Step 4. To finish the proof we establish uniqueness. Suppose there is a pair
(λ1, λ2) with λ1 << µ and λ2 ⊥ µ such that

λ = λ1 + λ2.

As λ = λac + λs, λ1 + λ2 = λac + λs, it implies that λ1 − λac = λs − λ2. As
λ1 − λac << µ and λs − λ2 ⊥ µ, by Proposition 5.3, λ1 − λac = λs − λ2 = 0, that
is, λ1 = λac and λ2 = λs.

We deduce a significant result from the Radon-Nikodym theorem.
Let µ be a signed measure on (X,M). From the relation |µ(E)| ≤ |µ| (E),

∀E ∈ M, we know that µ << |µ|. By Radon-Nikodym theorem, we can find
some h ∈ L1(|µ|) such that

µ(E) =

∫
E

h d |µ| .

From
1

|µ| (E)

∫
E

h d |µ| = µ(E)

|µ| (E)
∈ [−1, 1],

we know that |h| ≤ 1 a.e. We claim that in fact |h| = 1 a.e. For, let

Ar = {x ∈ X : |h| (x) < r} , r ∈ (0, 1).

For any partition {Aj} of Ar,

∑
j

|µ(Aj)| =
∑
j

∣∣∣∣∣
∫
Aj

h d |µ|

∣∣∣∣∣
≤
∑
j

∫
Aj

|h| d |µ|

≤ r
∑
j

|µ| (Aj)

= r |µ| (Ar).
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Taking supremum over all partitions {Aj},

|µ| (Ar) ≤ r |µ| (Ar).

As |µ| (Ar) ≤ |µ| (X) < ∞, this forces Ar has |µ|-measure zero. So, |h| = 1
|µ|-a.e. After redefining h on a set of measure zero, we may assume |h| = 1
everywhere. Thus we have

Proposition 5.7. Let µ be a signed measure on (X,M).

(a) There exists an h ∈ L1(|µ|), |h| ≡ 1, such that dµ = h d |µ|, that is,

µ(E) =

∫
E

h d |µ| , ∀E ∈ M.

(b) There are disjoint measurable sets A and B such that

µ+(E) = µ(E ∩ A)

µ−(E) = −µ(E ∩B), ∀E ∈ M.

(c) If µ = λ1 − λ2 where λi are measures, then λ1 ≥ µ+ and λ2 ≥ µ−.

Proof. (a) Already done.
(b) Let A = {x ∈ X : h(x) = 1} and B = {x ∈ X : h(x) = −1}. Then A∪̇B =
X and

µ+(E) =
1

2
(|µ| (E) + µ(E))

=
1

2

∫
E

(1 + h) d |µ|

=

∫
E∩A

d |µ| (use 1 + h = 2 on A, 1 + h = 0 on B)

=

∫
E∩A

dµ

= µ(E ∩ A).
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Similarly,

µ−(E) =
1

2
(|µ| (E)− µ(E))

=
1

2

∫
E

(1− h) d |µ|

=

∫
E∩B

d |µ|

= −
∫
E∩B

dµ

= −µ(E ∩B).

(c) As µ = λ1 − λ2 ≤ λ1,

µ+(E) = µ(E ∩ A) ≤ λ1(E ∩ A) ≤ λ1(E).

As −µ = λ2 − λ1 ≤ λ2,

µ−(E) = −µ(E ∩B) ≤ λ2(E ∩B) ≤ λ2(E).

The existence of disjoint A and B such that µ+ = µ⌊A and µ− = µ⌊B is called
the Hahn decomposition of µ. Proposition 5.6(c) shows certain minimal property
of the decomposition.

5.3 The Dual Space of C0(X)

The space Cc(X) may not be complete under the supnorm. For instance, the
function e−x2

is the uniform limit of a sequence of functions in Cc(R), but it
is positive everywhere. The space of all bounded, continuous functions on a
topological space forms a Banach space where Cc(X) is its subspace. We denote
the closure of Cc(X) in in this space by C0(X). It is a Banach space. In fact,
when X is a locally compact Hausdorff space, one can show that it consists of all
continuous functions that vanish at infinity. More precisely, f belongs to C0(X)
if and only if, for every ε > 0, there is a compact set K such that |f | is less than
ε outside K. Of course, C0(X) is equal to Cc(X) when X is compact. As Cc(X)
is dense in C0(X), the dual space of Cc(X) can be identified with the dual space
of C0(X).

From now on we take X to be a locally compact Hausdorff topological space.
A signed measure µ ∈ M(X) = M(X,B) is called regular if every E ∈ B is inner
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and outer regular, i.e.,

|µ| (E) = inf {|µ| (G) : E ⊂ G, G open} , and

= sup {|µ| (K) : K ⊂ E, K compact} .

We use Mr(X) to denote all regular Borel signed measures on (X,B).
Proposition 5.8. (a) Mr(X) forms a closed subspace of M(X) under the

norm ∥µ∥ = |µ| (X),

(b) µ = µ+ − µ−, µ ∈ Mr(X) if and only if µ± ∈ Mr(X),

(c) For µ ∈ Mr(X) and f ∈ L1(|µ|), the measure λ given by

λ(E) =

∫
E

f d|µ|,

belongs to Mr(X).

I leave the proof of this proposition as an exercise.
Each regular Borel signed measure induces a bounded linear functional on

Cc(X). In fact, we used to define

Λφ =

∫
φdµ, ∀φ ∈ Cc(X),

when µ is a measure. Now, for a signed measure, we could use Proposition 5.7(a)
to define

Λφ =

∫
φh d |µ| ,

or,

Λφ =

∫
φdµ+ −

∫
φdµ−.

With this definition,

|Λφ| ≤
∫
|φh| d |µ| ≤ |µ| (X) ∥φ∥∞ ,

so
∥Λ∥≤ |µ|(X) = ∥µ∥, (5.3)

holds and, in particular, it shows that Λ ∈ Cc(X)′.
Consider the map Φ : Mr(X) → Cc(X)′ by Φ : µ 7→ Λ. We claim that that Φ

is linear.

Indeed, writing

∫
φdµ ≡

∫
φh d |µ|, we first prove that

∫
φd(µ1 + µ2) =

∫
φdµ1 +

∫
φdµ2, ∀µ1, µ2 ∈ Mr(X)
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and ∫
φd(cµ) = c

∫
φdµ, ∀c ∈ R.

The second one follows directly from the definition. For the first one, we have∫
φd(µ1 + µ2) =

∫
φd(µ1 + µ2)

+ −
∫
φd(µ1 + µ2)

− ,

∫
φdµ1 =

∫
φdµ+

1 −
∫
φdµ−

1 ,

and ∫
φdµ2 =

∫
φdµ+

2 −
∫
φdµ−

2 .

It suffices to show that∫
φd(µ1 + µ2)

+ +

∫
φdµ−

1 +

∫
φdµ− =

∫
φd(µ1 + µ2)

− +

∫
φdµ+

1 +

∫
φdµ+

2 .

(5.4)
Observe that for any two finite measures λ and µ on the same σ-algebra,∫

f d(λ+ µ) =

∫
f dλ+

∫
f dµ, ∀ bounded measurablef,

As
µ1 + µ2 = (µ1 + µ2)

+ − (µ1 + µ2)
− ,

µ1 = µ+
1 − µ−

1 , and µ2 = µ+
2 − µ−

2 ,

we have
(µ1 + µ2)

+ + µ−
1 + µ−

2 = (µ1 + µ2)
− + µ+

1 + µ+
2 .

Therefore,∫
φd(µ1 + µ2)

+ +

∫
φdµ−

1 +

∫
φdµ− =

∫
φd(µ1 + µ2)

− +

∫
φdµ+

1 +

∫
φdµ+

2 ,

and (5.4) follows.
Finally, let us show that the map from µ to Λ is norm-preserving. In view of

(5.3), it remains to show ∥Λ∥≥ ∥µ∥. Indeed, from

Λφ =

∫
φhdµ

we choose a suitable φ to approximate h. Recall that |h|≡ 1 and |µ| is a finite
measure, by Lusin’s theorem (Theorem 2.12), for each ε > 0, there exists some
φ ∈ Cc(X) satisfying (a) |φ|≤ |h|= 1 and (b) |µ|(A) < ε where A = {x : φ(x) ̸=
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h(x)}. We have

∥Λ∥ ≥ |Λφ|

=

∣∣∣∣∫ φhd|µ|
∣∣∣∣

≥ |µ|(X \ A)− ε

≥ |µ|(X)− 2ε.

The desired inequality follows by letting ε → 0.
Summarizing, we have shown that the map µ 7→ Λ is a norm-preserving, linear

map from Mr(X) to C0(X)′.

Theorem 5.9. Let X be a locally compact Hausdorff space. The Φ : Mr(X,B) →
C0(X)′ is a norm-preserving, bijective linear map. In other words, the dual space
of C0(X) is equal to Mr(X,B).

This is the full version of Riesz representation theorem. It is different from
Theorem 2.8 for two points. First, it deals only with bounded linear function-
als while Theorem 2.8 deals with positive linear functionals which may not be
bounded. Second, since we are only concerned with the dual of Cc(X) only, we
do not consider outer measures here.

Lemma 5.10. Setting as above, there exists a positive linear functional Λ0 on
Cc(X) satisfying

|Λf | ≤ Λ0(|f |) ≤ ∥Λ∥∥f∥∞, ∀f ∈ Cc(X).

Proof. For f ∈ C+
c (X), we define

Λ0f = sup {|Λφ| : |φ| ≤ f, φ ∈ Cc(X)} .

Clearly, Λ0f ≥ 0, Λ0f2 ≥ Λ0f1 if f2 ≥ f1 ≥ 0 and Λ0(cf) = cΛ0f . We claim

Λ0(f1 + f2) = Λ0f1 + Λ0f2, f1, f2 ∈ C+
c (X).

for, observe that

|Λφ| ≤ ∥Λ∥ ∥φ∥∞ ≤ ∥Λ∥ ∥f∥∞ , if |φ| ≤ f.

Taking supremum over all these φ,

|Λ0f | ≤ ∥Λ∥ ∥f∥∞ . (5.5)

In particular, Λ0f is finite. Let f1, f2 ∈ C+
c (X). For ε > 0, there are φ1, φ2,
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|φ1| ≤ f1, |φ2| ≤ f2, such that

Λ0f1 ≤ |Λφ1|+ ε, Λ0f2 ≤ |Λφ2|+ ε.

Pick σ1, σ2 ∈ {1,−1} such that |Λφ1| = σ1Λφ1, |Λφ2| = σ2Λφ2, then

Λ0f1 + Λ0f2 ≤ Λ(σ1φ1 + σ2φ2) + 2ε

≤ Λ0(f1 + f2) + 2ε.

So,
Λ0f1 + Λ0f2 ≤ Λ0(f1 + f2).

To get the reverse inequality, let φ ∈ Cc(X), |φ| ≤ f1 + f2 and set

φ1 =
f1φ

f1 + f2
, φ2 =

f2φ

f1 + f2
on V,

and and φ1 = φ2 = 0 on X \V where V = {x ∈ X : (f1 + f2)(x) > 0}. Note that
φ1, φ2 ∈ Cc(X),|φ1| ≤ f1, |φ2| ≤ f2, and φ = φ1 + φ2. We have

|Λφ| = |Λφ1 + Λφ2|
≤ |Λφ1|+ |Λφ2|
≤ Λ0f1 + Λ0f2.

Taking supremum over all these φ,

Λ0(f1 + f2) ≤ Λ0f1 + Λ0f2.

For f ∈ Cc(X), we set

Λ0f = Λ0f
+ − Λ0f

−.

Using the old trick

(f1 + f2)
+ − (f1 + f2)

− = f1 + f2 = f+
1 − f−

1 + f+
2 − f−

2 ,

it is routine to check that Λ0 is our desired positive linear functional on Cc(X).

Now, we can prove Theorem 5.9. To show that Φ is onto, we need to find
some µ that satisfies Φ(µ) = Λ for any given Λ. Indeed, applying Theorem 2.8
to Λ0, we can find a Radon measure λ such that

Λ0f =

∫
f dλ, ∀f ∈ Cc(X).

Here λ satisfies

15



� λ(E) = inf {λ(G) : E ⊂ G,G open} , ∀E ⊂ X,

� λ(E) = sup {λ(K) : K ⊂ E,K compact} if λ(E) < ∞, ∀E ∈ B.

By Lemma 5.10,∣∣∣∣∫ f dλ

∣∣∣∣ = |Λ0f | ≤ ∥Λ∥ ∥f∥∞ , ∀f ∈ Cc(X).

From the proof of Theorem 2.8,

λ(X) = sup {|Λ0f | : 0 ≤ f ≤ 1 on X} .

In view of this, we have
λ(X) ≤ ∥Λ∥ ,

i.e., λ belongs to Mr(X).
From the definition of Λ0 we also have

|Λf | ≤ Λ0f
+ + Λ0f

−

= ∥f∥L1(λ), ∀f ∈ Cc(X).

As Cc(X) is dense in L1(λ), Λ can be extended to a bounded linear functional on
L1(λ). Since λ is a finite measure, by L1-L∞ duality there exists some h ∈ L∞(λ)
such that

Λf =

∫
fh dλ ∀f ∈ L1(λ),

and the operator norm of Λ as a linear functional on L1(λ) is equal to ∥h∥∞.
Using |Λf |≤ ∥f∥L1(λ), we have ∥h∥∞≤ 1. On the other hand, we have

∥Λ∥ = sup{|Λφ|: φ ∈ Cc(X), |φ|≤ 1}

≤
∫

|h|dλ

≤ λ(X)

≤ ∥Λ∥,

which forces |h|= 1 λ-a.e. and λ(X) = ∥Λ∥. Now we set

µ(E) =

∫
E

hdλ, ∀E ∈ B.

By Proposition 5.8, µ ∈ Mr(X). By Proposition 5.3, |µ|= λ and so ∥µ∥= ∥Λ∥. We
conclude that Φ is a norm-preserving linear bijection from Mr(X,B) to C0(X)′.
The proof of Theorem 5.9 is completed.
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5.4 Weak∗ Convergence of Measures

Let E be a normed space and E ′ its dual space. A sequence {Λk} ⊂ E ′ is called
weakly∗ convergent to Λ ∈ E ′ if

Λkx → Λx, ∀x ∈ E,

as k → ∞. Consider Lp(µ), 1 < p < ∞, we know that Lp(µ) = Lq(µ)′ where q is

conjugate to p. For fk ∈ Lp, fk
∗
⇀ f if and only if∫

fkg dµ →
∫

fg dµ, ∀g ∈ Lq(µ).

This turns out to be the same as fn ⇀ f . So when 1 < p < ∞, weak∗ and weak
convergence are the same, depending on whether to regard Lp(µ) as the “base”
space or the dual of Lq(µ).

Applying to the case the space C0(X) where X is a locally compact Hausdorff
space, by the representation theorem

µn
∗
⇀ µ in Mr(X)

if and only if ∫
φdµn →

∫
φdµ, ∀φ ∈ Cc(X).

The following result is sometimes called Helly selection theorem.

Theorem 5.11. Let E be a separable normed space. Every bounded sequence in
E ′ contains a weakly∗ convergent subsequence.

This theorem can be proved as Theorem 5.8 and we omitted its proof. As a
special case we have

Corollary 5.12. Let C0(X) be separable. Every sequence {µk} in Mr(X), ∥µk∥ ≤
M for some M , contains a subsequence µkj which µkj

∗
⇀ µ for some µ ∈ Mr(X).

One can show that the space C0(X) is separable when X is a compact metric
space or it is an open set in Rn.

Recall that even ∥fk∥L1 is uniformly bounded, we cannot always pick a weakly
convergent subsequence fnj

in L1(µ). As a typical example we may take {fk}
satisfying sptfk = [ak, bk] shrinks to {x0} and ∥fk∥L1= 1 for all k. Then no
subsequence of fk converges weakly. However, if we regard an L1-function as
a measure by setting dµk = fk dL1, µk now belongs to the larger space Mr(R)
and ∥µk∥ = ∥fk∥L1= 1. By Corollary 5.10, it has weak∗ subconvergence µkj

∗
⇀

µ. In fact, it is clear that the entire sequence converges weakly∗ to the Dirac
measure δx0 . The lesson is, by enlarging the space from L1(R) to Mr(R), we get
subconvergence.
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As an application of this property, we prove

Theorem 5.13. Consider L1(Ω) where Ω be a bounded, open set in Rn. Let
{fk} be a bounded sequence in L1(Ω) which is uniformly integrable. Then {fk}
contains a weakly convergent subsequence in L1(Ω).

In fact, the converse is true, namely, if fk
∗
⇀ f for some f ∈ L1(Ω), then

{fk} is bounded in L1(Ω) and uniformly integrable. This necessary and sufficient
condition for the weak subconvergence of an L1-sequence is called Dunford-Pettis
theorem.

Proof of Theorem 5.13. It suffices to consider the case fk ≥ 0. Let dµn = fn dLn.
Then ∥µk∥ = ∥fk∥L1 is uniformly bounded by some constant M . By Corollary
5.10, there exist {µkj} and µ ∈ Mr(Ω) such that∫

φdµkj →
∫

φdµ, ∀φ ∈ Cc(Ω) as j → ∞. (5.6)

For simplicity, we assume the entire sequence converges weakly∗. By Lebesgue
decomposition (with respect to Ln),

µ = fLn + ν, f ∈ L1(Ω), ν ⊥ Ln.

It suffices to show that ν ≡ 0 so that∫
φfk dx →

∫
φf dx, ∀φ ∈ Cc(Ω) = C(Ω). (5.7)

Suppose on the contrary that there is someA ∈ B, ν(A) > 0, such that Ln(A) = 0.
Letting a0 ≡ ν(A) = µ(A), by the regularity of the Lebsegue measure and µ, for
δ > 0, there is an open G containing A such that

µ(G) < δ,

and there is a compact set K ⊂ A such that

Ln(K) ≥ a0
2
.

For ε < a0/2, by uniform integrability, there is a δ1 > 0 such that∫
E

fk dx < ε, ∀E ∈ B, Ln(E) < δ1, ∀k ≥ 1.

We take δ = δ1 and pick φ ∈ Cc(Ω) such that φ ≡ 1 on K, 0 ≤ φ ≤ 1, sptφ ⊂ G.
Then ∫

G

φfk dx ≤
∫
G

fk dx < ε.
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Letting k → ∞, by (5.6) ∫
G

φdµ ≤ ε.

However, as φ ≡ 1 on K, we get

µ(K) ≤
∫
G

φdµ ≤ ε,

contradicting our choice of ε. So ν ≡ 0.
We still have to show (5.7) holds for all φ ∈ L∞(Ω) = L1(Ω)′. First, we claim

that it holds for all φ = χG, where G is open. For, let {Gj} ↑ G,Gj ⊂⊂ Gj+1 and
φj, Gj < φj < Gj+1. The claim follows from the uniform integrability of {fk}.
Next, using outer regularity and uniform integrability we know that (5.7) holds for
φ = χE for E ∈ B. Consequently, it also holds for all simple functions s. Now, let
φ ∈ L∞(Ω), say, |φ| ≤ M . For ε > 0, let −M −1 = a1 < a2 < · · · < aN = M +1,
∆aj < ε. Define

s =
N−1∑
j=1

ajχAj
, Aj = {x ∈ Ω : aj ≤ φ(x) < aj+1} .

Then ∥s− φ∥∞ < ε, so∣∣∣∣∫ φfk −
∫

φf

∣∣∣∣ ≤ ∣∣∣∣∫ (φ− s)(fk − f)

∣∣∣∣+ ∣∣∣∣∫ s(fk − f)

∣∣∣∣
≤ ε× 2M +

∣∣∣∣∫ s(fk − f)

∣∣∣∣ .
Letting n → ∞,

lim
k→∞

∣∣∣∣∫ φfk −
∫
φf

∣∣∣∣ ≤ 2Mε,

and we finally conclude that (5.7) holds for all φ in L∞(Ω).

5.5 Herglotz-Riesz Theorem

We present another application of the Riesz representation theorem.
Recall that a harmonic function is the real part of an analytic function and it

satisfies
uxx + uyy = 0

in the plane. Let DR = {z : |z| < R}, z = x + iy, be the disk of radius R. It
is well-known that given a continuous function g on the boundary |z| = R, g(θ),
z = Reiθ, θ ∈ [0, 2π], there is a unique harmonic function u in DR which is equal
to g on its boundary. In fact, this harmonic function is given by the Poisson
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formula

u(z) =
1

2π

∫
|w|=R

R2 − |z|2

|w − z|2
g(θ) dθ. (5.8)

The question is: Instead of continuous data g, what are the most general data
that can be imposed on the boundary of DR to get solvability?

It turns out we have

Theorem 5.14. Let u be a non-negative harmonic function defined in D1 =
{z : |z| < 1}. There exists a unique Radon measure µ on S1 such that∫

u(reiθ)φ(θ) dx →
∫
φ(θ) dµ(θ), ∀φ ∈ C(S1), (5.9)

as r ↑ 1. In fact,

u(z) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(α− θ) + r2
dµ(θ), z = reiα, r ∈ (0, 1), α ∈ [0, 2π].

(5.10)

Thus every non-negative harmonic function in D1 has a boundary value which
is a Radon measure. Moreover, every Radon measure on the boundary generates
a harmonic function by the formula (5.10).

Proof. Let C(S1) be the space consists of all 2π–periodic, continuous functions.
For 0 < r < 1, set

Λrφ =

∫ 2π

0

u(reiθ)φ(θ) dθ.

We have

|Λrφ| ≤
∫ 2π

0

u(reiθ) |φ(θ)| dθ

≤ ∥φ∥∞
∫ 2π

0

u(reiθ) dθ.

Setting z = 0 in (5.8) where now R = r and g = u(reiθ), we obtain the mean
value property of the harmonic function

u(0) =
1

2π

∫ 2π

0

u(reiθ) dθ.

Therefore,
|Λrφ| ≤ 2πu(0) ∥φ∥∞ ,

and
∥Λr∥ ≤ 2πu(0) ≡ M < ∞.
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By Corollary 5.10 or Theorem 2.8, there exist {rj} ↑ 1 and a regular Borel
measure µ such that

Λrjφ =

∫ 2π

0

u(rje
iθ)φ(θ) dθ →

∫ 2π

0

φ(θ) dµ(θ), rj ↑ 1.

We will later improve the convergence from a sequence rj ↑ 1 to for all r ↑ 1.
Now, for a fixed z = reiα, 0 < r < 1, the function

φR(θ) =
R2 − r2

|Reiθ − reiα|2
=

R2 − r2

1− 2r cos(α− θ) + r2

converges uniformly to

φ1(θ) =
1− r2

1− 2r cos(α− θ) + r2

as R ↑ 1. It follows that

Λrjφrj →
∫ 2π

0

φ1(θ)dµ(θ), rj ↑ 1.

On the other hand, by the Poisson formula,

ΛRϕR =

∫ 2π

0

R2 − r2

1− 2r cos(α− θ) + r2
u(reiθ) dθ

= 2πu(z).

Thus, we have

2πu(z) =

∫ 2π

0

1− r2

1− 2r cos(α− θ) + r2
dµ(θ),

that is, (5.10) holds.
Now, let g ∈ C(S1). For a fixed r < 1, by Fubini’s theorem and Poisson’s

formula,∫ 2π

0

u(reiα)g(α) dα =
1

2π

∫ 2π

0

∫ 2π

0

1− r2

1− 2r cos(α− θ) + r2
g(α) dαdµ(θ)

=

∫ 2π

0

h(reiθ) dµ(θ),

where h is the harmonic function determined by the boundary value g. In case
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(5.10) holds for some measure µ1 instead of µ, the same reasoning shows that∫ 2π

0

u(reiα)g(α) dα =

∫ 2π

0

h(reiθ) dµ1(θ).

It follows that ∫ 2π

0

h(reiθ) dµ1(θ) =

∫ 2π

0

h(reiθ) dµ(θ).

Letting r ↑ 1, ∫ 2π

0

g(θ) dµ1(θ) =

∫ 2π

0

g(θ) dµ(θ), ∀g ∈ C(S1)

so µ1 = µ. This shows the uniqueness of the boundary trace µ. As every rj ↑ 1
contains a subsequence {rjk} such that Λrkj converges weakly

∗ to some boundary
trace which must be µ, we conclude that (5.9) holds.

Comments on Chapter 5. Sections 1–4 are taken from [R]. There are different
proofs of Radon-Nikodym theorem, check them from the web. See [R] for a proof
of Lp − Lq duality based on the representation theorem when the measure is σ-
finite. The discussion in Section 4 is parallel to Section 6 in Chapter 4 and one
may consult Buttazzo, Gaiquinta and Hildebrandt “One-dimensional Variational
Problems” for a complete proof of Dunford-Pettis theorem. Finally, Herglotz-
Riesz theorem is taken from Lax “Functional Analysis”.
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