Suggested Solution 6

(1) Show that $C = \{x \in [0,1] : x = 0.a_1a_2a_3\cdots, a_j \in \{0,2\} \text{ in one of its ternary expansion.}\}$.

Solution: Write $C_0 = [0,1]$, $C_1 = [0,1/3] \cup [2/3,1]$, etc. Then clearly we have $C_0 = \{x \in C_0 : x \in C_0 : x \in C_0\}$ $[0,1]: x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}, \ a_k \in \{0,1,2\}, \text{ in one of its ternary expansion.}\}$ and $\mathcal{C}_1 = \{x \in [0,1]:$

 $x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}, a_1 \in \{0, 2\}, a_k \in \{0, 1, 2\} \ \forall k > 1$, in one of its ternary expansion.} and so on.

Inductively we have $C_n = \{x \in [0,1] : x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}, a_k \in \{0,2\} \ \forall k \leq n, a_k \in \{0,1,2\} \ \forall k > n, a_k$ in one of its ternary expansion.) and the result follows if we take the intersection over $n \in \mathbb{N}$.

(2) Let $0 < \varepsilon < 1$. Construct an open set $G \subset [0,1]$ which is dense in [0,1] but $\mathcal{L}^1(G) = \varepsilon$.

Solution: Similar to the construction of Cantor's familiar "middle thirds" set. Define $K_0 = [0,1]$ and inductively define $K_n \subset K_{n-1}$ by removing an open interval of length $2(1-\varepsilon)2^{-2n}$. By the construction each K_n has 2^n connected components with length a_n which satisfy

$$\begin{cases} a_n = \frac{1}{2}(a_{n-1} - 2\varepsilon 2^{-2n}), & n = 1, 2, \dots \\ a_0 = 1, & \end{cases}$$

from which we get $a_n = (1 - \varepsilon)2^{-n} + \varepsilon 2^{-2n}$. Thus

$$\mathcal{L}^1(K) = \lim_{n \to \infty} \mathcal{L}^1(K_n) = \lim_{n \to \infty} 2^n a_n = 1 - \varepsilon.$$

Take $G = [0,1] \setminus K$, then $\mathcal{L}^1(G) = \varepsilon$. On the other hand, G is dense in [0,1] since the interior of K is empty.

(3) Here we construct a Cantor-like set, or a Cantor set with positive measure, with positive measure by modifying the construction of the Cantor set as follows. Let $\{a_k\}$ be a sequence of positive numbers satisfying

$$\gamma \equiv \sum_{k=1}^{\infty} 2^{k-1} a_k < 1.$$

Construct the set S so that at the kth stage of the construction one removes 2^{k-1} centrally situated open intervals each of length a_k . Establish the facts:

- (a) $\mathcal{L}^{1}(S) = 1 \gamma$,
- (b) S is perfect,

(c) S is uncountable.

Solution:

(a) As the intervals removed at the same stage or different stages are mutually disjoint, we have

$$\mathcal{L}^{1}(\mathcal{S}) = 1 - \sum_{k=1}^{\infty} 2^{k-1} \text{ length of interval removed in the k th stage}$$

$$= 1 - \sum_{k=1}^{\infty} 2^{k-1} a_{k}$$

$$= 1 - \gamma.$$

Define $S_0 = [0, 1]$ and inductively define $S_n \subset S_{n-1}$ by removing an open interval of length a_n . Obviously by the construction each S_n has 2^n connected components with length b_n which satisfy

$$\begin{cases} b_n = \frac{1}{2}(b_{n-1} - a_n), & n = 1, 2, \dots \\ b_0 = 1, \end{cases}$$

By our construction of S_n , b_n is a non-negative decreasing sequence, so $\lim_{n\to\infty} b_n$ exist. $\gamma < \infty \Rightarrow a_n \to 0$. Therefore

$$\lim_{n \to \infty} b_n = 0.$$

(b) If $x \in S$, then x belongs some connected component of $S_n, \forall n \in \mathbb{N}$. Observe that the end points of the 2^n intervals of S_n are in S, so $\exists y_n$ end point of one of the interval s.t.

$$|y_n - x| < b_n \to 0 \text{ as } n \to \infty.$$

We have S is a perfect set.

(c) We try to prove by contradiction. Suppose S is countable and let s_n be an enumeration of the set. s_1 belongs to exactly one of the two intervals in S_1 , denote the interval which fails to contain s_1 by F_1 . In S_2 , 2 disjoint intervals $\subseteq F_1$ are obtained by removing an central interval of length a_2 from F_1 , one of them say F_2 must fail to contain s_2 . Repeating the process, we have decreasing sequence of closed interval F_n of length b_n

s.t s_n does not belongs to F_n and

$$\phi \neq \bigcap_{n=1}^{\infty} F_n \subseteq S.$$

Hence

$$\exists s \in S \text{ and } s \neq s_n, \forall n \in \mathbb{N}.$$

We have a contradiction.

(4) Let A be the subset of [0,1] which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find $\mathcal{L}^1(A)$.

Solution: Let $B = \{0, 1, 2, 3, 5, 6, 7, 8, 9\}$, the set $F_0 = \{x \in [0, 1] : x = 0.4a_2a_3 \cdots, a_j = 0, 1, 2, \cdots, 9\} = \left[\frac{4}{10}, \frac{5}{10}\right]$ is of Lebesgue measure $\frac{1}{10}$. Fix $y_1 \in B$, $|B| = 9^1 = 9$, the set $F_{y_1} = \{x \in [0, 1] : x = 0.y_14a_3 \cdots, a_j = 0, 1, 2, \cdots, 9 \,\forall j \geq 3\} = \left[\frac{y_1}{10} + \frac{4}{100}, \frac{y_1}{10} + \frac{5}{100}\right]$ is of Lebesgues measure $\frac{1}{100}$. Fix $(y_1, y_2) \in B^2$, $|B^2| = 9^2 = 81$, the set $F_{(y_1, y_2)} = \{x \in [0, 1] : x = 0.y_1y_24a_4 \cdots, a_j = 0, 1, 2, \cdots, 9 \,\forall j \geq 4\}$ is of measure $\frac{1}{1000}$. Continuing the process, we have

$$A = [0,1] \setminus (\bigcup_{n=1}^{\infty} \bigcup_{(y_1, y_2, \dots, y_n) \in B^n} F_{(y_1, y_2, \dots, y_n)} \cup F_0)$$

and as all $F_{(y_1,y_2,\cdots,y_n)}$, F_0 are disjoint, we have

$$\mathcal{L}^{1}(A) = 1 - \frac{1}{10} - \sum_{n=1}^{\infty} \sum_{(y_{1}, y_{2}, \dots, y_{n}) \in B^{n}} \frac{1}{10^{n+1}}$$
$$= 1 - \frac{1}{10} - \sum_{n=1}^{\infty} \frac{9^{n}}{10^{n+1}}$$
$$= 0$$

(5) Let \mathcal{N} be a Vitali set in [0,1]. Show that $\mathcal{M} = [0,1] \setminus \mathcal{N}$ has measure 1 and hence deduce that

$$\mathcal{L}^1(\mathcal{N}) + \mathcal{L}^1(\mathcal{M}) > \mathcal{L}^1(\mathcal{N} \cup \mathcal{M}).$$

Remark: I have no idea what $\mathcal{L}^1(\mathcal{N})$ is, except that it is positive.

Solution: We first prove that every Lebesgue measurable subset of \mathcal{N} must be of measure zero. Let A be a Lebesgue measurable subset of \mathcal{N} , $\{A+q\}_{q\in\mathbb{Q}\cap[0,1)}$ is a sequence of disjoint

measurable set contained inside [-1, 2]. By translational invariance of Lebesgue measure,

$$\mathcal{L}^1(\bigcup_{q\in\mathbb{Q}\cap[0,1)}A+q)=\sum_{q\in\mathbb{Q}\cap[0,1)}\mathcal{L}^1(A+q)=\sum_{q\in\mathbb{Q}\cap[0,1)}\mathcal{L}^1(A)<\infty,$$

Therefore we must have

$$\mathcal{L}^1(A) = 0.$$

We try to prove by contradiction, suppose there is an open set G s.t. $\mathcal{L}^1(G) = 1 - \varepsilon < 1$ and $G \supseteq \mathcal{N}^c$. Then $[0,1] \setminus G$ is a measurable subset of \mathcal{N} satisfying

$$0 < \varepsilon = \mathcal{L}^1([0,1]) - \mathcal{L}^1(G) \le \mathcal{L}^1([0,1] \setminus G).$$

Contradicting to our previous result.

(6) Construct a Borel set $A \subset \mathbb{R}$ such that

$$0 < \mathcal{L}^1(A \cap I) < \mathcal{L}^1(I)$$

for every non-empty segment I. Is it possible to have $\mathcal{L}^1(A) < \infty$ for such a set?

Solution: Without loss of generality, we consider n=0 and put $0 < c_0 = b < 1$. Choose a sequence $\varepsilon_m \searrow b$ with $b < \varepsilon_m < 1$. For $m=1,2,\ldots,A_m$ is an open set constructed as follows:

- (a) A_1 is the open dense set of [0,1] of measure ε_1 as in (5).
- (b) Each A_m is the union of countably many disjoint open intervals $I_{m,k}$ of length $\ell_{m,k}$, $k=1,2,\ldots$ with $\ell_{m,k}=2(1-\varepsilon_m)2^{-2n}$ and $\sum_{k=1}^{\infty}\ell_{m,k}=\varepsilon_m$ as in (5).
- (c) Having chosen A_m , $A_{m+1} \subset A_m$ is chosen such that $A_{m+1} \cap I_{m,k}$ is open, dense in $I_{m,k}$ and $\mathcal{L}^1(A_{m+1} \cap I_{m,k}) = \frac{\varepsilon_{m+1}}{\varepsilon_m} \ell_{m,k} < \ell_{m,k}$.

Note that $\mathcal{L}^1(A_{m+1}) = \frac{\varepsilon_{m+1}}{\varepsilon_m} \mathcal{L}^1(A_m) = \varepsilon_{m+1}$, showing that (b) is valid with m replaced by m+1

Let
$$A = \bigcap_{m=1}^{\infty} A_m$$
 and $I = (a - \delta, a + \delta) \subset [0, 1]$. To show that $0 < \mathcal{L}^1(A \cap I) < \mathcal{L}^1(I)$, we

only need to find an open interval $I_{n_0,k_0} \subset I$ such that

$$\mathcal{L}^1(I_{n_0,k_0}\cap A)>0 \quad .$$

Let n_0 satisfy $2^{-2n_0} < \frac{\delta}{4}$. Because A_{n_0} is dense in [0,1], there exists a point $p \in A_{n_0}$ such that $|p-a| < \frac{\delta}{2}$. By (b), we can pick $k_0 \in \mathbb{N}$ such that $p \in I_{n_0,k_0}$. Since $\ell_{n_0,k_0} \le 2^{-2n_0+1} < \frac{\delta}{2}$, we get $I_{n_0,k_0} \subset I$. Moreover, by (c), we obtain

$$\mathcal{L}^{1}(I_{n_{0},k_{0}} \cap A_{n}) = \frac{\varepsilon_{n}}{\varepsilon_{n_{0}}} \ell_{n_{0},k_{0}} \quad \text{and} \quad \mathcal{L}^{1}(I_{n_{0},k_{0}} \setminus A_{n}) = \left(1 - \frac{\varepsilon_{n}}{\varepsilon_{n_{0}}}\right) \ell_{n_{0},k_{0}}$$

for all $n \geq n_0$. Taking $n \to \infty$, we have

$$\mathcal{L}^{1}(I_{n_{0},k_{0}} \cap A) = \frac{c_{0}}{\varepsilon_{n_{0}}} \ell_{n_{0},k_{0}} > 0 \quad \text{and} \quad \mathcal{L}^{1}(I_{n_{0},k_{0}} \setminus A) = \left(1 - \frac{c_{0}}{\varepsilon_{n_{0}}}\right) \ell_{n_{0},k_{0}} > 0.$$

Finally, we can construct in each [n, n+1], a Borel set A_n with $\mathcal{L}^1(A_n) = c_n$ with $0 < c_n < 1$ such that for every open interval $I \subset [n, n+1]$, $0 < \mathcal{L}^1(A \cap I) < \mathcal{L}^1(I)$ and

$$\sum_{n=-\infty}^{\infty} c_n = c < \infty.$$

If so, let $A = \bigcup_{n=-\infty}^{\infty} A_n$, then A satisfies the condition in the problem and $\mathcal{L}^1(A) = c < \infty$.

(7) Let E be a subset of \mathbb{R} with positive Lebsegue measure. Prove that for each $\alpha \in (0,1)$, there exists an open interval I so that

$$\mathcal{L}^1(E \cap I) \ge \alpha \mathcal{L}^1(I).$$

It shows that E contains almost a whole interval. Hint: Choose an open G containing E such that $\mathcal{L}^1(E) \geq \alpha \mathcal{L}^1(G)$ and note that G can be decomposed into disjoint union of open intervals. One of these intervals satisfies our requirement.

Solution: As $\exists n \in \mathbb{N}$ s.t. $\mathcal{L}^1(E \cap (-n,n)) > 0$, WLOG we may assume that E has finite

outer measure, then $\forall \alpha \in (0,1), \exists \text{ open } G \text{ s.t.} G \supseteq E \text{ and}$

$$\mathcal{L}^{1}(E) + \frac{(1-\alpha)}{\alpha}\mathcal{L}^{1}(E) \ge \mathcal{L}^{1}(G),$$

Hence

$$\mathcal{L}^1(E) \ge \alpha \mathcal{L}^1(G)$$
.

we can write $G = \bigcup_{i=1}^{\infty} I_i$ where I_i are disjoint open intervals. Then one of these I_i must satisfy the desired property, otherwise

$$\mathcal{L}^{1}(E) \leq \sum_{i=1}^{\infty} \mathcal{L}^{1}(E \cap I_{i}) < \alpha \sum_{i=1}^{\infty} \mathcal{L}^{1}(I_{i}) = \alpha \mathcal{L}^{1}(G) < \infty,$$

contradicting the above inequality.

- (8) Let E be a measurable set in \mathbb{R} with respect to \mathcal{L}^1 and $\mathcal{L}^1(E) > 0$. Show that E E contains an interval (-a, a), a > 0. Hint:
 - (a) U, V open, with finite measure, $x \mapsto \mathcal{L}^1((x+U) \cap V)$ is continuous on \mathbb{R} .
 - (b) A, B measurable, $\mu(A)$, $\mu(B) < \infty$, then $x \mapsto \mathcal{L}^1((x+A) \cap B)$ is continuous. For $A \subset U$, $B \subset V$, try

$$\mathcal{L}^1((x+U)\cap V) - \mathcal{L}^1((x+A)\cap B)| \le \mathcal{L}^1(U\setminus A) + \mathcal{L}^1(V\subset B).$$

(c) Finally, $x \mapsto \mathcal{L}^1((x+E) \cap E)$ is positive at 0 and if $(x+E) \cap E \neq \emptyset$, then $x \in E \setminus E$.

Solution:

(a) We prove the case when U is an open interval I, note for all subset A, B of \mathbb{R} ,

$$((x+A)\cap B)\setminus (((y+A)\cap B))=(x+A)\setminus (y+A)\cap B.$$

Therefore

$$\left|\mathcal{L}^{1}((x+I)\cap V) - \mathcal{L}^{1}((y+I)\cap V)\right| \leq \mathcal{L}^{1}((x+I)\setminus (y+I)) + \mathcal{L}^{1}((y+I)\setminus (x+I)) \leq 4|x-y|.$$

the function is Lipschitz and continuous. In general U can be written as countable

union of disjoint open intervals $\{I_i\}$, as $\sum_{i=1}^{\infty} \ell(I_i) < \infty, \exists N \text{ s.t. for all } k \geq N$,

$$\sum_{i=k}^{\infty} \ell(I_i) < \varepsilon.$$

We have

$$\sum_{i=1}^{\infty} \mathcal{L}^{1}((x+I_{i})\cap V) - \mathcal{L}^{1}((y+I_{i})\cap V) \leq \sum_{i=1}^{k} \mathcal{L}^{1}((x+I_{i})\cap V) - \mathcal{L}^{1}((y+I_{i})\cap V) + 2\varepsilon < 3\varepsilon$$

for x sufficiently close to y. Similarly

$$\sum_{i=1}^{\infty} \mathcal{L}^{1}((y+I_{i})\cap V) - \mathcal{L}^{1}((x+I_{i})\cap V) \leq 3\varepsilon.$$

We have the function $\mathcal{L}^1((x+U)\cap V)$ is continuous.

(b) Obviously , $((x+U)\cap V)\setminus ((x+A)\cap B)\subseteq U\setminus A\cup V\setminus B$. Therefore, we have

$$0 \le \mathcal{L}^1((x+U) \cap V) - \mathcal{L}^1((x+A) \cap B) \le \mathcal{L}^1(U \setminus A) + \mathcal{L}^1(V \setminus B).$$

Note RHS is independent on x, y, so the result follow from outer regularity of Lebesgue measure.

(c) the function $\mathcal{L}^1((x+E)\cap E)$ is continuous and positive at 0, $\exists a>0$ s.t the function remain positive on (-a,a), i.e

$$(x+E)\cap E\neq\emptyset$$

and $\forall x \in (-a, a), \exists e_1 e_2 \in E \text{ s.t}$

$$x = e_1 - e_2 \in E - E.$$

Alternate proof. The following is a simple proof due to Karl Stromberg.

By the regularity of \mathcal{L}^1 , for every $\varepsilon > 0$ there are a compact set $K \subset E$ and an open set $U \supset E$ such that

$$\mathcal{L}^{1}(K) + \varepsilon > \mathcal{L}^{1}(E) > \mathcal{L}^{1}(U) - \varepsilon.$$

For our purpose it is enough to choose K and U such that

$$2\mathcal{L}^1(K) > \mathcal{L}^1(U).$$

Since $K \subset U$, there is an open cover of K that is contained in U. Since K is compact, one can choose a small neighborhood V of 0 such that

$$K + V \subset U$$
.

Let $v \in V$, and suppose

$$(K+v)\cap K=\emptyset.$$

Then,

$$2\mathcal{L}^1(K) = \mathcal{L}^1(K+v) + \mathcal{L}^1(K) < \mathcal{L}^1(U),$$

contradicting our choice of K and U. Hence for all $v \in V$ there exists $k_1, k_2 \in K \subset E$ such that

$$k_1 + v = k_2$$

which means that $V \subset E - E$.

(9) Give an example of a continuous map ϕ and a measurable f such that $f \circ \phi$ is not measurable. Hint: May use the function h = x + g(x) where g is the Cantor function as ϕ .

Solution: Let h = x + g(x) where g is the Cantor function. Then $h : [0,1] \to [0,2]$ is a strictly monotonic and continuous map, so its inverse $\phi = h^{-1}$ is continuous too. Since g is constant on every interval in the complement of C, one has that h maps such an interval to an interval of the same length. Hence $\mu(h(C)) = 1$, where C is the cantor set. Then h(C) contains a non-measurable set A due to Proposition 3.3. Let $B = \phi(A)$. Set $f = \chi_B$. Then $f \circ \phi$ is not measurable since its inverse image of 1 is A.