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Modern software systems are integral to our daily lives, power-
ing search engines, cloud services, and operating systems. How-
ever, these systems are susceptible to failures, such as node fail-
ure, network issues, and storage failure, leading to significant
financial losses and damage to customer trust. As software sys-
tems grow increasingly complex, traditional rule-based methods
for ensuring software reliability become impractical due to the
massive volumes of related data and the intricate correlations
between different types of failures.

To monitor, diagnose, and analyze these complex software
failures, a variety of monitoring data is gathered to reflect the
system’s runtime status. Among all these data types, logs are
particularly critical for several reasons. First, logs encapsulate
the intentions of developers by documenting crucial runtime
events and behaviors. Second, logs often serve as the only avail-

able data that accurately records the system’s runtime status,
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making them indispensable for diagnosis and monitoring. Third,
logs are the bridges between development and operational teams
by executing the logging statements, facilitating issue-handling
processes in the operation period. Given the importance of logs,
our research focuses on leveraging them to enhance software re-
liability engineering as follows.

First, we introduce SemParser, the first semantic-aware log
parser that effectively extracts meaningful events and runtime
parameters from logs. Our framework integrates an end-to-end
semantics miner, which extracts explicit semantics from individ-
ual log messages, with a joint parser that uses domain knowledge
to infer implicit semantics and combine them into comprehen-
sive parameter semantics. This method significantly enhances
downstream tasks like anomaly detection and failure diagnosis
by incorporating semantic information often overlooked by tra-
ditional parsers.

Second, we develop EvLog, an anomalous log localization
framework designed to remain effective despite software evolu-
tion. EvLog comprises a multi-level representation extractor
and an anomaly discriminator augmented with attention mech-
anisms to pinpoint anomalous logs in an unsupervised manner.
By addressing issues like evolving log events and unstable log se-
quences, EvLog reduces the need for frequent retraining, thereby
maintaining high anomaly detection accuracy over time.

Third, to tackle the limitation of insufficient datasets, we

propose AutolLog, a framework that synthesizes comprehensive
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log sequences based on program analysis. AutoLog generates
log sequences by analyzing program execution paths related to
logging statements. It builds comprehensive call graphs, prunes
them to identify scalable log-related execution paths, and prop-
agates expert labels to generate flexible log sequences across
methods based on their calling relationships. AutoLog improves
anomaly detection capabilities by generating diverse and high-
coverage log data, which are critical for training robust machine
learning models.

Last but not least, we conduct an extensive evaluation
of large language models (LLMs) for generating logging state-
ments. The study involves five research questions from two per-
spectives: (1) effectiveness: how do LLMs perform in logging
practice? and (2) generalizability: how well do LLMs gener-
ate logging statements for unseen code? Using our LogBench
dataset, which includes both seen and unseen code after trans-
formation, we draw eight findings, five implications, and bench-
marks for future research on LLM-powered logging tools, high-
lighting their potential and current limitations.

In summary, this thesis aims to develop automated log
analysis techniques to address challenges associated with high
log variety, rapid software evolution, insufficient datasets, and
inaccurate logging statements. Extensive experiments on pub-
lic datasets demonstrate the effectiveness and efficiency of our
proposed algorithms. Collectively, these techniques make signif-

icant contributions to the field of software reliability engineering.
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Chapter 1

Introduction

1.1 Overview

Modern software systems play a crucial role in our daily
lives, including search engines, cloud services, and operating
systems. However, these systems can experience failures, such
as service disruptions, which can lead to financial losses and
damage customer trust. For instance, in October 2021, Face-
book and its subsidiaries were disrupted globally for six to seven
hours, causing a nearly 5% drop in the company’ s stock value
and at least 60 million US Dollars of loss in revenueﬁl.

To address these issues, software reliability engineering (SRE)
is essential. SRE focuses on developing and maintaining soft-
ware systems to ensure they operate without failures for a spec-
ified period [1]. Traditional SRE techniques involve rule-based
methods that require significant expert effort to analyze failures.

As software systems become more complex, with highly corre-

thttps:/ /en.wikipedia.org/wiki/2021_ Facebook outage.
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CHAPTER 1. INTRODUCTION 2

# Logging statements from Spark
. (spark/storage/BlockManager.scala)
LOggll’lg logError(s"Failed to report ${blockId} to master; giving up.")
statements logDebug(s"Putting block ${blockId} with replication took

g‘o ${usedTimeMs}")
— logInfo(s"Writing block ${blockId} to disk")
o
i s ~
& 17/08/22 15:50:46 ERROR BlockManager Failed to report rdd_0_1
é to master; giving up.
= 17/08/22 15:51:18 DEBUG BlockManager Putting block rdd_1_1
& Log files with replication took 0
—~ 17/08/22 15:51:55 INFO BlockManager Writing block rdd_1_1 to
disk
& _J

Figure 1.1: The lifecycle of logs.

lated failures and large volumes of monitoring data, automated
approaches are needed for effective software development and
operations.

Software logs are extensively utilized in various reliability
assurance tasks for several key reasons. Firstly, they encapsu-
late the code intentions as written by the programmers. Sec-
ondly, they often provide the only available data that records
software runtime information [2]. Thirdly, logs serve as a bridge
between software development and operational engineers by ap-
pending log files from logging statements at runtime. Further-
more, logs are crucial in data-driven decision-making within the
industry [3]. By analyzing these logs, system operators and
administrators can monitor software status [4], detect anoma-
lies [B, 6], and troubleshoot system issues [[7].

Typically, logs are semi-structured texts generated by log-

ging statements (e.g., logger.info()) in the source code. Fig-
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ure illustrates the lifecycle of logs containing two stage: log-
ging statements and log files. In this figure, the first-line log mes-
sages are generated by the logging statement logError (" "Failed
to report $blockId to master; giving up.''). Thelogevent
(e.g., “failed to report ... to master; giving up”) is an un-
structured statement crafted by developers to describe specific
runtime behavior. Conversely, the remaining parameters (e.g.,
rdd_ 0 1) are system variables automatically generated during
runtime.

Handling logs in modern software systems is challenging,
primarily due to the massive amount of log files generated. In
traditional standalone systems, engineers could manually in-
spect logs or create rules to detect failures using their exper-
tise, often relying on keyword searches (e.g., “error”) or regular
expression matching [8]. Nevertheless, this method becomes im-
practical with the current scale of log production, where systems
can generate about 50 gigabytes of logs per hour, amounting to
roughly 120-200 million lines [9]. Manually extracting essential
information from such a vast volume of logs is nearly impossi-
ble, eliciting the need for automated solutions. In addition to
volume, log-based software reliability engineering faces several

other challenges.

e High variety. Although the number of log events in a
system is limited, these events can generate millions of dif-

ferent log messages based on their auto-generated param-
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eters. For instance, a dataset [10] with 30 log events can
include more than 11 million different log messages. This
variety complicates the design of rules to filter out noisy
logs, creating a significant barrier to identifying key log

messages.

o Fast evolution. After the initial release, software under-
goes continuous development to meet customer demands,
fix bugs, and add new functionalities. During this evolu-
tion, logging statements can be revised and changed, result-
ing in evolving log events. Such evolution introduces chal-
lenges for log analysis by introducing unseen log events,
modifying the order of log sequences, and altering event

distribution.

o Insufficient datasets. Modern data-driven models re-
quire ample data for training and testing against, of course,
log analysis models are no exception. However, existing
datasets are often collected from specific workloads, cover-
ing only limited system behavior patterns, which creates a
gap with the complex activities of real-world systems. Ad-
ditionally, logs often contain sensitive information, making

service providers reluctant to publicize them.

o Inaccurate logging statements. FEffective log analy-
sis relies on high-quality logging statements, but existing

automated logging statement generation frameworks are
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Software development Software operations
Fault prevention Fault tolerance
- o =

e
/*simplified function*/

[ 1 ‘

public void setPhysicalName(String

" A semantic-aware log parser
physicalName) { \ for software operations.
{ Deployment
sequenceld =
Integer.parselnt(seqStr);
} (NumberFormatException e)

{

Log collection

G/D An anomalous log localizer

. for evolving systems.
LOG.debug("Did not parse

sequence Id from " + physicalName);

An automatic log sequence

@ synthesizer for anomaly

detection.

An empirical study on
automatic logging statement
generator.

——— e o o e o o e o o o m——

N e e e e e e e e o = e -

——— e o o e e e e e e m—
f @ (

Figure 1.2: Log-driven automated software reliability engineering studies.

far from satisfactory. Only when log messages accurately
record anomaly patterns and failure details can engineers
discern discrepancies between normal and abnormal logs,

thereby mitigating issues.

In response to these challenges, our research focuses on
log-driven intelligent software reliability engineering. The chal-
lenges we address include high variety, rapid evolution, insuf-
ficient datasets, and inaccurate logging statements, which span
the two stages of logs: logging statements and log files. Tackling
these challenges ensures software reliability from different an-
gles, each aligning with a traditional Software Reliability Engi-
neering (SRE) solution. Firstly, improving the quality of logging

statements during the software development phase aligns with
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fault prevention in traditional SRE. Secondly, enabling effective
log analysis during the software operation phase corresponds to
fault tolerance in traditional SRE.

Figure outlines the structure of log-driven automated
software engineering studies in this thesis, encompassing both
proactive logging statement generation during software develop-
ment and reactive log analysis during software operations. The
figure lays out our solutions, which are divided into four parts.
First, we introduce the first semantic-aware log parser for soft-
ware operations. This parser not only extracts log events but
also emphasizes the significance of runtime parameters in log
messages, examining their role in software failure analysis. Sec-
ond, we develop an anomalous log localizer that automatically
identifies anomaly logs during software runtime. This algorithm
remains effective throughout software evolution, reducing the
training cost for frequently updated software. Third, we intro-
duce AutoLog, a log sequence synthesizer designed to generate
log sequences that supplement existing log-based anomaly de-
tection datasets. This approach addresses the challenge of in-
sufficient training log data by actively generating log sequences
that cover a wide range of system behaviors, based on program
analysis. Finally, we conduct an empirical study on LLM-based
logging statement generation models. We focus on two criti-
cal evaluation aspects: the effectiveness of log generation and
the generalizability of the models to unseen code. This study

identifies key factors influencing model performance, providing
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insights for future researchers to develop large language models

(LLMs) as intelligent logging assistants.

1.2 Thesis Contributions

In this thesis, we make the following contributions toward

log-centered software reliability engineering.

1. A semantic-aware log parser for software opera-
tions.
Before obtaining more insights about the run-time status
of the software, a fundamental step of log analysis, called
log parsing, is employed to extract structured templates
and parameters from the semi-structured raw log messages.
However, existing log parsers treat each message as a mere
character string, overlooking the semantic information em-
bedded in the parameters and templates. To address this,
we introduce SemParser [[11], which consists of two main
components: a semantic miner and a joint parser. To
evaluate the effectiveness of our semantic parser, we first
demonstrate its ability to extract high-quality semantics
from log messages collected from seven widely used sys-
tems. Next, we perform two representative downstream
tasks, showing that current techniques enhance their per-
formance in anomaly detection and failure diagnosis when

they utilize appropriately extracted semantics.
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2. An anomalous log localizer over software evolution.
Given that software can generate a vast amount of logs
daily, automatically distinguishing anomalous logs from
normal ones is a critical challenge for engineers. While
existing methods reduce the burden on software maintain-
ers, they rely on a flawed yet crucial assumption: that log-
ging statements remain unchanged. However, as software
evolves, our empirical study identifies three resulting chal-
lenges from software evolution: log parsing errors, evolving
log events, and unstable log sequences. In this chapter, we
introduce a novel unsupervised approach called Evolving
Log Analyzer (EvLog) [12] to address these issues. EvLog
has demonstrated its effectiveness on two real-world system
evolution log datasets, achieving average F'1 scores of 0.955
and 0.847 in intra-version and inter-version settings, respec-
tively. This performance surpasses that of other state-of-

the-art methods by a wide margin.

3. An automatic log sequence synthesizer.
Although existing log datasets are available for anomaly
detection, they have limitations regarding the comprehen-
siveness of log events, scalability across diverse systems,
and flexibility in log utility. To overcome these limita-
tions, we introduce AutoLog [13], the first automated log
synthesis methodology for anomaly detection, leveraging

program analysis. AutoLog begins by identifying compre-
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hensive logging statements associated with an application’s
call graphs. It then constructs execution graphs for each
method, pruning the call graphs to identify log-related ex-
ecution paths in a scalable manner. Finally, AutoLog as-
signs anomaly labels to each identified execution path based
on expert knowledge. Experiments conducted on 50 popu-
lar Java projects reveal that AutoLog captures significantly
more (92-58x) log events than existing log datasets from
the same systems and generates log messages much faster
(15x) using a single machine compared to existing passive
data collection methods. Furthermore, we demonstrate Au-
toLog’s practicality by showing that it enables log-based
anomaly detectors to achieve better performance (1.93%)

compared to using existing log datasets.

4. An empirical study on LLM-based logging state-
ment generation.
Automated logging statement generation supports devel-
opers in documenting critical software runtime behavior.
With the significant advancements in natural language gen-
eration and programming language comprehension, LLMs
hold the potential for generating logging statements, yet
this area remains unexplored. To fill this gap, this chapter
presents the first study exploring LLMs for logging state-
ment generation. We build a dataset, LogBench, consisting

of two parts: (1) LogBench-O, containing 3,870 methods
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with 6,849 logging statements collected from GitHub repos-
itories, and (2) LogBench-T, featuring transformed unseen
code from LogBench-O. Using LogBench, we evaluate the
effectiveness and generalization capabilities of eleven top-
performing LLMs, ranging from 60M to 175B parameters.
Our study yields eight findings and five implications, offer-
ing practical advice for future logging research. Our em-
pirical analysis highlights the limitations of current logging
approaches, demonstrates the potential of LLM-based log-
ging tools, and provides actionable guidance for developing

more effective models.

1.3 Thesis Organization
The remainder of this thesis is organized as follows.

o Chapter : Background review
In this chapter, we review background knowledge and re-
lated work on the log lifecycle in system reliability engi-
neering, encompassing automated log analysis and logging
statement generation. First, we provide a brief introduc-
tion to logs as system runtime data, highlighting their role
in performance monitoring and software operations. We
then delve into the fundamental step of log parsing for log
analysis and examine related work in Section @ Follow-

ing this, we discuss the widely studied task of log-based
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anomaly detection in Section . Finally, we explore ap-
proaches for generating logging statements automatically

based on code context in Section @

o Chapter @: Semantic-aware log parser
Log parsing is essential for automated log analysis as it con-
verts unstructured log messages into structured log events.
Chapter B addresses the limitations of existing log parsers,
such as their lack of semantic awareness and the poten-
tial negative impact on subsequent log analysis. To over-
come these limitations, we introduce SemParser, the first
semantic-aware log parsing framework. Specifically, Sec-
tion El] covers the basics of log parsing and our moti-
vation for incorporating semantic parsing. Sections @
and present the problem definition and our method-
ology, respectively. The evaluation results are detailed in
Section @, followed by a discussion of threats to validity

in Section @ Finally, we summarize the chapter in Sec-

tion E?l

e Chapter @: Anomalous log localizer for software
evolution
This chapter introduces EvLog, an anomalous log localiza-
tion framework designed for evolving software. The core
technique of EvLog is an event alignment mechanism that

encodes paraphrased log messages similarly to the origi-
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nal ones. By representing each log in this manner, they
can be compared with normal patterns to detect devia-
tions (anomalies). Specifically, Sections {.1] and ¥.2 discuss
the motivation for developing a log localizer for evolving
software systems. Section defines the problem, while
Section Q outlines the design of EvLog. We evaluate its
performance in Section @ and provide a case study in Sec-

tion @ Finally, we conclude the chapter in Section @

o Chapter E: Log sequence synthesis for anomaly de-
tection
This chapter presents a log sequence synthesis framework
for log-based anomaly detection. The comprehensiveness
of the log dataset has been a gap between the lab-collected
dataset and the data from real-world complicated software.
To this end, we develop the first log sequence synthesis
framework, namely AutoLog, that could actively analyze
the program and generate simulated log sequences with-
out executing the program. In particular, Section and
Section illustrate the motivation of synthesizing log se-
quences for anomaly detection. Section includes the
framework design of AutoLog. We present the evaluation
of AutoLog in Section @ and discussion in Section @

Lastly, we summarize this chapter in Section @

o Chapter @: Evaluation study on LLM-powered log-

ging statement generation
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This chapter presents an empirical study on the perfor-
mance of LLMs in logging statement generation tasks, in-
cluding their ability to predict log levels, log variables, and
log texts. We collect the benchmark named LogBench, in-
cluding one dataset LogBench-O for evaluating LLMs’ ef-
fectiveness and another dataset LogBench-T for evaluating
their generalizability on unseen code. In particular, Sec-
tion illustrates our motivation for this empirical study.
Section reviews the existing approaches for generating
logging statements. Section @ describes how we develop
the benchmark LogBench. Upon the experiments, we draw
eight findings in Section @ and five implications in Sec-
tion @ for future researchers and developers. Section @

concludes this chapter in the end.

o Chapter B: Conclusion and Future Work
The final chapter summarizes this thesis in Section [7.1] and

outlines three future research directions in Section .

To ensure each chapter is self-contained, we may briefly re-
iterate key aspects such as basic concepts, problem motivations,

and model definitions in various chapters.

O End of chapter.



Chapter 2

Background Review

This chapter offers a concise overview of foundational con-
cepts related to log utility in both runtime operations and soft-
ware development, which underpin our research. Initially, we
discuss system runtime data with a particular emphasis on sys-
tem logs. The subsequent part is further divided into three main
subsections, each addressing a specific problem examined in this
thesis. These are: (1) Log parsing (Section @), (2) Log-based
anomaly detection (Section @), (3) logging statement genera-
tion (Section @) Each subsection begins with a description of
the relevant research field, followed by a problem description and
a review of existing literature. Figure depicts the taxonomy

of prior research works presented in this paper.

2.1 System Runtime Data

Runtime data is generated by systems or programs while

in operation. In today’s environment, characterized by com-

14
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Figure 2.1: The taxonomy of log-related techniques in this thesis.

plex, large-scale systems like Amazon and Alibaba Cloud, these
systems are operational around the clock to cater to millions
of global customers via the internet. The reliance on software
hosted by such online services means that even minimal down-
time can lead to significant revenue losses for both service providers
and users. Furthermore, the complexity and scale of modern
systems make them prone to operational failures, such as node
failures, highlighting the need for effective software reliability
management.

To manage software reliability, engineers need to monitor
the system’s runtime status continuously, detect anomalies, and
rectify operational issues swiftly. System runtime data, often
the only source available for such analysis, is critical for these
jobs.

Runtime data can be categorized into metrics, topologies,
and logs. Metrics are standardized measurements of system
performance, including parameters like service response times
and CPU usage. Topologies represent graphical representations

within cloud systems, detailing the interactions and dependen-
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cies among various system components. Logs, on the other
hand, are semi-structured textual records that document crit-
ical events and operations during system runtime. Of these cat-
egories, logs are typically the most prevalent and crucial because
of two factors: first, logs provide contextual information that is
essential for diagnosing failures; and second, they record the
chronological behavior of the system, which is vital for tracking
the sequence of events leading up to certain actions.

Figure (Upper part) presents examples of raw log mes-
sages from Zookeeper’s running logs. Each log message com-
prises several elements: the log time, log level (e.g., INFO),
system components (e.g., NIOServerCxn.Factory), and the log
content itself. The log content can be further divided into two
segments: a static part authored by developers and a dynamic
part generated by the system. The static part offers a descrip-
tion of system behavior, while the dynamic part captures run-
time variables within the program. For instance, in the first
example log, the static part is “Client attempting to establish
new session at,” and the dynamic part is “/10.10.34.12:58913.”
In this thesis, we refer to the static part of a log message as
the "log event” and the dynamic part as either "parameters” or
"variables.” Additionally, unless specified otherwise, we use "log
message” or "logs” interchangeably to denote the log content.

With the rise of distributed systems and cloud computing,
log management has become increasingly challenging due to the

stringent requirements for reliability assurance and the sheer
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Raw Logs

1 2015-08-20 17:24:06,873 - INFO [NIOServerCxn.Factory] - Client attempting to establish new session
at /10.10.34.12:58913

2 2015-08-20 17:24:07,582 - INFO [NIOServerCxn.Factory] - Accepted socket connection from
/10.10.34.18:36934

3 2015-08-20 17:24:07,816 - INFO [CommitProcessor] - Established session ©x14f4a6318b80013 with
negotiated timeout 10000 for client /10.10.34.20:43137

4 2015-08-20 19:02:23,456 - INFO [CommitProcessor] - Established session ©x14f4a6318b80022 with
negotiated timeout 10000 for client /10.10.34.30:43272

5 2015-08-20 19:32:55,963 - INFO [NIOServerCxn.Factory] - Closed socket connection for client
/10.10.34.35:48997 which had sessionid 0x14f4a6318b80024

6 2015-08-20 19:33:02,860 - WARN [NIOServerCxn.Factory] - caught end of stream exception

Log Events Parameters

1| Client attempting to establish new session at <*> 1| /10.10.34.12:58913
2| Accepted socket connection from <*>

2| /10.10.34.18:36934
3| Established session <*> with negotiated timeout

<*> for client <*> 3| 0x14f4a6318b80013, 10000, /10.10.34.20:43137

4| Established session <*> with negotiated timeout

<*> for client <*»> 4| 0x14f4a6318b80022, 10000, /10.10.34.30:43272

5| Closed socket connection for client <*> which had 5| /10.10.34.35:48997, 0x14f4a6318b80024
sessionid <*>
6| NIL

6| caught end of stream exception

Figure 2.2: Examples of log parsing.

volume of log data. Numerous studies have addressed these
challenges by providing tools and methodologies for handling
extensive log data. For instance, Wei et al. [31] developed a
log compression and query tool named Loggrep that efficiently
structures and organizes log data into fine-grained units by lever-
aging both static and runtime patterns. Similarly, Yu et al.
[32] introduced a non-intrusive log reduction framework based
on eBPF (Extended Berkeley Packet Filter), which significantly
aids in managing log hotspots and diagnosing cascading fail-
ures. Another notable solution, FLAP [33], employs data min-
ing techniques in an end-to-end approach to assist log analysts

in investigating system status. In both industry and academia,
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the utilization of logs for system monitoring has gained great

attention for decades.

2.2 Log Parsing

In this section, we delve into the background knowledge of
log parsing. Log parsing is the process of converting unstruc-
tured log messages into structured log events. A log message
typically consists of free-form text that describes system activ-
ities. This text includes natural language written by software
developers and auto-generated variables during software execu-
tion. Figure illustrates the typical workflow for log analysis.
Most log mining algorithms, such as Support Vector Machines
(SVM), require structured input in the form of matrices. There-
fore, a fundamental step in automated log analysis is log pars-
ing. By transforming free-form log messages into structured log
events, also known as log templates, the data becomes more

adaptable for subsequent analytical modules.

2.2.1 Problem Description

Log parsing can be viewed as an information extraction
problem with the primary objective of differentiating log events
from variables. The input for a log parser is a sequence of log
messages L = ([; : i = 1,2,...) during system runtime, where
each log message [; can be represented as a sequence of tokens
li = (t; - 7 = 1,2,...). As illustrated in Figure , each log
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Log parsing
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lilii ¢

Figure 2.3: The overflow for log analysis.

message comprises a timestamp, log level, components, and log
content. While fields like timestamps typically follow standard-
ized formats, the log content is usually in a free-text format,
defined by developers through logging statements. The output
of a log parser is a sequence of log events £ = (E; :i = 1,2, ...)
and a sequence of parameters P = (P, : i = 1,2, ...) corresponds
to each log message.

For instance, in Figure , the log parser processes 6 lines
of raw logs and outputs corresponding sequences of log events
and parameters for each log line. After parsing, the third line
produces a log event “Accepted socket connection from < % >
and parameters “/10.10.34.18:36934”. Here, < % > acts as a
placeholder for the variable part. Different log messages can
share the same log events when they describe identical system
activities.

It is important to note that all log parsing methods pro-

posed in this thesis rely solely on the log messages as input and
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do not require any source code information. While log events can
naturally be extracted from source code using program analysis
and then mapped to log messages, this approach is often imprac-
tical in large-scale online services due to the use of third-party
libraries and security concerns that might render source code

inaccessible.

2.2.2 Literature Review

A series of data mining approaches are proposed for log
parsing, which can be further divided into three categories [2]:

frequent pattern mining, heuristics, and clustering.

Clustering-based log parsing

Some parsers approach log parsing as a clustering prob-
lem: Given a sequence of log messages L = (; : i = 1,2,...), a
clustering-based log parsing method groups them into a set of K
clusters C' = C1, (Y, ..., (.. Log messages within the same clus-
ter exhibit high similarities, whereas those in different clusters
have low similarities. After clustering, the log parsing method
extracts a single log template from each cluster, representing
the core event for all messages within that cluster. Various
clustering techniques can be employed, including hierarchical
clustering, density-based clustering (e.g., DBSCAN [34]), and
centroid-based clustering (e.g., KNN [B5]). Below are two spe-

cific examples:
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o LKE [14]: This method hierarchically clusters log messages
based on a weighted edit distance threshold determined by
a K-Means algorithm. Messages with distances below the
threshold are grouped together. Each resulting group is
then subdivided based on the positions of the least frequent

tokens, forming the final clusters.

o LenMa [15]: This algorithm encodes each log message into
a vector based on the length of each token. Log messages
with high cosine similarity in their word length vectors are
clustered together. LenMa also supports incremental up-
dates for new incoming logs, appending a message to an
existing cluster with the highest similarity or classifying it

into a new cluster if no sufficient similarity is found.

Frequent pattern mining

Some log parsers implement Frequent Pattern Mining (FPM) [36],
a traditional data mining technique used to uncover patterns
that appear above a certain support threshold [37]. These meth-
ods generally concentrate on two types of frequent patterns de-
rived from the fundamental characteristics of system logs: (1)
Token frequency: Most tokens occur infrequently, so frequently
occurring tokens are typically constants. (2) N-gram frequency:
There are often strong correlations between consecutive tokens
that appear frequently together. We will illustrate this approach

with two specific examples:
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o SLCT [16]: SLCT was an pioneering method in automated
log parsing. It determines whether a token is a variable or
a constant based on its frequency, assuming that frequent

tokens are constants.

o Prefix-Graph [17]: This method uses a probabilistic graph
to model sequences of consecutive tokens. Starting with a
directed acyclic graph, it iteratively merges branches with
similar frequent tokens. A template extraction algorithm

is then used to derive log events from the graph.

Heuristics-based approach

Some log parsers utilize heuristic algorithms or specific data
structures to encode logs and extract templates. The most com-
mon approaches include identifying the longest common subse-
quences (LCS) between log messages, developing parsing trees,
and extracting heuristic features for machine learning. Below,

we detail two such methods:

o Spell [19]: Spell actively identifies LCS between logs and
maintains an LCS map for already parsed logs. During
parsing, Spell searches this map to find the match with the

maximum LCS length for an incoming log message.

e Drain [20]: Drain employs a fixed-depth parse tree, where
each internal leaf node encodes specifically designed heuris-
tic filtering rules, such as word length and preceding tokens,

to streamline the parsing process.



CHAPTER 2. BACKGROUND REVIEW 23
2.3 Log-based Anomaly Detection

Anomalies can occur in running software systems, such as
online services, manifesting as node failures, connection errors,
disk full conditions, and unexpected outages. Anomaly detec-
tion aims to identify these abnormal system behaviors promptly,
playing a crucial role in managing failures in large-scale sys-
tems. Timely detection allows system developers and operators
to quickly pinpoint and resolve issues, thereby minimizing sys-
tem downtime.

Most unexpected anomalies are recorded in log files, but
error messages could be overwhelmed by normal log entries. To
alleviate the burden of manually inspecting log files, numerous
studies have focused on developing automatic log-based anomaly
detection techniques. By narrowing down log files to a small sub-
set that indicates anomalies, engineers can address these issues
more quickly. In the following sections, we provide an overview
of the background and related work on log-based anomaly de-

tection.

2.3.1 Problem Description

Log-based anomaly detection can be viewed as a binary
classification problem, where the goal is to categorize a small
sequence of log messages as either normal or anomalous. The
input to these anomaly detectors is a sequence of log messages

L=(;:i=1,2,...), and the output is the label for each subse-
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Figure 2.4: Framework of anomaly detection.

quence within L. Figure @ outlines the typical framework for
anomaly detection, which includes four main components: log
collection, log parsing, log partitioning and feature extraction,
and anomaly detection. The blue segment highlights the core
focus of the anomaly detection process.

Specifically, once each log message is represented by its log
template (through log parsing), the log partitioning step slices
the log sequence into log windows. In this step, timestamps
and identifiers (e.g., task ID, job ID) are commonly used to seg-
regate the original long log sequence (millions) into segments
(hundreds to thousands). The result is a series of log windows,
each containing a subsequence of log messages. Next, feature
extraction algorithms are applied to construct numerical fea-
tures from each log window. These features are then fed into

machine learning algorithms to determine whether a log win-
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dow contains anomalies. In practice, only the log windows that
indicate anomalies are forwarded to system maintainers for fur-
ther diagnosis, thereby reducing their workload and improving

efficiency.

2.3.2 Literature Review

A significant number of studies focus on log-based anomaly
detection, with many adopting learning-based approaches over
the past few decades. These methods build models from his-
torical data and can be broadly categorized into supervised and

unsupervised anomaly detection.

Supervised Log-Based Anomaly Detection

Supervised log-based anomaly detection requires that anomaly
labels in the training data be available in advance. This allows
the model to automatically learn features that help distinguish
abnormal samples from normal ones. Specifically, given an in-
put window W = (e, es, ...) containing log events e; and a cor-
responding label yy7, the supervised model is trained to perform
binary classification by maximizing the conditional probability
distribution P(y = yw|W). The main efforts in developing su-
pervised log-based anomaly detection models focus on two as-
pects: (1) feature extraction, and (2) designing appropriate ma-
chine learning algorithms to work with the numerical features.

Here, we illustrate two methods:
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o LogRobust [23]. To accommodate the evolving log events
and sequences during the software development process,
LogRobust encodes log templates using TF-IDF scores, and
then applies an attention-based bi-LSTM network for anomaly
detection. The attention mechanism enables the model to

learn the relative importance of different log events.

o Transformer-based [24]. The approach utilizes the Trans-
former encoder [38] to encode log windows with a multi-
head self-attention mechanism to detect anomalies in logs.
This allows the model to capture contextual information

effectively.

Unsupervised log-based anomaly detection

In some cases, acquiring labels for anomaly detection is
labor-intensive, necessitating the use of unsupervised log-based
anomaly detection methods. Instead of performing classification
like supervised models, unsupervised models focus on forecasting
subsequent log events based on previous log sequences. The
fundamental assumption behind unsupervised methods is that
logs generated during normal system operations exhibit stable
patterns. When an anomaly occurs, these normal log patterns
are disrupted, such as by the appearance of error logs, changes
in the order of log events, or premature termination of stable
patterns. By learning these normal patterns, any deviation from

them can be identified as an anomaly.
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Specifically, given an input window W; = (€t—m, €t—ms1, ---, €t—1)
and the next log event following the input window e;, the model
aims to learn a conditional probability distribution P = (e; =
e;|W) for all e; in the set of log events F = ey, es,...,e, [39].

Here, we demonstrate two methods:

o DeepLog [40]. It uses a forecasting-based approach that
predicts the next log event based on preceding event ID se-
quences via LSTM. Anomalies are detected based on pre-
diction discrepancies, making this approach a pioneering

unsupervised one in the community.

« LogAnomaly [26]. This approach takes into account the se-
mantic information of logs by introducing a template2Vec
distributed representation to encode words in log templates.
Template2Vec distinguishes between synonyms and antonyms,
ensuring that words like “success” and “fail” have distinct

meanings. It is also a forecasting method.

2.4 Logging Practices

Log analysis relies heavily on high-quality logging state-
ments embedded in the source code. Engineers can only use
this information to investigate root causes if the printed logging
statements accurately describe system behavior and failure de-
tails. In addition to supporting software operations, logging is

also widely used during various phases of the software lifecycle,
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including testing [41] and debugging [42].

While developers theoretically have the option to log every
event (e.g., every exception), doing so can degrade the efficiency
and effectiveness of a program. Conversely, missing logging in-
formation can obscure runtime failures, complicating the diag-
nosis process. To maintain a balance between the quantity and
quality of logging statements, developers strategically insert log
statements, specify appropriate log levels (e.g., error, debug,
info), and craft concise yet informative text messages. Despite
having expertise, determining where and what to log remains a

challenging task for developers.

2.4.1 Problem Description

Most studies on logging practices focus on the automatic
suggestions on logging statements, treating it as a non-functional
code line completion problem. Logging practices can be divided
into two key tasks: determining where to log and what to log.
(1) Where-to-log: Given a piece of code (typically a function),
the model predicts which line should have a logging statement
inserted. (2) What-to-log: Given code snippets (typically a
function) and a specific line, the model is asked to complete
the full logging statement, including log level, variables, and log
events. Figure @ illustrates an example for each of these tasks.

The structure of logging statements naturally makes log-

ging generation a task that combines code comprehension and



CHAPTER 2. BACKGROUND REVIEW 29

Code snippets without logging practices

public void handleEvent(Event event){
String path = event.getProperty(PATH);
if (PATH != null) {
String includePath = PATH

@ Logging point

What-to-log

Where-to-log

public void handleEvent(Event event){ public void handleEvent(Event event){
String path = event.getProperty(PATH); String path = event.getProperty(PATH);
<Logging Line> + log.debug(“Reload received for path:” + path);
if (PATH != null) { if (PATH != null) {
String includePath = PATH String includePath = PATH
Predicting logging points Suggesting logging statements

Figure 2.5: Example of where-to-log and what-to-log.

text generation. However, unlike typical code completion tasks,
generating logging statements presents two unique challenges:
(1) inferring critical runtime statuses of the software and (2)
creating complex text that seamlessly integrates both natural

language and code elements.

2.4.2 Literature Review

A number of studies in logging practices aim to provide au-
tomatic logging suggestions for developers during programming.
These studies can be broadly categorized into two types: decid-
ing the contents of logging statements (what-to-log) and recom-

mending appropriate locations for logging statements (where-to-

log).
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Where-to-Log

Where-to-log studies focus on suggesting optimal logging
points in the source code [43, 44]. Excessive logging can increase
unnecessary effort in development and maintenance, while insuf-
ficient logging can miss key information needed for system diag-
nostics [45, B]. Existing research on where-to-log concentrates on
understanding code structures to automate log placement. Pre-
vious studies address log placement in specific code constructs,
such as catch blocks [46], if statements [46], and exceptions [47].
Li et al. [43] propose a deep learning-based framework to sug-
gest logging locations by fusing syntactic, semantic and block
features extracted from source code. The most recent model in
T5 architecture, LANCE [30], provides a one-stop logging state-
ments solution for deciding logging points and logging contents

for code snippets.

What-to-Log

What-to-log studies are interested in producing concrete
logging statements, which include deciding the appropriate log
level (e.g., warn, error) [48, 27, 49], choosing suitable variables [28,
50, 51], and generating proper logging text [30, 29]. For exam-
ple, ordinal-based neural networks [48] and graph neural net-
works [27] have been applied to learn syntactic code features
and semantic text features for log-level suggestions. LogEn-

hancer [51] aims to ease the burden of failure diagnosis by in-
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serting causally-related variables into logging statements using
program analysis techniques, whereas Liu et al. [28] predict log-
ging variables for developers using a self-attention neural net-

work to learn tokens in code snippets.

O End of chapter.



Chapter 3

Semantic-aware Log Parser

3.1 Introduction

A log message is a type of semi-structured language com-
prising a natural language written by software developers and
some auto-generated variables during software execution. Since
most log analysis tools require structured input, the fundamen-
tal step for automated log analysis is log parsing. Given a raw
log message, a log parser identifies a set of fields (e.g., verbosity
levels, date, time) and the message content, which is then repre-
sented as structured event templates (i.e., constants) with corre-
sponding parameters (i.e., variables). For example, in Figure
(up), the template “Listing instance in cell <*>” describes the
system event, and “949e1227” serves as the parameter corre-
sponding to the placeholder “<*>" in the template.

Despite the challenges associated with automatic log pars-
ing, researchers have made significant progress. For instance,

SLCT [16] and LFA [52] create log templates by counting his-

32
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Figure 3.1: Difference between syntax-based parsers and semantic-based
SemParser. Logs are sampled from OpenStack.

torically frequent words. Logram [53] focuses on frequent n-gram
patterns. LogSig [54] and SHISO [55] encode logs based on word
pairs and word length, respectively, and then apply clustering
algorithms for partitioning. Prefix-Graph [17] uses a probabilis-
tic graph approach for parsing. The most widely-used parser in
industry, Drain [20], constructs log templates by traversing leaf
nodes in a tree structure. However, we argue that all current
parsers are syntaz-based, relying on superficial features such as
word length, log length, and frequency. These parsers have lim-
ited capability for high-level semantic understanding. In this
chapter, we categorize these limitations into a three-level hier-
archy to better analyze and address the shortcomings of existing
log parsing methods.

The first limitation is the inadequate attention to individ-
ual informative tokens. For instance, in the first log shown in
Figure , the parameter “949e1227” and technical terms like
“cell” are far more noteworthy compared to prepositions such as

“in.” Syntax-based log parsers only differentiate between param-
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eters and templates, treating each log message as a sequence of
characters without considering the significance of technical con-
cepts. Previous research [56] has shown that technical terms and
topics in logs are informative when examining six large software
systems. Therefore, both parameters and domain-specific terms
should be localized to enhance log comprehension.

Secondly, the semantics within a message should be high-
lighted. While humans rarely use digits or character strings
(like “949e12277) in everyday communication, these parameters
in log messages are crucial and carry specific meanings. Un-
fortunately, syntax-based parsers regard each parameter as a
meaningless character string. Intuitively, a parameter in a log
is used to specify another technical concept within the same log.
For example, in the first log of Figure B.1, the token 79491227
is understood to refer to “cell,” making “949e1227” a cell ID. Ex-
ploiting such intra-message semantics can significantly improve
the understanding of parameters.

Thirdly, the semantics between messages are often over-
looked. All previous parsers process each log message indepen-
dently, ignoring the relational context between them. However,
historical logs can provide domain knowledge about a param-
eter, helping to resolve the implicit meanings of the same pa-
rameter in subsequent logs. In Figure Ell, although the second
log does not explicitly disclose the semantics of the parameter
“949e1227,” we infer it refers to a cell based on the informa-

tion provided in the first log. Since parameters rarely appear in
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daily language, understanding their semantics in log messages
is inherently different from comprehending common language,
highlighting the importance of mining these semantics from logs.

Some studies have recognized the aforementioned limita-
tions and have attempted to address them. For instance, LogRo-
bust [23] assigns weights to each token based on its TF-IDF
value when encoding logs, aiming to highlight informative to-
kens. While this approach tends to assign higher weights to
rare words, common technical terms can also be illuminating
and should not be overlooked. For semantic mining, several ap-
proaches like Drain [20], LKE [14], MoLFI [57], and SHISO [55]
use regular expressions to recognize block IDs, IP addresses,
and numbers when parsing HDFS datasets. However, creating
handcrafted rules is a tedious process and can become impracti-
cal during system migrations. It is nearly impossible to account
for all potential scenarios, so these rules can only cover a lim-
ited portion of the logs. Furthermore, these regular expressions
struggle to distinguish between polysemous parameters. For ex-
ample, the variable ”200” could refer to an HI'TP status code
if the system makes REST API calls, but it might also repre-
sent a thread identifier (TID) in Spark. Moreover, text mining
approaches [58, 9] that are effective in human language under-
standing fail to grasp the specific meanings of variables in log
messages. As illustrated in the last log in Figure , serious
information omissions and misinterpretations of erroneous sta-

tus codes, such as ”500,” can accumulate, complicating further
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anomaly detection tasks. This accumulation ultimately hinders
the aim of preventing incidents and ensuring system reliability.
This highlights the need for more sophisticated techniques that
can accurately parse and understand the semantic context of
logs, thereby improving the overall efficiency and effectiveness
of log-based anomaly detection.

To address the aforementioned complex yet critical limi-
tations, we introduce a novel semantic-based log parser, Sem-
Parser. This is the first work aiming to parse logs by focusing
on their semantic meanings. We begin by defining two levels
of semantic granularity in logs: message-level and instance-level
semantics. Message-level semantics involves identifying tech-
nical concepts (e.g., "cell”) within log messages (highlighted in
Figure ), while instance-level semantics concerns understand-
ing what the instance (e.g., parameters) describes. To achieve
this, we design an end-to-end semantics miner and a joint parser.
This system can not only recognize the templates of given logs
but also extract explicit semantics within a log and uncover
implicit inter-log semantics. Specifically: (1) The end-to-end
semantics miner is designed to identify the semantics of log mes-
sages (e.g., concepts like “instance” and “cell”) and the explicit
semantics of instances (e.g., “949e1227” as a “cell ID”). This
step allows us to capture noteworthy tokens and explicit pa-
rameter semantics, addressing the first and second limitations,
respectively. (2) The joint parser then infers the implicit seman-

tics of parameters using domain knowledge acquired from prior
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logs, thereby overcoming the third limitation of missing inter-
log relations. Figure illustrates the key distinctions between
syntax-based parsers and the proposed SemParser. Explicit se-
mantics are highlighted in yellow, while implicit semantics are
highlighted in green. Not only does SemParser serve as an accu-
rate log-template extractor, like existing syntax-based parsers,
but it also provides additional structured semantics. This en-
riches the information available for downstream analysis, en-
hancing overall system diagnostics and anomaly detection.

We conduct an extensive study to evaluate the performance
of SemParser on six system log datasets from two perspectives:
(1) the effectiveness of semantic mining, and (2) its impact on
two typical downstream log analysis tasks. The experimental
results demonstrate that our approach can capture semantics
with high accuracy, achieving an average F1 score of 0.985 in
semantic mining. Additionally, SemParser outperforms state-
of-the-art log parsers, with an average improvement of 1.2%
and 11.7% on two anomaly detection datasets and an 8.65% en-
hancement on a failure identification dataset. These compelling
results highlight the superiority of SemParser and underscore
the critical importance of semantics in log analytics, particularly
given the increasing complexity of modern software systems.

In summary, the contribution of this chapter is threefold:

o To the best of our knowledge, SemParser is the first semantic-

based parser capable of actively capturing both message-
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level and instance-level semantics from logs, while also col-

lecting and leveraging domain knowledge for parsing.

o We evaluate SemParser in terms of its semantic mining ac-
curacy on six system logs, demonstrating that our frame-

work can effectively extract semantics from logs.

o We apply SemParser to the tasks of failure identification
and anomaly detection. The promising results reveal the

critical importance of semantics in the field of log analytics.

3.2 Problem Statement

This chapter focuses on parsing logs with respect to seman-
tics, which could further be decoupled into message-level seman-
tics and instance-level semantics. Message-level semantics are
defined as a set of concepts (i.e., technical terms) appearing in
log messages, such as “cell”. We use the term instance l to de-
note variables in log messages, then the instance-level semantics
are represented by a set of Concept-Instance pairs (CI pairs),
which describe the concept that the instance refers to, such as
(cell, 949e1227). A Domain Knowledge database maintains a
list of detected CI pairs from historical logs. After obtaining
instances, concepts and CI pairs from a log message, we replace
the instances with their corresponding concepts and name the

new message as conceptualized template.

!The term “instance” is rather closed to the “parameters” or “variables” in the syntax-
based parser. One concept can be instantiated by multiple instances.
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Figure 3.2: The pipeline of SemParser.

The semantic parser task can be regarded as follows. Given

a log messageﬂ, the structural output is composed of a conceptu-

alized template T, a set of C'I pairs C'I = {(co,ip), .-,

as well as other orphan concepts OC' = {ocy, ...,

instances O = {oi, ..

other.

(Cn; Zn)}a

ocj} and orphan

.0t} which cannot be paired with each

2The log message refers to log content without fields in this chapter by default.
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3.3 Methodology

3.3.1 Overview of SemParser

Our framework consists of two main components: an end-
to-end semantics miner and a joint parser. Figure @ provides
an example to illustrate how our framework processes log mes-
sages. To begin with, log messages are sent to the semantics
miner to extract template-level semantics (i.e., concepts) and
explicit instance-level semantics (i.e., explicit CI pairs) from
each log message independently. This step directly addresses
the first two challenges mentioned earlier. Any new explicit CI
pairs identified are added to the Domain Knowledge database
to keep the knowledge base updated. Additionally, instances in
log messages are retained to uncover potential implicit semantics
using domain knowledge, thus addressing the challenge of miss-
ing inter-log relations. Subsequently, the joint parser processes
the outputs from the semantics miner, focusing on inferring im-
plicit semantics with the assistance of domain knowledge. The
newfound implicit instance semantics, combined with the ex-
plicit semantics, form the comprehensive instance-level seman-
tics, referred to as CI pairs. Remaining concepts and instances
that cannot be paired are stored separately as orphan concepts
and orphan instances, respectively. Additionally, conceptual-
ized templates are generated by replacing instances with their
corresponding concepts (if available) or with placeholders such

as “<*>"” otherwise.
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Figure 3.3: The architecture of semantics miner.

The final structured output of SemParser consists of con-
ceptualized templates, CI pairs, orphan concepts, and orphan
instances. As the foundational step for log analysis, SemParser
facilitates a wide range of downstream log analysis tasks. The
subsequent two subsections will provide detailed explanations of

the semantics miner and the joint parser.

3.3.2 End-to-end semantics miner

Semantics miner aims to mine semantics on both the instance-
level and the message-level. To acquire a set of explicit concepts,
instances , and CI pairs within a log message, we model the task
into two sub-problems: finding CI pairs and classifying each to-
ken into a type in {concept,instance,none}. As shown in Fig-
ure , an end-to-end model with three modules is proposed to
solve the two sub-tasks simultaneously. First, a log message is
fed into a Contexrtual Encoder for acquiring context-based word

representation. Then, the contextualized words are separately
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used in Pair Matcher and a Word Scorer for extracting CI pairs
and determining the type of each word, respectively. As the
total loss is the sum of the Pair Matcher loss and Word Scorer
loss, the model is forced to learn from both sub-tasks jointly.

We elaborate on the details of the three modules as below.

Contextual encoder

Intuitively, log messages can be regarded as a special type
of natural language due to its semi-structured essence of mixing
unstructured natural language and structured variables.

Motivated by the success of long short-term memory net-
works (LSTM) across natural language processing tasks [60]
(e.g., machine translation, language modeling), we design an
bi-directional LSTM-based network (bi-LSTM) [61] to capture
interactions and dependencies between words in log messages.

However, it is not practical to directly feed the word em-
beddings into the LSTM network because of the severe out-of-
vocabulary (OOV) problem, which is due to the large portion
of customized words in log messages (e.g., function names, cell
ID, request ID), resulting drastic performance degradation. To
solve the problem, we devise two additional features associated
with word representations. Firstly, inspired by previous find-
ings that character-level representation helps exploit sub-word-
level information [62], we adapt a Convolution Neural Network
(CNN) to extract character-level features of each word. Sec-

ondly, following several studies [63, 64] that leveraged local fea-
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tures for sequential representations, we also deliberate a set of
local features for each word concerning its shape, length, and
other morphological features.

The word representations word;, character representations
char;, as well as the local features filocal , are concatenated as
word features and fed into the bi-LSTM indicated in Equa-
tion . Afterward, the hidden state of bi-LSTM is used as

the contextual embedding for each word.
m; = LSTM ([word;; char;; f1°°) (3.1)

Pair matcher

This module is designed for acquiring explicit instance-level
semantics. Numerous studies focus on identifying key elements
in texts and classifying them into several categories by assigning
each word into one of the pre-defined categories. For example,
the combination of bi-LSTM and Conditional Random Field
(CRF) is deployed to identify 100 log entities (e.g., IP address,
identifier) in log messages [65], or uncover 20 software entities
(e.g., class name, website) in software forum discussions [66].
However, such token classification-based framework relies on a
closed-world assumption that all categories are known in ad-
vance. The assumption makes sense when dealing with a specific
and small system with limited concepts. Unfortunately, it will
break down if we want to migrate the approach across software

systems, or the system we are facing is huge and sophisticated.



CHAPTER 3. SEMANTIC PARSER 44

To get over the closed-world assumption limitation, the
pair matcher is required to discern the (concept, instance) pairs
between words in a log message. We abstract this problem
as a multi-classifier problem: for each word w; in a sentence
S = wq,ws, ..., w,, the matcher determines what previous word
w;(0 < j < 14) does the word w; refer tof,

To achieve the goal, we rank the confidence score of each
word pair candidate (w;,w;),v0 < j < 4, which is determined
by a feed-forward neural network FFFFNN, as in Equation .

Y

Intuitively, if a word “is” exists between w; and w;, the pair
has a higher probability formed by the two words, so we con-
sider the interval context between the candidate pair (w;, w;) as
the average word embedding value between the pair, denoted
as contx; ;. In summary, we construct the pair-level features

H ;.m for scoring by concatenating contextual representation (i.e.,
m;, m;) obtained from last step, as well as the abovementioned

interval context contz; ;, as shown in Equation .

ScorePy(i,j) = FFNN(fI;") (3.2)
f??ir [my; mj; contw; ;| (3.3)

Figure B.3 shows a simple case for matching pair for the red
word ws. After acquiring contextual word representations from
the contextual encoder, we form the pair-level feature for each

word pair in {(ws, wy), (ws, ws3)...(ws, wy)}. These pair features

3We add a dummy word <TMP> (wg) to indicate the word does not refer to any of
the previous word in the message (e.g., in).
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will be scoring by a softmax function on top of a feed forward

neural network for loss computation.

Word scorer

Apart from the pair matcher, we also design a word scorer
to determine whether each token is a concept, instance or nei-
ther of both. The token’s category is crucial for two reasons.
First, the message-level semantics can be perceived via extracted
concepts. Second, we notice that some instance-level semantics
cannot be resolved via the pair matcher if the instance’s corre-
sponding concept does not occur in a single message (e.g., the
second log in Figure ), which we call implicit instance-level
semantics. In this case, we need to store the instances for fur-
ther processing. To this end, we devise the word scorer with a
feed-forward neural network F'F'N N, to learn the possibility of

three types for each token. The score is computed as follows:
ScoreM; = FFNNy(m;) (3.4)

Afterwards, the possibility of three categories will pass through

a softmax layer for normalization before computing loss.

Loss function

Multi-task learning (MTL) is a training paradigm that trains
a collection of neural network models for multiple tasks simulta-

neously, leveraging the shared data representation for learning
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common knowledge[67, 65]. The fruitful achievements of MTL
motivate us to train pair matcher and word scorer simultane-
ously by aggregating their losses. Therefore, the total cost of

semantics miner is defined as:

cost = Z CFELoss(P) + Z CFELoss(M;') (3.5)

where P/ and M, denotes the outputs of ScoreP; and ScorelM;
after passing a softmax layer, respectively. Here, we adopt Cross
Entropy Loss (i.e., CELoss) as the loss function due to its nu-
merical stability. By minimizing the cost, the model naturally
learns the pairs and the word types for each token with shared
contextual representations generated from bi-LSTM network.
In the inference, for each word, we regard the highest prob-

ability of its pairs and its type score as the final results.

3.3.3 Joint parser

The joint parser leverages concepts, instances, and CI pairs
obtained from the end-to-end semantics miner, as well as log
messages to deal with : (1) uncovering implicit instance-level
semantics using domain knowledge; and (2) semantic parsing

log messages. The next sections go into the specifics.

Implicit instance-level semantics discovery

We apply a novel domain knowledge-assisted approach to

resolve the implicit instance-level challenge of concepts and in-
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stances not coexisting in one log message. Naturally, suppose
we have recognized a CI pair in historical logs, then we are able
to identify the semantics of such instance in the following logs,
even though the following logs do not explicitly contain such
pair information.

The knowledge-assisted approach maintains a high-quality
domain knowledge database when processing logs by incorpo-
rating newly discovered CI pairs acquired from the semantics
miner. To guarantee the quality of the domain knowledge, we
only add the superior CI pairs, which are defined by if and only
if there is a concept and an instance in the predicted pair. The
joint parser examines whether the orphan instances have their
corresponding concepts in the high-quality knowledge base, to
uncover implicit CI pairs. As a result, fresh CI pairs of the log
messages are stored if found. In such a way, we merge the ex-
plicit CI pairs and new implicit CI pairs into the final CI pairs.
Details are in Algorithm .

Semantic parsing

As a semantic parser, SemParser is able to extract the tem-

plate for a given log message obeying two rules:

o For the instance in CI pairs, replacing the instance with

the token <concept> of its corresponding concept.

o For the orphan instances, replacing the instance with a

dummy token <*> as syntax-based parsers do.
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Algorithm 1 Implicit instance-level semantics discovery

Input: Log message M = my, ..., m,, instance indices I = [ig, ...i;], concept
indices C' = [cy, ...cx), explicit CI pair indices P = [(So,%0); -y (Su, tu)]
Output: Instances I’, Concepts C’, CI pairs P’
P =]
=
for all p such that p € P do
if p contains 1 instance cury and 1 concept cure then
DomainKnowledge.add(M [curc],M [cury])
I.REMOVE(cury)
C.REMOVE(cur¢)
end if
end for;
for all 7 such that i € I do
if FINDCONCEPTFROMDOMAINKNOWLEDGE(M [i]) then
P’.APPEND([newfound concept, MT[i]])
C’.APPEND(newfound concept)
I.REMOVE(17)
end if
: end for
: I' = INDEXTOWORD(I)
: ¢" += INDEXTOWORD(C));
: P += INDEXTOWORD(P)

e e S S G T = T o e T
© 0 TP TRy o

The rules are straightforward but reasonable. Compared
to other technical terms or common words, instances (e.g., ID,
number, status) are more likely to be variables in logging state-
ments automatically generated by software systems. As the re-
trieved template takes in concepts, we name it “conceptualized
template” instead of the vanilla template with only <*> repre-
senting parameters.

Finally, the conceptualized template, CI pairs, orphan con-
cepts, as well as orphan instances are the structured outputs

of our SemParser. The results are extensible for a collection of
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downstream tasks, and we will elaborate them later.

3.4 Tool Implementation

3.4.1 Dataset annotation

We implement the SemParser framework on a public dataset [6§]
containing log messages collected from OpenStack for training.
Considering that it is labor-intensive to annotate a large dataset
in a real-world scenario, we randomly sample 200 logs from the
dataset for human annotation, with the sample rate of 0.05%.
A practical model should be able to learn from a small amount
of data. The trained model from such data is named the “base
model” for further evaluation.

All annotation is carried out as follows. For each log, we
invite two post-graduate students experienced in OpenStack to
independently manually label: (1) whether a word is a concept,
instance, or neither of both; and (2) the explicit CI pairs within
a sentence. If the two students provide the same answer for one
log, the answer will be regarded as the ground-truth for train-
ing; otherwise another student will join them to discuss until a
consensus is reached. The inter-annotator agreement [69] before
adjudication is 0.881. Finally, we remove the sentences with-
out any CI pair annotation to mitigate the sparse data problem,

yielding 177 labeled messages for training the semantics miner.
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3.4.2 Pre-trained word embeddings

Although existing pre-trained word embeddings show the
large success in representing semantics of words, it is not appro-
priate for understanding logs. Log message is a very domain-
specific language, where the words have quite distinct seman-
tics from daily life. Hence, we train domain-specific word em-
beddings on a representative cloud management system, Open-
Stack corpus. The corpus is made up of 203,838 sentences
crawled from its official website. We train the pervasive skip-
gram model [70] on Gensim [71] for ten epochs and set the word

embedding dimension to be 100.

3.4.3 Implementation details

When implementing the model, we set the character-level
embedding dimension to be 30. We select the two-layer deep
bi-LSTM with a hidden size of 128. The model is trained for
30 epochsH with an initial learning rate of 0.01. The learning
rate decays at the rate of 0.005 after each epoch. It takes one
hour for training, and the trained model occupies only 25 MB.
SemParser runs 25 messages per second in a single batch and

single thread during inference.

4The model converges within 30 epochs.
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3.5 Evaluation

We evaluate SemParser from two perspectives, the ability
of semantic mining and the usefulness in downstream tasks, with

three research questions:

« RQ1: How effective is the SemParser in mining semantics

from logs?
o RQ2: How effective is the SemParser in anomaly detection?

o« RQ3: How effective is the SemParser in failure identifica-

tion?

3.5.1 Experiment details

RQ1-Semantic mining

Dataset. LogHub [[72] is a repository of system log files for
research purposes, which has been used by plenty of log-related
studies [73, B9, 74]. We manually label six representative log
files for semantic mining evaluation ranging from distributed,
operating, and mobile systems. The dataset has a total of six
different system log files with 12,000 log messages and 20,636
annotated CI pairs. Details are shown in Table , where #
Logs, # Pairs, # Temp., and Unseen denotes the number of log
messages, CI pairs, log templates, and the percentage of unseen
templates in the test set, respectively.

Settings. As SemParser is a semantic-based parser, we

consider its semantic mining ability for evaluating how effective
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Table 3.1: Statistics of dataset for semantic mining.

System type System ‘ #Logs ‘ #Pairs ‘ #Temp. ‘ Unseen

Mobile system | Android | 2,000 | 6478 | 166 | 82.8%
Operating system | Linux | 2,000 | 2905 | 118 | 86.8%
Hadoop 2,000 2,592 14 84.6%
HDFS 2,000 | 3,105 30 47.0%
Distributed system | OpenStack | 2,000 4,367 43 52.3%
Zookeeper | 2,000 1,189 50 75.9%

it is when mining instance-level semantics from log messages.
Specifically, given a log message, we report the correct propor-
tion of the model’s extracted CI pairs (Precision), the proportion
of actually correct positives extracted by the model (Recall), and
their harmonic mean (F1 score). As we hope the model could
learn semantics from small samples, we fine-tune the base model
(i.e., train from Section @) on a small dataset of 50 randomly
sampled logs for each system and evaluate the performance on

the remaining 1,950 logs.

RQ2-Anomaly detection

Dataset. We evaluate the anomaly detection performance
on two datasets. (1) We first follow the previous studies to
evaluate the HDF'S [10] dataset, which includes log messages by
running map-reduce tasks on more than 200 nodes. (2) The
second F-Dataset [68] is initially created for investigating soft-
ware failures by injecting 396 failure tests in major subsystems
of the widely used cloud computing platform OpenStack, cov-

ering 70% of bug reports in the issue tracker. For each failure
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Table 3.2: Statistics of anomaly detection datasets.

Dataset H #Message ‘ Anomaly rate
HDFS dataset || 11,175,629 3%
F-Dataset 1,318,860 0.22%

injection test, the authors all log data in major subsystems, the
labeled anomaly log messages, as well as the exception raised by
a service API call named as API Error, such as “server create
error”. Statistics of both datasets are shown in Table @

Settings. In the anomaly detection task, the detector pre-
dicts whether anomalies exist within a short period of log mes-
sages (i.e., session). Motivated by previous studies [8, B9], we de-
couple the anomaly detection framework into two components,
a log parser to generate templates, and a detection model to
analyze template sequences in a session. A dependable parser
should perform well as a foundational processor for log analysis,
regardless of the downstream detection model used. Our ex-
periments compare the performance of different baseline parsers
under various anomaly detection techniques.

Specifically, we compare SemParser to the following log
parsers as baselines: (1) LenMa [15]. This online parser en-
codes each log message into a vector, where each entry refers
to the length of the token. Then, it parses logs by compar-
ing the encoded vectors; (2) AEL [75]. This chapter devises
a set of heuristic rules to abstract values, such as “value” in

“word=value”; (3) IPLoM [76]. IPLoM partitions event logs
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into event groups in three steps: partition by the length of the
log; partition by token position; and partition by searching for
bijection between the set of unique tokens; (4) Drain [20]. It
leverages a fixed depth parse tree with heuristic rules to main-
tain log groups. Its ability to parse logs in a streaming and
timely manner makes it popular in both academia and indus-
try.

We also reproduce four widely-applied anomaly detection
models as follows: (1) DeepLog [25] employed a deep neural
network, LSTM, to conduct anomaly detection and fault local-
ization on logs, taking the context information into account; (2)
To handle the ever-changing log events and sequences during
the software evolution, LogRobust [23] detected anomaly de-
tection by an attention-based bi-LSTM network. The attention
mechanism allows the model to learn the different importance
of log events; (3) CNN [77] is also utilized to detect anomalies
in big data system logs inspired by its benefits in general NLP
analysis; and (4)Transformer. [24] detected anomalies in logs
via the Transformer encoder [38] with a multi-head self-attention
mechanism, allowing the model to learn context information.

When conducting experiments, we feed parsing results from
log messages into different models. Different from previous
work (25, 23, [77, 24] that only employs templates to form the
input sequence xg, x1, ..., ,, where x; refers to the ith message in
the sequence, we equip the sequence with extracted semantics.

Specifically, for each log message in the sequence, we concate-



CHAPTER 3. SEMANTIC PARSER 95

nate template, concepts, and instances as follows:

T = [template; < SEP >; semy; semy; ...; semy,] (3.6)

sem; = [concept;; instance;]. (3.7)

To specify the corresponding relationship within a CI pair, we
concatenate the concept and instance in sem;. Otherwise, an
<NIL> token replaces another half pair, indicating the orphan
situation. A special <SEP> token is used to separate the tem-
plate and semantics. Afterwards, the sequence zy, 1, ..., £, con-
taining m messages will be fed into the model for prediction.
Following previous anomaly detection work [25, 23, [77, 24], we

use Precision, Recall, and F'1 as the evaluation metrics.

RQ3—Failure identification

Dataset. While anomaly detection identifies present faults
from logs, failure identification looks deeper into the problems
and identifies what type of failure occurs. To make the F-
Dataset appropriate for failure identification, we utilize the la-
beled anomaly log messages and their corresponding API error
in each injection test as the input and ground-truth. Entirely,
we collect 405 failures with 16 different types of API errors.
With the splitting training ratio of 0.5, we obtain 194 and 211
failures for the train and test set, respectively. Typical API er-
rors include “server add volume error”, “network delete error”

and so on.
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Table 3.3: Sample log messages and ground-truth templates.

Log
GT-Template

After Scheduling: PendingReds:1 CompletedReds:0 ...
After Scheduling: PendingReds:<*> CompletedReds:0 ...

Log
GT-Template

TaskAttempt: [attempt_ 14451444] using containerld ...
TaskAttempt: [attempt <*>] using containerld ...

Settings. In this chapter, we formulate the failure identifi-
cation task as follows: given the anomaly log messages from one
injection test in F-Dataset, the model is required to determine
what API error emerges. Similar to the anomaly detection task,
we also compare the performance of different baseline parsers as-
sociated with several log analysis models (i.e., DeepLog, LogRo-
bust, CNN, and Transformer). The only difference is that we
change the node number of the last prediction layer of the above-
mentioned techniques from 2 to 16 to make it a 16-class classi-
fication task for 16 error types in the dataset.

Recall@k is widely used in recommendation systems to as-
sess whether the predicted results are relevant to the user(s) [78,
79]. Similarly, we are also interested in whether top-k recom-
mended results contain the correct API error. Hence, we report

the Recall@Qk rate as the evaluation metric.

Discussion—log parsing comparison

In this section, we discuss why we do not compare Sem-
Parser to other syntax-based parsers in the log parsing task
where only the templates and parameters are extracted. Firstly,

the ground-truth for log parsing is not suitable for the semantic
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parser. For the logs and their ground-truth templates shown in
Table with highlighted improper parts, we observe that “0”
is not a parameter but a token in the template, because the value
for “CompleteReds” is always “0” in 2000 logs in this template.
In contrast, “0” will be regarded as an instance in our model,
since “0” is used to describe “CompleteReds” semantically. Be-
sides, we show how different tokenizer affects the results in
the second example, where we consider “attempt 14451444” as
an instance for the concept “TaskAttempt”, but the syntax-
based log parsers only regard the number “14451444” as pa-
rameters, excluding the same prefix “attempt” This kind of
widely-present distinction occurs 817 times among 2000 logs in
the Hadoop log collection. As a result, it is unfair to com-
pare SemParser with syntax-based parsers in the log parsing
task. Instead, we investigate the semantic mining ability in the
first research question.

Secondly, log parsing is more of a pre-processing technique
for downstream applications rather than an application by itself,
and therefore, it will be more meaningful to concern about how
the log parsers promote performance in downstream tasks. For
example, if a developer wants to detect anomalies in overwhelm-
ing logs, the extracted templates and their parameters are not
what he/she needs, but the result from an automated anomaly
detection model is. From this perspective, we compare Sem-
Parser with four baseline parsers in two log analysis tasks to

demonstrate our semantic parser’s effectiveness. On the other
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hand, our approach could provide accurate log templates with
extra underlying semantics, so it would naturally promote gen-
eralized downstream tasks.

To conclude, SemParser is developed as a semantic-based
parser instead of a syntax-based parser, so the evaluation should
be related to its semantic acquisition ability and how the ac-
quired semantics benefit log analysis for downstream tasks in

an end-to-end fashion.

3.5.2 RQ1: How effective is the SemParser in mining

semantics from logs?

In this experiment, we focus on evaluating the explicit CI
pair extraction in the semantics miner as it serves as a vital step.
A high-quality domain knowledge database and further joint
parser process could be conducted if and only if the semantics
miner extracts high-quality explicit CI pairs from log messages.

Basically, mining the instance-level semantics from log mes-
sages is difficult to do with handcrafted rules. Taking logs in
Hadoop as examples, there are several ways to describe an in-

stance associated with one concept TaskAttempt:
o TaskAttempt: [attempt_ 14451444] using containerld ...
o attempt 14451444 TaskAttempt Transitioned from ...
o Progress of TaskAttempt attempt 14451444 is ...

The evaluation result across six representative system logs is
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Table 3.4: Experimental results of mining semantics from logs.

(a) Experiments for Android, Hadoop, and HDFS logs.

H System
Android Hadoop HDFS
Framework P| R | FL|P | R|FL|P|R]FI
SemParser 0.951 0.935 0.943 | 0.993 0.978 0.985 | 1.000 1.000 1.000
-w/o Fepar 0.981 0.909 0.943 | 0.988 0.953 0.970 | 1.000 0.998 0.999
-w/o Flocal 0.979 0.858 0.915 | 0.993 0.880 0.933 | 1.000 0.999 0.999
-w/o LSTM || 0.979 0.858 0.915 | 0.993 0.879 0.932 | 1.000 0.999 0.999
-w/0 Feonts 0.977 0.060 0.113 | 0.984 0.253 0.403 | 0.999 0.289 0.449

(b) Experiments for Linux, OpenStack, and Zookeeper logs.

H System
Linux OpenStack Zookeeper
Framework P| R | FL|P | R|FL|P|R]FI
SemParser 0.998 0.977 0.987 | 0.999 0.998 0.999 | 1.000 0.989 0.995
-w/o Fepar 0.995 0.957 0.976 | 0.995 0.989 0.992 | 0.993 0.987 0.990
- w/0 Flocal 0.992 0.947 0.969 | 0.994 0.989 0.992 | 0.997 0.940 0.968
-w/o LSTM || 0.995 0.909 0.951 | 1.000 0.963 0.981 | 0.966 0.953 0.959
- w/0 Feontx 0.999 0.242 0.389 | 1.000 0.256 0.407 | 0.842 0.197 0.319

99

presented in Table @ Since our work is the first to extract
semantics from logs, we do not set baselines for comparison.
Other general text mining techniques in the NLP field can only
extract keywords (e.g., LDA [58]), but they are not be capable of
extracting semantic pairs or parsing log messages to structured
templates. Instead, we conduct ablation studies to explore the
effectiveness of each element in the semantics miner, where w/o
Fenary W/0 Fiocar, w/o LSTM and w/o Fiope, refers to removing
the character-level feature, local word feature, LSTM network,
and interval context, respectively. The best F1 score for each
system is in bold fonts.

In conclusion, our model could extract not only high quality
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but also comprehensive instance-level semantics from log mes-
sages. We achieve an average F1 score of 0.985 for six systems
logs even though we only fine-tune the base model on 50 an-
notated samples and a large portion of templates are unseen in
the test set (the last column in Table ) The promising re-
sult indicates our framework has a powerful ability for capturing
semantics from log messages.

We attribute the outstanding concept-instance pairs min-
ing ability of SemParser to its comprehensive architectures. The
ablation experiments indicate that removing components de-
grade the performance in varying degrees. Firstly, to mini-
mize the impact of a large portion of unknown words (e.g., at-
tempt_ 14451444) to the model, we devise a character-level fea-
ture extraction convolutional network and a local feature extrac-
tion method since similar words are always composed of similar
character structures. For example, although attempt_ 14451444
is different from attempt 14415371, they share the same struc-
tures that the word “attempt” following by an underscore and
a sequence of numbers. Secondly, a recurrent network is de-
signed to capture the contextual representation for each word
in a sentence, since the same word may have various meanings
under different contexts. By removing the bi-LSTM network,
words in the sentence are equally regarded as a bag of words.
Thirdly, SemParser naturally learns the patterns between con-
cepts and instances by incorporating the interval context. For

instance, if a colon separates two words, the latter word is prob-
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ably an instance of the prior one, even if the latter one is an
unseen word. We find such interval context is quite important,
as a dramatic degradation is observed when we remove it. To
conclude, the experiment shows the superiority of the our model
by achieving an average F1 score of 0.985 across various system

logs.

3.5.3 RQ2: How effective is the SemParser in anomaly

detection?

To illustrate how SemParser benefits the anomaly detec-
tion task, we compare SemParser with four baseline parsers
on four different anomaly detection models, and the results are
shown in Table @ Each row represents the performance of four
anomaly detection models associated with the selected parser
for upstream processing. The last row (A) displays how much
our semantic parser outperforms the best baseline parser of F1
score, and the negative score indicates how the percentage of
ours performs lower than the best baseline.

In the base HDF'S dataset with only 31 templates, although
all parsers provide a good performance, we still observe that Sem-
Parser also outperforms syntax-based parsers by an average F1
score of 1.22% over four techniques. In the more challenging
F-Dataset, we observe that SemParser performs at rates ap-
proximately above ten percent overall baselines in the F1 score,

indicating its effectiveness and robustness across various mod-
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Log message | .. ""GET /v2.1/5250c/flavors"" status: 200 ...
C-Template | .. ""GET /<*>/<*>/flavors"" status: <*status*> ...
CI pairs [(status, 200), (project, 5250c)] @

Log message | Returning 500 to user ...

C-Template | Returning <*status*> to user ...

CI pairs [(status, 500)]  (X)

Figure 3.4: A case for anomaly detection.

els. It outperforms baselines regarding DeeplLog, LogRobust,
CNN, and Transformer by 11.80%, 10.17%, 8.27%, and 16.58%
respectively, with an average F1 score of 0.926. The results
on Precision, Recall, and F1 reveal the effectiveness of acquired
semantics from logs.

We attribute SemParser’s distinct superiority on its pre-
cision to the awareness of semantics we extract, particularly
instance-level semantics. Previous studies only use log template
sequences to detect anomalies automatically, suffering from miss-
ing important semantics. Taking a case in Figure @ as an
example, where C-Template refers to the conceptualized tem-
plates. The Cl-pairs are either extracted explicitly or implicitly
via a domain knowledge database. The green tick indicates a
normal log message, while the red cross stands for an anomaly
log. A service maintainer must understand that “status: 500"
returned by a REST API request reflects the internal server

error, while the “status: 200” means the request is successful
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Table 3.5: Experiment results for anomaly detection.

(a) HDFS Dataset.

63

Technique
DeepLog LogRobust CNN Transformer
Baseline P R Fl P R FI P R F1l P R F1
LenMa .897 .994 .943 914 .995 .953 924 .995 .958 .872 .908 .890
AEL .896 .994 .943 935 .996 .964 | .922 .995 .958 | .893 .904 .898
Drain 908 .994 .949 934 .994 .963 .925 .995 .959 .886 .871 .878
IPLoM .898 .994 .944 .940 .994 .966 | .926 .996 .960 | .889 .904 .896
SemParser || .940 .995 .967 | .954 .995 .974 | .931 .995 .962 | .881 .954 .916
A% | +1.86% | +0.82% +0.21% +2.00%
(b) F-Dataset.
Technique
DeepLog LogRobust CNN Transformer
Baseline P R FI P R F1l P R FI P R F1
LenMa 717 .938 .813 | .714 .924 .806 | .793 .815 .804 .685 .896 .776
AEL 738 .934 .824 791 .877 .832 747 924 826 | .503 .962 .660
Drain .824 .867 .845 .810 .886 .846 | .737 .943 .827 | .693 .919 .790
IPLoM .863 .833 .848 .808 .877 .841 .834 .834 .834 929 .683 .787
SemParser || .971 .927 .948 | .952 .913 .932 | .907 .899 .903 | .938 .904 .921
A% l +11.80% | +10.17% | +8.27% | +16.58%

based on ad-hot knowledge. In this way, the maintainer can
easily recognize that an API request fails if the return status
equals to 500. Similarly, feeding semantics like (“status”, “500”)
and (“status”, “200”) into the anomaly detection model forces
the model to learn the relation between “500” and “anomaly”
(or the relation between “200” and “normal”). As a result, the
model will not mistake a log containing a normal status (e.g.,
200) for an anomaly. The instance-level semantics also resolve
problems for unseen logs. Even if the model has never encoun-

tered the template before, it is able to correctly predict it as a

normal one according to a success status code, and vice versa.
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Table 3.6: Experimental results in failure identification task.

(a) Part 1
H Model
LSTM Atten-biLSTM
Baseline Rec@1 Rec@2  Rec@3 | Rec@l Rec@2  Rec@3
LenMa 0.839 0.924 0.953 0.858 0.943 0.957
AEL 0.844 0.919 0.953 0.853 0.915 0.962
Drain 0.844 0.919 0.972 0.863 0.938 0.953
IPLoM 0.848 0.943 0.957 0.863 0.948 0.962
SemParser 0.954 0.968 0.968 0.954 0.968 0.972
A% | +12.50% +2.65% -0.41% | +10.54% +2.11% +1.04%
(b) Part 2
H Model
CNN Transformer

Baseline Rec@l Rec@2 Rec@3 ‘ Rec@1 Rec@2 Rec@3

LenMa 0.877 0.962 0.967 0.919 0.934 0.948

AEL 0.810 0.905 0.929 0.858 0.929 0.953

Drain 0.867 0.948 0.967 0.853 0.919 0.943

IPLoM 0.867 0.967 0.986 0.839 0.910 0.948

SemParser 0.945 0.963 0.972 0.954 0.958 0.968

A% | +7.75% -0.42% -1.44% | +3.81% +2.46% +2.11%

Note that without the deliberately established CI Pairs, previ-
ous syntax-based parsers cannot distinguish the above normal

v.s. anomaly status.

3.5.4 RQ3: How effective is the SemParser in failure

identification?

This section demonstrates how effectively our semantic parser
enhances failure identification. The experimental results are
shown in Table @, where each row represents the performance

with the selected parser and several model architectures. The
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last row reveals how much SemParser increases the F1 score
when compared to the best baseline results. Given that there
are 16 types of API errors in F-Dataset, we report Recall@1, Re-
call@2, Recall@3 score, as we want the top-k suggested errors
to cover the real API error.

It is noteworthy that our semantic parser outperforms four
baselines by a wide margin, regardless of the analytical tech-
niques. We can observe that our parser surpasses others by
12.5%, 10%, 7.75%, and 3.81% for LSTM, Atten-biLSTM, CNN,
and Transformer in Recall@l1, respectively. In general, Sem-
Parser shows the promising Recall@1 score of 0.95, indicating
the effectiveness of semantics for failure identification.

The impressive performance can be attributed to several
reasons. Firstly, our parser can extract precise conceptual-
ized templates, serving as a basis for downstream task learning.
We extract conceptualized templates by replacing the instances
with their corresponding concepts while reserving all concepts
in the template, based on the observation that instances (e.g.,
time, len, ID) are more likely to be generated in running time.
The template number dramatically decreases after conceptual-
ization, giving the sequence of abstract log messages for primi-
tive learning.

Secondly, the instance-level semantics benefits failure iden-

tification. In the case shown in Table B.7a, “853cfelb” will

be regarded as a meaningless character string by the tradi-

tional syntax-based parser; however, SemParser recognizes it as
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Table 3.7: Cases for failure identification.

(a) A case for instance-level semantics.

API error H server add volume

Log message || ... Cannot ’attach_volume’ instance 853cfelb ...
C-Template || ... Cannot ’attach_ volume’ instance <*server*> ...
CI Pairs [(server, 853cfelb)]

(b) A case for message-level semantics.

API error H network create

Log message || ... POST /v2.0/networks ...
C-Template || ... POST /<*>/networks ...
Concepts [POST, networks]

a “server” from previous log messages. Therefore, the preserved
semantics allows the downstream technique to understand that
the original log message is talking about the concept server, as
well as the concept attach volume, then it will not be hard to
infer the API error behind the failure is “server add volume”.

Thirdly, our parser provides strong messages-level seman-

tics, clues model in resolving failures. For example, Table B.7h shows

how the semantic parser extracts the concept “network” with
the actual API error being “network create”. With the help

«

of the concept “network”, the model focuses on network er-
rors and filters other server errors or volume errors. To sum
up, SemParser benefits the failure identification task by provid-
ing message-level semantics and instance-level semantics alto-

gether.
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3.6 Discussions

3.6.1 Threats to Validity

Threats to CI pair granularity. Our approach can only
discover semantic pairs in a single word. For example, for one
Zookeeper log “Connection request from old client /10.10.31.13:4
00617, the extracted CI pair is “(client, /10.10.31.13:40061)” in-
stead of “(old client, 10.10.31.13:40061)”. Using “old client” is
more precise than “client” to describe this instance. Fortunately,
based on our observation, since such multi-word concepts infre-
quently occur in log messages, using the single-word concept will
not alter the semantics too much.

Threats to transferability. Our model mines semantics
relying on manually labeled data. The sampled data for annota-
tion and annotation quality both affect its performance. Fine-
tuning with new annotation is required to transfer the model
across different systems. In this case, we consider that our model
can easily adapt to a new system after fine-tuning with a small
amount of data (e.g., Our RQ1 shows that 50 annotated logs are
sufficient to transfer a model from OpenStack to Hadoop, with
84.6% templates in the test set are unseen).

Threats to efficiency. Despite the fact that the neu-
ral network used in our approach can effectively mine seman-
tics, it is not as computationally efficient as other statistical
parsers. Nevertheless, the issue can be mitigated by batch oper-

ation or GPU acceleration. Moreover, missing identification of
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an anomaly can also be very costly. As RQ2 and RQ3 demon-
strate SemParser’s effectiveness over other parsers in anomaly
detection and failure identification, it is worthy of mining such

semantics by sacrificing controllable computational efficiency.

3.7 Conclusion

In this chapter, we first identify three key limitations of
current log parsers: inadequate attention to informative tokens,
missing semantics within log messages, and overlooked relations
between log entries. To address these issues, we introduce Sem-
Parser, a semantic parser that operates in two phases: a seman-
tics miner to extract explicit semantics from logs and a joint
parser that uses domain knowledge to infer implicit semantics.
We conduct extensive experiments to evaluate SemParser using
six representative system logs for its semantic mining capabil-
ities, achieving an impressive average F'1 score of 0.985. Addi-
tionally, we assess our approach in two downstream log analysis
tasks, namely anomaly detection and failure identification. The
experimental results demonstrate that our method significantly
outperforms syntax-based log parsers, underscoring the impor-

tance of understanding semantics in log analysis.

O End of chapter.



Chapter 4

Anomalous Log Localizer over

Software Evolution

4.1 Introduction

Nowadays, intelligent log analytics is designed to manage
overwhelming logs [80] for failure troubleshooting, and anomaly
detection [81]. Existing automated log analytics can be cat-
egorized into two types based on granularity: coarse-grained
tasks and fine-grained tasks. Coarse-grained models, such as
the anomaly detectors [40] and failure predictors [82], detect (or
predict) anomalies given the logs from a period of time. Taking
anomaly detection as an example, the model accepts a session
of logs to determine whether an anomaly exists in this session.
Although the coarse-grained models show promising results in
open datasets, they provide limited evidence of failure diagno-
sis for software maintainers. On the other hand, fine-grained

tasks aim to further identify the individual/single anomalous

69
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logs within a session showing possible interpretations of the fail-
ure [83, 84, 85]. Even if coarse-grained models free maintainers
from inspecting massive log lines, it is still time-consuming to
analyze hundreds of log lines within a session to find the anoma-
lous log for troubleshooting [86]. To ease the burden of software
maintainers, we focus on this more challenging yet significant
task, individual anomalous log identification, in this chapter.
An anomalous log signals an anomaly in the system, such as
network error [86]. The following example shows a log message
that may indicate a connection problem caused by a network

fault within the system:

‘ Container launch failed for container 32h: Connection refused. ‘

Anomalous logs are crucial for diagnosing failures, but they are
often accompanied by numerous normal logs, which can be over-
whelming for maintainers. To distinguish them from normal
run-time logs, existing studies [84, 85, 87, 88] constructed a ref-
erence model from training log sequences and then identified
which log violated the reference model. Specifically, they ab-
stracted log event sequences into a directed graph via either
a finite state machine (FSM) [84, 85, 87] or causal dependen-
cies [88] as the reference model. Subsequently, any deviations
from this model would be regarded as an indication for anomaly
and marked for troubleshooting.
However, both FSM-based and causal graph-based approaches

following the closed-world assumption suffer limitations for pro-
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cessing the unseen data. However, after the initial version is
released, software experiences continual development to fulfill
customers’ demand, to fix bugs, and to extend to new func-
tionalities, which is well-known as software evolution [89, 90].
Previous studies pointed out that logging statements change
over software evolution is so pervasive that around 33% of the
log are revised as after-thoughts [91, 92]. The changed logging
statements during the evolution activities raise challenges for
existing approaches:

(1) Parsing errors. Log parsers extract static events
(e.g., Container launch failed for <*>: Connection refused.)

and dynamic parameters (e.g., container 32h) from log mes-

sages. However, as discussed in Section ¥.2.2, parsers may mis-

align revised log events in evolving software versions, causing
log parsing errors. These parsing errors further downgrade the
subsequent log analytics performance. (2) Evolving events.
Even if state-of-the-art parsers work as expected, software evo-
lution brings new logging statements or paraphrases old logging
statements, which we refer as ewvolving events in this chapter.
(3) Unstable sequences. Apart from log events, the log se-
quences from running identical jobs can vary, named unstable
sequences. Such variation can be caused by interleaving logs
produced from multiple threads [84]. Moreover, software evo-
lution may alter the function invocation sequences, leading to
new sequential patterns.

While solutions to the first two challenges still remain un-
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CASE L Insert a log logging statement in Spark3:

Discovering resources for <*> with script:<*>

CASE 1L Paraphrase a log logging statement in Spark3 from Spark2:
Started reading broadcast variable <*>
Started reading broadcast variable <*> with <*> pieces (estimated total size
<*>MiB)

CASE II1. Remove a log logging statement from Spark2:

Scala <*> cannot get type nullability correctly via reflection, thus Spark cannot
add proper input null check for UDE.

Figure 4.1: Evolving logging statement cases for Spark2 and Spark3.

explored, there have been several attempts to handle the third
challenge. For example, previous study [93] tried to resolve the
interleaving logs by considering multiple predecessors and suc-
cessors of a log event, instead of just the direct ones. Another
study [94] mitigated unstable sequences challenge by learning
causal relationships between event pairs from historical data.
Nevertheless, none of the existing approaches considered the
software evolution scenario, which can negatively impact the
performance of identifying anomalous logs if left unaddressed.
To address the above challenges, we propose an unsuper-
vised anomalous log identification solution over software evo-
lution (EvLog). The design of our approach is based on two
insights: 1) the magority of logs are normal in a healthy system;
and 2) the anomalous logs are unknown a priori because we
cannot iteratively inject all kinds of failures. In particular, we
design EvLog with two steps. The first step aims to tackle the

parsing errors and the evolving events issues. We derive multi-



CHAPTER 4. LOGS OVER SOFTWARE EVOLUTION 73

level representations directly from logs to prevent introducing
parsing errors. The representations at different levels undertake
different functions: 1) the semantic-rich representation aims to
fully retain semantics from log messages, which is extracted by
pre-trained language models; and 2) the abstract representation
to align similar logs across software evolution, which is derived
from the hierarchical clustering approach. Such multi-level rep-
resentations maintain the pertinent semantics while leaving out
unnecessary trifles to address the evolving events issue.

In the second step, we address the unstable sequence is-
sue by constructing an anomaly discriminator with an attention
mechanism. The core idea is to learn a transformation func-
tion (e.g., neural networks) that embeds normal log features
(source domain) to stay close (enclosed in a hyper-sphere) to
a target domain, then the logs that are largely distant from
this hyper-sphere are considered as anomalous ones. Specifi-
cally, EvLog constructs log features for each single log and its
surrounding log contexts based on multi-level representations.
It then applies neural networks to discriminate the anomalous
logs instead of rigorously comparing new sequences with existing
ones. Once trained, EvLog can be directly applied to a future
software version without any fine-tuning.

Our new approach is evaluated using two realistic datasets
(i.e., LoGEvoL) and a synthetic dataset (i.e., SYNEvVOL) to
simulate logging evolution. The experiment results illustrate

that EvLog reaches a promising average F1 score of 0.955 and
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0.847 in intra-version identification and inter-version anomalous
log identification on two representative system logs, respectively.

To conclude, the contribution of this chapter is threefold:

o We empirically identify three challenges (i.e., parsing er-
rors, evolving events, unstable sequence) brought by soft-
ware evolution for anomalous log identification, which has

never been properly addressed before.

e To overcome the above challenges, we develop EvLog, an
unsupervised anomalous log identification approach with
a multi-level representation extractor and an anomaly dis-
criminator. To our best knowledge, EvLog is the first so-
lution to tackle the problem of identifying anomalous logs

over software evolution.

e By evaluating EvLog on real system log datasets and a
synthetic dataset, we show our approach can effectively
identify anomalous logs across different software versions

without fine-tuning or manual labeling.

4.2 Motivating study

4.2.1 How do logging statements evolve?

Developers may modify logging statements when updating
the software, producing unseen log messages in system run-time

for maintenance. To examine how logging statements evolve
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Table 4.1: Logging evolution ratio between Spark2 and Spark3.

Percentage H Unchanged ‘ Inserted ‘ Paraphrased ‘ Removed
Log message 91.16% 0.07% 8.75% 0.02%
Logging statement 76.12% 12.69% 1.49% 9.70%

during software updates, we analyze Spark, an open-source clus-
ter computing system for the parallel processing of large-scale
data. In particular, we run benchmark workloads in Spark 2.4.0
(denoted as Spark2) and Spark 3.0.3 (denoted as Spark3) with

details shown in Section ¥.5.1] and compare the collected log

messages.

We categorize the change of logging statements into three
types: insert, paraphrase and remove. We show three cases in
Fig. , where “<*>" refers to the dynamic parameters gen-
erated in running time. In Case I, a new logging statement is
added in Spark3 to indicate the attached resources. In Case
IT, the logging statement is paraphrased by adding information
on the number of pieces and the estimated size of the variable
to gain a deeper understanding of the system performance. In
Case III, a logging statement is removed from Spark2 due to the
deprecation of ” UserDefined Function” in Spark3.

Table 4.1 displays the statistics of the three types of changes
on collected log messages and logging statements. It is observed
that nearly 24% logging statements are changed from Spark?2
to Spark3, resulting in almost 10% changed log messages. Al-
though 12.69% and 9.70% logging statements are inserted or
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Parsing result:
Connecting to ResourceManager at sp2sl1/172.17.0.3:8030

Ground truth:
Connecting to ResourceManager at <*>

Parsing result for Spark2: Parsing result for Spark3:

E1: Running task <*> in stage <*> (TID <*>)

I
I
Changing <*> acls <> <*> | Changing <*> acls groups to: E3 (in Spark?): Started reading broadcast variable <*>
! Changing <*> acls to: root E3'(in Spark3): Started reading broadcast variable <*> with
<*> pieces (estimated total size <*> MiB)
____________________________________ , e
: CASE I: Parsing Error 1 : CASE II: Evolving Events :
" |
. I .
El E2E2 E3E3 B4 E5 E6 Spark2: | Spark3:
e o606 oo o ° — El1->E3 [ E1->E2->E3
I
El E4 E5 E6 E3 E3 E2 E2 E1: Connecting to driver: <*>
=——0—0—9 0 o o o) E2: Successfully registered with driver
E3: Resources for <*>:

______________________________________________________________________

Figure 4.2: Three challenges brought by software evolution. E1, E2, etc.,
represent different log events.

removed, respectively, they only make up less than 0.1% col-
lected logs, meaning they appear in a low frequency. However,
the high proportion of paraphrased logs implies developers are
likely to modify the commonly used logging statements. To con-
clude, logging statements change over software evolution. The
non-negligible amount of changes motivates us to reckon with

the software evolution issue.

4.2.2 How does evolution raise challenges for anoma-

lous log identification approaches?

Parsing errors

Log parsers extract constant strings (i.e., events) and run-

time parameters from log messages. However, existing log iden-
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tification models only use the extracted events and do not con-
sider the original log messages. This can be problematic be-
cause log parsers can introduce errors, and the evolution of logs
over time can make parsing even more challenging [95]. CASE
I in Fig. @ displays two parsing mistakes from a widely-used
parser, Drain [20], where <*> denotes parameters. The top
one is caused by confusing parameters with constant strings,
and the bottom one shows inconsistent parsing results in Spark2
and Spark3. Since current log parsers are parameter-sensitive
and not versatile enough [17], and the hyper-parameters that
work well for one software version may not be suitable for oth-
ers. Since systematic log analytics should operate on raw log

messages, it is essential to find ways to avoid parsing mistakes.

Evolving events

Log identification models also face a challenge in dealing
with evolving events. Typically, these models detect anomalous
logs by examining whether the actual next log is in line with
the predicted next logs based on contextual information. The
idea works well when all the events are known; however, if the
actual next log is an unseen event, it can never be matched with
any predicted next logs. For instance, in CASE II of Fig. ,
event E3’ cannot be matched with the predicted logs since it
is a paraphrase of event E3. According to its decision logic,
such inconsistency leads to a significant issue where all unseen

events are treated as false positives. This issue becomes severe
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for all existing log-based approaches considering that 8.75% of
the collected logs have been paraphrased.

Unstable sequences

Ideally, we expect that the log message sequences perfectly
match the execution sequences of a program. However, there
are situations where log messages from different threads can
interleave, resulting in what we refer to as "unstable sequences”.
Additionally, introducing new logging statements in a software
update can create new log events during run-time, leading to
sequential pattern changes. As shown in CASE III of Figure @,
unstable sequences can be caused by interleaving logs [84] and
new log events from software evolution. To resolve the issue,
identifying relevant and informative log messages in a sequence
is of great essence.

In summary, our empirical findings suggest that logging
evolution can affect existing models in three ways: the poten-
tial parsing errors, the evolving events, as well as the unstable
sequences. These influential factors have never been explored,

yet their impact can hardly be ignored.

4.3 Problem illustration

In this chapter, we consider the anomalous log identification
problem as in the literature [84, 85, 96], which enables pinpoint-

ing a collection of fault-indicating anomalous logs [86]. Given
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S1] Got assigned task 5 Got assigned task 5 Got assigned task 5 Got assigned task 5
S2 | Found block 46 Found block 46 Found block 46 Found block 46
S3 | Dropping block 46 from ... Dropping block 46 from ... Dropping block 46 from ... Dropping block 46 from ...
K 84| Ignored message: Heartbeat Ignored message: Heartbeat Ignored message: Heartbeat vee Ignored message: Heartbeat
S5 | 5 blocks selected for drop... 5 blocks selected for drop... 5 blocks selected for drop. .. 5 blocks selected for drop...
Sp-1| Got assigned task 7 Got assigned task 7 Got assigned task 7 Got assigned task 7
8, | Got assigned task 8 Got assigned task 8 Got assigned task 8 Got assigned task 8

Yes (add to AL)

AL { Ignored message: Heanbeat}
Figure 4.3: Anomalous logs localization problem illustration.

a sequence of log messages s = sy, S9, ..., S,, the task asks the
model to find a set of anomalous logs AL = {s;|]1 < i < n}
within the message sequence. Compared with the anomaly de-
tection task that determines whether a problem exists in a ses-
sion (session-based), anomalous log identification is a more fine-
grained and challenging task that needs to localize individual
fault-indicating logs (message-based). We use context to repre-
sent the surrounding logs of a specific log (named as the center
log) and analyze whether the log is anomalous based on its con-
text.

To resolve the subset AL, we check every individual log,
that is, for all s; € s, the model determines whether the center
log s; is an anomalous log in the given context of s;. We will add
the center log into AL if it is considered anomalous. Fig.
shows the identification process, where the center log and its
corresponding context are highlighted with a red rectangular

and yellow background, respectively.
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Multi-level representation extractor * Anomaly discriminator

Unitary feature B i (; W) °
§ Section 4.1.1 (Center log)

Rich representation it

Log messages [lerororommerere)

Seol--00 § Section 4.2.4

| Local discriminator § Section 4.2.3 ‘ A * abuScore,,,+ (1-1)* abnScores;, > D

FemmTeo-a GOO0-00 Attention o P toca (; W) 0 am=as, _— " Anomalous log found
1 % QOOO=00 o o'
! i — ; !
0B 1 r-cosewe X ¥ = § > e o6 o
100 ! g \ =5
QOO0=00 g
S " ol T
[ QOO0=00 o SO abuScoresie

HDBSCAN Clusterin,
) s Abstract representation Local feature °©
§ Section 4.1.2

(Context)

Figure 4.4: EvLog with a multi-level representation extractor and an anomaly
discriminator.

4.4 Approach

This section introduces our novel approach, called EvLog,
shown in Fig. @, in tackling the anomalous log identification
challenges over software evolution. EvLog has two components,
i.e., a multi-level representation extractor to derive multi-level
robust log representations, followed by an anomaly discrimina-
tor with the attention mechanism to pinpoint the anomalous
logs. In particular, the multi-level representation extractor tar-
gets extracting rich representations as informative as possible
and abstract representations to capture high-level commonali-
ties among similar logs. Then these representations are fed into
the anomaly discriminator to automatically localize the anoma-

lous logs in an unsupervised manner.

4.4.1 Multi-level representation extractor

We exploit multi-level representations with various infor-

mation from log messages to semantically understand them.
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This section illustrates how to extract multi-level semantic rep-
resentations, that is, a rich representation and an abstract rep-
resentation. The low-level rich representation provides a con-
crete understanding of a certain log. In contrast, the high-level
abstract representation captures the commonality of logs with
similar semantics, regardless of their slight differences (e.g., pa-

rameters difference, revised log events).

Rich representation

Semantics in both log events and their corresponding pa-
rameters has advantageous for log analysis [11, 97]. To obtain
informative representations from logs with respect to their se-
mantics, we fine-tune a pre-trained language model [98] (PLM)
on our collected log datasets.

The PLMs have shown the powerful semantic encoding
ability for many software engineering tasks, such as log-based
anomaly detection [99] and code comprehension [100]. In our
work, to overcome potential parsing errors and to make the
best usage of information inside log messages, EvLog acquires
domain-specific semantic representations via PLMs. On one
side, system logs share some fundamental knowledge with nat-
ural languages since humans write logging statements. After
being trained on a large corpus, the PLMs learn more informa-
tion about word senses, not limited to system logs. On the other
side, we notice that these PLMs are not sufficient for domain-

specific tasks due to the knowledge gap. Hence, we fine-tune
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the massive language models to further capture domain-specific
semantics. In specific, we employ the widely-used masked lan-
guage modeling strategy [30, [101, 102] to fine-tune the PLMs,
by randomly masking 10% tokens in each log and asking the
model to predict the masked tokens.

Specifically, given a log message x, the rich representation
Trich 18 designed to capture its detailed semantics. This parser-
free representation extractor accepts log messages instead of

events, allowing it to get away from potential parsing mistakes.

Algorithm 2 Abstract representation acquisition.

Input: Rich representation to be clustered E = [e1, eq, ..., €]

Output: Abstract representation C' = [c1, ¢, ..., ]

. C=]]

Centroid={}

E’ = PRINCIPALCOMPONENTANALYSIS(F)

Clusterlds = HDBSCAN(E')

?77Compute centroid for each cluster

for all ClusterID from 1 — SET(Clusterlds) do
Centroid[ClusterID] = MEAN(E’[Clusterlds==ClusterID])

end for

Py

?77Compute abstract representation”””

for all 4 from 1 — n do
C.APPEND(Centroid[Clusterlds[i]])
: end for

— =
2

Abstract representation

Apart from the rich representation, we also extract a high-
level semantic representation, x,,, that remains stable on sim-
ilar log events over logging evolution. To this end, we de-

velop a cluster-based approach on top of the rich representa-
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tions. Previous studies [103, 104] have demonstrated the ef-
fectiveness of clustering approaches in grouping similar texts
together based on their intrinsic characteristics. Motivated by
theirs, we also employ a cluster-based approach to group log
messages. Specifically, we adopt the idea from the previous
log clustering study [105] using Hierarchical Density-Based Spa-
tial Clustering of Applications with Noise (HDBSCAN) [106],
whose efficiency and effectiveness has been presented in many
domains [[107, 108]. Compared to other clustering approaches,
HDBSCAN inherits two special advantages for our scenario: (1)
It can automatically extract the “dense” cluster without pre-
defining the number of clusters (e.g., Kmeans [109]), which is
important in the case that we may never know the number of
clusters of logs. (2) HDBSCAN has a few parameter numbers,
and its robustness to parameter choice [105, 106] makes it ver-
satile for diverse log data.

Eventually, the abstract representation z, for each log
message x is the centroid of its corresponding cluster by av-
eraging all points (logs) belonging to the cluster. Algorithm

shows the abstract representation computation process.

4.4.2 Anomaly discriminator

This section illustrates how we pinpoint anomalous logs
from the acquired rich and abstract representations. In par-

ticular, for each input log, the unitary discriminator processes
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the log, and the local discriminator processes the log’s context.

Two processed results are integrated as the final output.

Basic idea

Existing unsupervised log-based reference sequences mod-
els [40, 84, 26] build a reference model from training data and
check whether the testing log violates the prediction from the
model. Unfortunately, these models are ineffective at handling
evolving events over software evolution. Moreover, the anoma-
lous logs are unknown a priori because we cannot iteratively
inject all types of faults. Thus, we propose a different approach
to handle the problem by learning the “normality” of the normal
log features instead of predicting the subsequent events.

Motivated by the Support Vector Machine [110] (SVM) that
learns a hyperplane to separate data, our idea is to develop a
neural network that learns a hyper-sphere to separate normal
logs and anomalous logs. The neural network maps log fea-
tures (in the source domain) to a target domain where normal
features stay as close as possible (enclosed in a hyper-sphere).
We measure the distance between a mapped log feature and
the center of the hyper-sphere as normality (e.g., grey circle
in Figure @), with logs far from the center being considered
anomalous due to deviating from the normality. In this way,
logs with evolving events can be transformed into the target do-
main where they are close to the previous semantically similar

logs, minimizing adverse effects on the anomaly discriminator
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results. For example, if a normal log is paraphrased during soft-
ware evolution, the evolved log with similar semantics will be
mapped within the normality. This new approach in localiz-
ing anomalous logs is superior via two advantages: 1) It deliv-
ers better performances than other traditional methods due to
the neural network’s proven learning ability. 2) Our approach
frees humans from labor-intensive labeling since it can learn the
normality naturally in an unsupervised manner from large-scale
normal logs that can be easily collected from stable software.
Specifically, the goal is to train a neural network model
(mapped features from the source domain to the target domain)
while minimizing the hyper-sphere volume that encloses the nor-
mal data features in the target domain. In this way, the model
is forced to learn implicit semantics since it must map the nor-
mal log features closely to the hyper-sphere’s center. Thus the
unseen log events with similar semantics can also be embed-
ded close in the target domain. To achieve the above goal, the

objective function is:
1 2 & 2
J=min 3" 6@ W) — P+ SIWE (a)
i=1

where ¢(x;; W) refers to using the model ¢ with its parame-
ters W to map each input sample x; € x to a hyperspace R";
c € R" refers to the hyper-sphere center; the last term serves as
a regularization term with weight « to avoid over-fitting. The

objective function forces the normal data features to stay close
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to the center c. Theoretically, the mapping model ¢ can be re-
placed by any neural network architecture, demonstrating the
extensibility of our approach. The following two sections show
how we develop an appropriate neural network for mapping mul-

tiple features. We then describe how to integrate the mapped

features for identifying anomalous logs in Section .4.2.

Unitary discriminator

We first look into single logs, as the single log that contains
negative words (e.g., “failure” and “error”) usually indicates an
anomaly. The unitary discriminator works on rich representa-
tion of individual logs, aiming to map normal logs to a hyper-
sphere that describes the normality. The motivation behind the
unitary discriminator is that, the negative terms in anomalous
logs exhibit significantly different semantics than words in nor-
mal logs (e.g., “running”, “success”). These anomalous logs’
features will be mapped far away from the center of the hyper-
sphere; thus they are considered as normality-deviating ones. To
this end, we adopt the strong learning ability from neural net-
works and build the unitary discriminator (¢,,;) with a two-layer
feed-forward neural network denoted as FFFNN. We describe

the architecture as follows:

¢um’(xrich; Wum) — FFNNb((FFNNa(:CTich»a (42)
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where x,;, refers to the rich representation containing full log

semantics (i.e., unitary feature) of the center log .

Local discriminator

Looking into one individual log is not sufficient to com-
prehensively understand the running status, so it is noteworthy
to exploit its contextual information. On the one hand, it is
pointed out that different logs possess different importance [23].
For example, some miscellaneous logs regularly appear regard-
less of what job the system is running, whereas other logs pro-
vide richer guidance for analysis. On the other hand, log data
transmission, collection, and software evolution affect synchro-
nization temporally, leading to unstable sequences. To focus on
beneficial logs and leave the uninformative logs out, we leverage
the attention mechanism [111] to focus on beneficial logs. In
the local discriminator, we use the center log and its contexts
to acquire a local feature against unstable sequences and then
learn the normality of such a local feature.

Given a center log x, we construct its context representation
T by forming its abstract representation of context as a matrix.
Then we compute the weights across the context by the attention
mechanism [38], allowing the model to learn the importance of
surrounding logs, thus addressing the unstable sequence issue.
Specifically, given a center log .., as query and its context .,

as value, we compute the weighted context representation as the
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local feature (denoted as xj,.q) as follows:

xqueryxz;tg: )xct:m
vy, (4.3)
Lquery — FFNNC(xrich)a

Tlocal = SOftmaz(

where d, refers to the dimension of x4, and F'F'N N, transforms
Zrich to the target domain that shares the same dimension with
Letg-

After that, another two-layer neural network with an acti-
vation function is applied to the local feature xj,., for learning
normality from contexts. To sum up, we describe the network

for the local discriminator (¢jeq) as in Equation @:

¢local(xrich7 Letxs VVlocal) — FFNNe((FFNNd($Zocal)))- (44)

Integration

The unitary discriminator learns normality for individual
logs, whereas the local discriminator learns the context normal-
ity in running status. To fully exploit these two different infor-
mation sources, we propose the total objective function with a
weighted sum in Equation @ to simultaneously optimize two

sub-discriminators:

Jtotal = A% Jum + (1 - )\) * Jlocal, (45)

where J,,; and Jj,. are the functions defined in Equation

for unitary discriminator ¢,,; and local discriminator ¢;,., re-
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spectively. The objective functions allow two discriminators to
learn the normality by minimizing their hyper-sphere volume.
The distance between a log message (after mapping by dis-
criminators) to the hyper-sphere center measures the degree of
normality of the log. We apply an abnormal score (abnScore) to
describe how the log deviates from the normality, which is the
weighted sum of the abnormal sub-scores from two independent
discriminators. The abnormal sub-score abnScore; is defined by
the Euclidean distance from the feature embedding to its corre-

sponding hyper-sphere center, denoted by Equation @:

abnScore = X x abnScore,,; + (1 — X) x abnScorejoea,

(4.6)
abnScore; = ||¢i(z; W) — ¢i||*,i € {uni,local}.

The center log is eventually predicted as an anomaly if and
only if its abnormal score is larger than the threshold D (Equa-
tion @) We put all identified logs into the anomalous log set
AL, which provides detailed clues to troubleshoot the system

conveniently.

NormalLog, abnScore < D
center log = (4.7)

AnomalousLog, abnScore > D.
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4.5 Implementation Setup

4.5.1 Data collection

Infrastructure

Despite many log datasets being collected for research [40,
112, 113, 114], there is no open-source dataset documenting the
evolution process. To fill this blank, we collect a new dataset LO-
GEVOL containing log data from the most widely-applied data
processing system Spark [115] (LOGEVOL-SPARK) and Hadoop [116]
(LocEvoL-HADOOP), across different versions.

To this end, we employ HiBench [117], a big data bench-
mark suite, to generate logs by running a set of workflows in
Spark and Hadoop, respectively, from basic to sophisticated sce-
narios. In total, we run 22 workloads (shown in Table @) on
the systems to cover more practical scenarios, while other ex-
isting datasets 114, 112] are collected from simply running two
straightforward tasks (i.e., page rank and word count).

Then, we repeat the procedure of running workloads using
different versions of the software systems mentioned above, cov-
ering a wide time range and various data size scales. We select
two typical versions of Spark (i.e., Spark2.4.0 and Spark3.0.3)
and Hadoop (i.e., Hadoop2.10.2 and Hadoop3.3.3), as they have

undergone systematic changes with significant differences.
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Table 4.2: Workloads for collecting LOGEVOL.

Categories Workloads
Micro task Sort, Wordcount, etc.
Machine learning Bayes Classification, Gradient Boosted Trees, etc.
SQL Aggregation, Join, Scan etc.
Websearch Pagerank
Graph NWeight, Graph Pagerank
Streaming Repartition

Fault Injection

We inject 18 typical types of faults into the system to simu-
late real-world production failures: (1) Process suspension: Sus-
pend processes in multiple types of nodes, one at a time; (2)
Process killing: Kill processes in seven types of nodes, one at
a time; (3) Resource occupation: Inject other computation pro-
grams to occupy CPU and memory; and (4) Network faults: Es-
tablish network faults such as losing packages, network delay,
and connection lost.

In total, we collect 6,703,460 log messages (# Logs)with
recognized 69,513 anomalous logs (# Anomalous logs), whose
statistics are shown in Table @ To guarantee dataset quality,
anomalous logs are discussed and annotated by two engineers
who have two years of development experience with the Spark
system. Since annotators have read a lot of logs in their devel-

opment experience, they can provide reliable annotations.
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Table 4.3: Statistics of LOGEvVOL.

H Spark2 ‘ Spark3 H Hadoop2 ‘ Hadoop3
931,960 | 1,600,273 || 2,120,739 | 2,050,488

# Logs

# Anomalous logs 1,702 2,430 35,072 30,309

4.5.2 Implementation details

In the multi-level representation extractor, we use BERT [98§]
as the pre-trained language model and fine-tune it with Hug-
ging Face [118]. For the anomaly discriminator, we specifically
choose leaky ReLU [119] as the activation function between two
layers in the perceptron so as to resolve the “all-zero-solution”
issue [120]. We set the dynamic threshold D to be 0.4 times of
the maximum normality (hyper-sphere radius) in the training
data in intra-version and 0.6 times for the inter-version. We set
A=0.5 in the experiments as the unitary and local features both
serve as an important role in fault localization. We randomly
split the collected logs into training, development, and testing
sets for each software version with a standard 8:1:1 splitting.
In contrast, the training set only contains logs collected in the
fault-free periods as we assume the majority of logs are normal in
a healthy system. All experiments are conducted in 64-bit Cen-
tOS 7 with Intel(R) Xeon(R) CPU and 1 GeForce RTX 2080
GPU for acceleration. It takes approximately 15 seconds for the

anomaly discriminator to train in an epoch.
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4.6 Experiments

To evaluate the effectiveness of EvLog, we investigate three
research questions:
RQ1: How effective is EvLog in identifying anomalous logs?
RQ2: How effective is EvLog in resolving evolving events and
evolving sequences?

RQ3: How effective are different components in EvLog?

4.6.1 Experimental settings

Baselines

We select four unsupervised log-based analytics as base-
lines, including two anomalous log identification models and two
anomaly detection (AD) models. LogAnomaly and LogSed are
the state-of-the-art AD and log localization models, respectively.
The reason why we choose AD baselines is, they both work
for anomaly analysis with different granularities (i.e., coarse-
grained and fine-grained); For AD models, we use the historical
sequences to train a reference model and predict the next event
as in the original paper. The actual next event that outside the
predicted list of candidate events will be considered as anoma-
lous due to its deviation from the reference model. In our imple-
mentation, we use the state-of-the-art log parser [17] to extract
events for all baselines as they all require the parsing phase. In

specific, we briefly characterize four baselines as follows.
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o LOGAN [96] built the diagnosis system by constructing a
directed graph from normal log event sequences. Then any
of the test time logs that deviate from the directed graph

will be considered anomalous.

o LogSed [84] addressed the interleaving logs problem by de-
veloping a two-stage approach to mine the important se-
quential relationship from log sequences. The incoming log
message that violates that sequence will be regarded as

anomalous.

» DeepLog [40] utilizes an LSTM network to capture sequen-
tial information of log data. It accepts the sequence of log
event IDs to predict the next log, the actual log ID outside

prediction will be regarded as an anomaly.

» LogAnomaly [26] is proposed for unsupervised anomaly de-
tection with semantic representation for log events via an

attention-based LSTM network.

Dataset

EvLog is evaluated on two datasets: a software evolution
dataset collected from two representative systems (LOGEvOL)
and a synthetic dataset (SYNEvVOL).

LogEvol. Although existing study [90] analyzed the evolu-
tion process of Hadoop, and mentioned the importance of new-

emerging log messages [23], there lacks a public dataset showing
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how logs change during software evolution. Hence, we evaluate

our approach and compare it with baselines on the data col-

lected in Section #4.5.1]. To our best knowledge, LOGEVOL is the

first publicly accessible log dataset recording software evolution
activities.

SynEvol. To evaluate how EvLog resolves the challenges
of unseen events and unstable sequences separately (Note that
EvLog is parser-free), we build a synthetic dataset based on
the collected Spark2 logs in LOGEvOL (denoted as LOGEVOL-
Spark2). Following previous work [23], we inject unseen events
and unstable sequences into LOGEVOL-Spark2 to simulate the
real-world software evolution as follows:

1. Unseen events are introduced by logging statement al-
teration in software updates. Developers may paraphrase or
insert logging statements for customized functionalities. Since
EvLog does not use a parser, we simulate the change by creating
a set of synthetic log messages via (1) inserting, (2) deleting, or
(3) replacing a common word from an original log message. Such
modification is more likely to reflect the changes in log events.

2. Unstable sequences occur both in log generation and log
evolution. Logs from multiple transaction flows may be inter-
leaving, making the direct predecessor or successor of a certain
log different. Moreover, log evolution is likely to cause variations
via function ensemble or the changes of function invocation se-
quences. To construct synthetic sequences, we randomly remove

a few unimportant log messages (far away from anomalous logs),
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repeat some log messages several times, or shuffle the log mes-
sages in a short time.

We inject the evolving events and unstable sequences into
the original dataset, denoted as SYNEVOL-Events and SYNEVOL-
Seqs correspondingly. The injection follows specific ratios. We
inject the 5%, 10%, 15%, 25%, and 30% synthetic log mes-
sages and log sequences to LOGEVOL-Spark2, to observe how

EvLog reacts to unseen and unstable sequences, respectively.

Evaluation metrics

To evaluate the effectiveness of EvLog in anomalous log
identification, we apply Precision, Recall, and F1-score as eval-
uation metrics. In particular, Precision (P) is the percentage
of logs that are correctly identified anomalous overall identi-
fied logs (TPTJF%). Recall (R) is the percentage of logs that are
correctly identified anomalous over logs belonging to anomaly
logs. (%). F1 score (F1) is the harmonic mean of Precision
and Recall (2 x %), where TP refers to the amount of anoma-
lous logs that is correctly identified, F'P refers to the number of
normal logs that are wrongly predicted as anomalous, and F'N
means the number of anomalous logs that are identified as the

normal logs.
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4.6.2 RQ1: How effective is EvLog in identifying anoma-

lous logs?

To evaluate how effective EvLog can pinpoint the anoma-
lous logs with software evolution activities, we conduct experi-
ments on our dataset LOGEvVOL. The experiments engage two
different settings: 1) Intra-version: identify the anomalous logs
on the same system it is trained (e.g., Spark2 — Spark2); and 2)
Inter-version: identify the anomalous logs in a different system
version after training (e.g., Spark2 — Spark3).

We can draw two observations from the experimental re-
sults shown in Table @ First, EvLog delivers an overall sat-
isfactory performance under the intra-version setting with the
average F'1 score of 0.967 in Hadoop and 0.944 in Spark, which is
comparable with other baselines. The experimental results indi-
cate that EvLog can learn the normality and effectively identify
anomalous logs from log sequences. Besides, we find that deep
learning-based approaches perform better than FSM-based ap-
proaches, demonstrating that neural networks are capable of
capturing intrinsic sequential patterns and log semantics.

Second, in the inter-version scenario, EvLog significantly
outperforms all baselines by a wide margin, demonstrating its
effectiveness and robustness in software evolution. We observe
that all baseline performances drastically drop (approximately
an F1 score of 0.55) while EvLog achieves an average F1 score

of 0.87 for Hadoop, which contains 3% new logs. In the case of
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Spark, where logging statement paraphrasing and insertion via

software updating account for 10% logs, baseline performances

are further significantly downgraded.

(a) Experimental results in identifying anomalous logs for LoGEvVOL-HADOOP.

Intra-version

Baseline Precision  Recall F1 ‘ Precision  Recall F1

LOGAN 0.894 0.995 0.942 0.899 0.988 0.942
LogSed 0.910 0.995 0.951 0.925 0.986 0.955
DeepLog 0.913 0.985 0.947 0.926 1.000 0.961
LogAnomaly 0.926 0.994 0.958 0.939 0.988 0.963
Name 0.945 0.982 0.963 0.952 0.988 0.970

Inter-version

Baseline Precision  Recall F1 ‘ Precision  Recall F1

LOGAN 0.360 0.988 0.528 0.376 0.995 0.546
LogSed 0.371 0.988 0.540 0.390 0.993 0.560
DeepLog 0.386 0.999 0.556 0.410 0.971 0.576
LogAnomaly 0.389 0.998 0.560 0.407 0.995 0.578
Name 0.770 0.941 0.847 0.857 0.913 0.884

(b) Experimental results in identifying anomalous logs for LOGEVOL-SPARK.

Intra-version

Baseline Precision  Recall F1 ‘ Precision  Recall F1

LOGAN 0.798 0.943 0.865 0.967 0.870 0.916
LogSed 0.842 0.914 0.877 0.907 0.923 0.915
DeepLog 0.862 0.952 0.905 0.858 0.976 0.914
LogAnomaly 0.931 0.939 0.935 0.898 0.947  0.922
Name 0.970 0.974 0.972 0.944 0.888 0.915

Inter-version

Baseline Precision  Recall F1 Precision  Recall F1

LOGAN 0.016 0.943 0.032 0.012 0.943 0.024
LogSed 0.013 0.917 0.026 0.010 0.914 0.020
DeepLog 0.017 0.947 0.032 0.014 0.909 0.026
LogAnomaly 0.020 0.923 0.038 0.017 0.948 0.034
Name 0.922 0.700 0.795 0.920 0.812 0.863

Table 4.4: Experimental results in identifying anomalous logs (train set—test

set).

We analyze the reasons below. First, log parsers will gen-

erate unseen events when they encounter these new logs. Then,

directed graph approaches (i.e., LOGAN, LogSed) and AD mod-
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els (i.e., DeepLog, LogAnomaly) fail in matching these unseen
events to any current events or predicted subsequent-event can-
didates. Consequently, current baselines label all unseen events
as anomalous, leading to high false-positive rates (i.e., low pre-
cision). On the contrary, EvLog uses hierarchical clustering to
learn abstract representations of log messages and aligns unseen
events to similar past ones. In this way, the modified log mes-
sage shares the consistent representation with its old one, so as
to reduce false positives and improve anomalous log identifica-
tion performance. Note that false positive rates in anomalous
log identification, although not as severe as false negative cases,
can still be problematic as they can lead to excessive work for

maintainers.

Answers to RQ1: EvLog can effectively identify anomalous
logs under both intra- and inter-version settings, all the while
demonstrating its robustness and stability across software evo-

lution activities.

4.6.3 RQ2: How effective is EvLog in resolving evolv-

ing events and evolving sequences?

We overcome the parsing errors challenge naturally since
our model is parser-free. Thus, we are interested in how well our
model addresses the other two challenges, i.e., evolving events
and evolving sequences. To do so, we measure EvLog on the

synthetic dataset, including SYNEvOL-Events and SYNEVOL-
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Figure 4.5: Examples of synthetic dataset SYNEVOL.
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Figure 4.6: Experiment results on the synthetic dataset SYNEVOL.

Segs. Fig. @ shows the examples in the dataset.

Fig. @ shows the F1 scores of baselines, and ours under the
injection ratio varies from 0% to 30% (the injection ratio of 30%
means 30% of the original dataset was replaced by the synthetic
one). The results demonstrate our approach’s effectiveness in
both evolving events and sequences compared with baselines.
In particular, EvLog achieves the F1 scores of 0.42 and 0.86
in SYNEvOL-Events and SYNEVOL-Seqs, even though the syn-
thetic dataset replaces 30% of the messages and sequences in
LoGEvoL-Spark2, respectively. We attribute the advantage to

the extracted multi-level semantics, as well as the stability of
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the normality learned by the anomaly discriminator.

Another observation is that log changes are more likely to
damage the model’s performance than sequence changes. This is
because log changes bring unseen events to the trained model,
posing greater difficulties for the model to deal with. On the
one hand, our approach can still perform stably with evolv-
ing events due to EvLog’s unique clustering mechanism that
aligns old events with new ones. This result is in line with
our experiments in RQ1 that all baselines perform unsatisfac-
torily during version transferring, as many events are changed
from Spark2 to Spark3. On the other hand, in terms of the
unstable sequences, we conclude that neural networks (used by
LogAnomaly, DeepLog, and ours), particularly those with the
attention mechanism (used by LogAnomaly and ours), force the
model to pay attention to the informative log messages while

getting rid of unstable sequences.

Answers to RQ2: EvLog reveals the robustness across differ-
ent types of changes happening in software evolution, owing to

its multi-level semantics extractor and attention mechanism.

4.6.4 RQ3: How effective are different components in
EvLog?

This research question investigates an ablation study on
how much each design contributes to EvLog. Specifically, we

remove each focused component one at a time and conduct ex-



CHAPTER 4. LOGS OVER SOFTWARE EVOLUTION 102

- =——=3F1 =— & —Recall —¥— Precision
E=——=JF1 — A —Recall ——#— Precision

1 e
R % \x
P o R
0.8
0.8 P
A
~
Ty 0.6
0.6 D=~ - ‘
FA
0.4 0.4
0.2 0.2
0 0
EvLog w/o PLLM w/o unitary w/o local EvLog w/o PLLM w/o unitary w/o local
finetune discriminator  discriminator finetune discriminator  discriminator
(a) Spark2 — Spark2 (b) Spark2 — Spark3

Figure 4.7: Effectiveness of finetuning, unitary discriminator and local dis-
criminator, respectively (train set — test set).

periments on LOGEVOL-SPARK. In particular, we remove (1)
the fine-tuning phase in PLM, (2) the unitary discriminator, and
(3) the local discriminator, separately.

Our experiments in Fig. @ show that all three components
of EvLog contribute to its effectiveness. The reasons based on
the experiments are elaborated as follows. First, fine-tuning
on the log dataset helps EvLog capture precise semantics by
bridging the knowledge gap between Spark domain knowledge
and common sense knowledge. Second, the unitary discrimina-
tor, which operates on individual logs, learns the commonality
of single normal logs. Third, removing the local discriminator
largely degrades the overall performance since it provides a more

comprehensive view of the contextual running status.
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Figure 4.8: An example of how EvLog identifies anomalous logs over software
evolution.

Answers to RQ3: The three components, i.e., PLM fine-
tuning, unitary discriminator, and local discriminator, all

show their effectiveness in the intended design of EvLog.

4.7 Discussion

4.7.1 Case Study

This section conducts a case study (Fig. ) to show how
EvLog successfully deals with unseen events and avoids false pos-
itives. Having been trained on Spark2, baselines and EvLog are
tested in the case from Spark3, where their AL predictions are
marked with lights. Green, red lights refer to true positive and
false positive, respectively. “GT” refers to the ground-truth AL
set. All baselines wrongly predict the line2 and line3 logs as
anomalous. We attribute the false-positive results on the two
logs to their evolving events. In fact, this event is paraphrased

as follows:

Spark2: Started reading broadcast variable <*>

Spark3: Started reading broadcast variable <*> with <*> pie-
ces (estimated total size <*> MiB)
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where <*> refers to the run-time generated numeric values.
Facing such evolving logs, EvLog can mitigate the associ-
ated issue by the abstract representation shown on the right-
hand side of Figure . Though line2 and line3 are unseen logs,
they can be assigned to a cluster that contains historical seman-
tically similar log messages, according to their rich semantic
representations. The yellow squares represent the rich repre-
sentations of logs in the hyperspace, where the logs before and
after paraphrasing stay closely in one cluster. Therefore, the
high-level abstract representation remains stable in the change
from the original logs to the paraphrased logs, and these new
logs will not be mapped far away from the hyper-sphere’s center.
Eventually, the model can identify the new paraphrased log as

a normal one because it does not deviate from the normality.

4.7.2 Threat to Validity

Internal threats. (1) Dynamic threshold. EvLog requires
a dynamic threshold D to identify anomalous logs. Our study
found that the satisfied threshold for intra-version and inter-
version identification is 0.4 and 0.6 times the maximum nor-
mality in the training data, respectively. The threshold strikes
a balance between recall rate and precision rate. In practice,
maintainers can customize the threshold based on different sce-
narios. (2) Domain knowledge gap. Technical terms in logs may

have specific meanings not captured by PLMs. For example, we
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use “volume” to describe a detachable block storage device in a
computing system, but it usually refers to the degree of loudness
or the amount of space in daily life. We fine-tune the PLM with
the collected log messages to mitigate the threat.

External threats. (1) Software drastic evolution. Soft-
ware systems possibly experience a drastic change, such as com-
plete code restructuring or infrastructure renewal. In such sce-
narios, logging statements are likely to be altered significantly,
and our approach has limitations to handle it without incre-
mental learning. Nevertheless, our comparison between Spark2
and Spark3 over two years shows limited extreme changes. (2)
Limited dataset. EvLog has been evaluated with only two real
datasets and a synthetic dataset, and more real datasets with
diverse job types are necessary to validate EvLog’s effectiveness.
However, as this is a brand-new task, datasets are sparse and
challenging to collect. To address this issue, our created dataset
is collected with representative 22 benchmark workloads from
two widely-used systems. Although this dataset does not cover
all possible workloads, it includes many commonly used ones

and provides a practical simulation of the task.

4.8 Summary

Existing advanced log localization models are proposed to
discover anomalous logs that may indicate faults in a system au-

tomatically, but they ignore software evolution activities. This
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chapter first empirically identifies three challenges (i.e., parser
errors, evolving events, and unstable sequences) carried with
software evolution and discusses how these challenges can af-
fect localization models. Second, we propose EvLog to address
the above challenges. To deal with the first two challenges, we
develop a parser-free extractor to mine multi-level semantic rep-
resentation from logs. Then, an anomaly discriminator with an
attention mechanism is built to overcome the unstable sequence
issue. At last, the effectiveness of EvLog in identifying anoma-
lous logs over software evolution is confirmed by evaluating it on
large-scale system logs. This is a newly identified research task
in anomalous log localization due to software evolution, and the
associated code of EvLog as well as the newly collected datasets,
are released for research purposes. We hope our study can moti-
vate more future work on software evolution in the log analytics

community.

O End of chapter.



Chapter 5

Log Sequence Synthesis for

Anomaly Detection

5.1 Introduction

The log analysis community has proposed numerous tech-
niques to assist maintainers in automatically inspecting the large
log files produced by modern complex systems [11, 121, 122,
123]. Despite the continued development of automated solu-
tions for software maintenance through log analysis, there has
been a lack of emphasis on the need for effective datasets. Con-
sequently, only a few of these techniques have been successfully
deployed in real-world settings. This highlights the gap between
the limited log data used in academic research and the complex-
ity of industry deployment [6].

Acquiring sufficient, high-quality, and representative logs
for practical analysis is challenging. On the one hand, indus-

trial logs from real-world large service providers [6, 93, 83, 124]

107
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Figure 5.1: Difference of existing passive-collection approach and our active-
generation methodology AutoLog.

(e.g., IBM, Microsoft) contain rich events but have privacy con-
cerns, making it difficult to release them publicly for researchers.
On the other hand, logs collected in laboratory environments
using simulation [74, 10, 72] are publicly available but contain
simple events produced from limited standard workloads. As
a result, they do not accurately reflects the complex run-time
workflow of large-scale software. In either case, existing datasets
are based on a passive-collection methodology that retrieves log
files after running applications in a computing system, as de-
scribed in Fig. @ (Up). The output logs from the passive-
collection methodology are solely dependent on the value of in-
puts, which impedes exploring and evaluating models on three
aspects, namely:

(1) Comprehensiveness of log events. Log events are formu-

lated as logging statements in source code for execution. When
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collecting logs passively, the diversity of log events is mainly
determined by the variety of input workloads. For example, the
widely-used Hadoop dataset [74] was generated using only two
test applications. Even though the system is deployed in scale,
it is still impractical to traverse all what-if scenarios [125] during
execution to trigger complete logging statements by deliberately
designed workloads.

(2) Scalability over diverse systems. Collecting logs from
new systems requires engineers to re-deploy the system and
re-implement workloads, which is time-consuming and labor-
intensive [72, [113]. Hence, existing datasets are inadequate in
terms of system logs, making it challenging to evaluate the gen-
eralization ability of proposed log analysis techniques across di-
verse systems. For example, the most popular dataset LogHub [[72],
integrates only five labeled system logs for evaluating anomaly
detectors.

(3) Flexibility of log utility. While existing datasets allow
for minor modifications (e.g., anomaly rate) for evaluation pur-
poses [B89, 126], these changes are inadequate for imitating diver-
sified scenarios. For example, when maintainers need to analyze
the functionality of a storage component, existing datasets with
anomaly-or-not annotation cannot distinguish these component-
specific logs. Hence, the complicated conditions in the actual
production environment necessitate a more flexible and control-
lable log collection methodology.

The limitations of the current passive-collection methodol-
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ogy have led to the need for effective log collection for build-
ing practical solutions. Since system logs are generated during
the execution of logging statements in the source code, (e.g.,
LOG.error (" "failed to start web server.'')), we consider
the log collection problem as the task of constructing log se-
quences based on the execution order of logging statements. To
create log sequences, we adopt the idea from program analysis to

develop AutoLog, the first Automated Log generation method-

ology that actively generates effective datasets for anomaly de-
tection (Fig. 15:11 (Down)). The novel static-guided approach can
uncover execution paths and produce rational log sequences [41,
51, 44].

Specifically, AutoLog generates effective log datasets with
three phases: (1) logging statement probing phase explores all
methods containing the logging statements to achieve compre-
hensive log events coverage. (2) log-related execution path find-
ing phase, which prunes the call graphs and acquires the execu-
tion paths related to the logging statements to ensure scalability.
(3) log graph walking phase, which forms log sequences from ex-
ecution paths and labels the anomaly sequences based on expert
annotations. The controllable parameters of AutoLog enable re-
searchers to customize the log dataset with different data sizes,
anomaly ratios, and component indicators, providing flexibility
in log utility.

We conduct an extensive evaluation of AutoLog to 50 pop-

ular Java projects and compare the resulting dataset to existing
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passively-collected datasets, showing its superiority from three
perspectives: (1) AutoLog generates 9x-58x more log events
than existing datasets from the same system, and covers 87.77%
of all log events of the 50 projects on average. (2) AutoLog suc-
cessfully produces logs at least 15x faster than the collection
time for existing log datasets, with tens of thousands of mes-
sages per minute on average. (3) AutoLog is built with options
to change the data size, anomaly ratio, and certain components
of logs, supporting a wide range of development environment
simulations. Further, we show that existing anomaly detection
models effectively gain improvements (1.93%) by learning from
the comprehensive log dataset generated by AutoLog. Thus, we
believe that the data generation methodology AutoLog can serve
as a critical resource for developing advanced log analysis algo-
rithms, as well as for providing testing and benchmarking data
for such algorithms to ensure software reliability.

To summarize, the contributions of this chapter are:

o We present AutoLog, a novel, widely applicable automated
log generation methodology that addresses three limita-
tions of existing log datasets: lack of comprehensiveness,

scalability, and flexibility.

o AutoLog has three phases: logging statement probing, log-
related execution pathfinding, and log path walking.

o Extensive experiments show that AutoLog achieves a com-

prehensive (87.77%) coverage of log events and efficiently
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Table 5.1: Statistics and descriptions of existing datasets.

Dataset ‘ ‘ #Event ‘ # Workload ‘ #Failure ‘ #Message ‘ CollectionTime ‘ Annotation
D-HDFS 30 NA 11 11,175,629 38.7 Hours v
‘D-Hadoop 242 2 3 394,308 NA v
D-BGL 619 NA NA 4,747,963 214.7 days v
D-Zookeeper s NA NA 207,820 26.7 days X

produces log datasets (over 10,000 messages/min) on Java
projects, and offers the flexibility for adapting to multiple
scenarios. We further demonstrate that AutoLog improves

anomaly detectors by 1.93%.

5.2 Motivating study

5.2.1 Study Subject

We select four widely-used datasets (Table El]) as subjects
released by different project teams, including distributed sys-
tems and supercomputers. In this table, #Event, #Workload,
#Failure, and #Message show the number of log events, exe-
cuted workloads, failure types, and log messages in each dataset,
respectively. In particular, D-HDFS [10], D-Hadoop [74], and
D-BGL [113] datasets are collected for anomaly detection after
running normal workloads and injecting several types of failures
in each system, respectively. D-Zookeeper [72] is collected by

running several benchmarks without labeling.
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1 // hdfs/server/datanode/DataXceiver. java
2> void methodA (){
while (datanode.shouldRun){
LOG.info("Receiving block " + block); //Log@tl
if (blockReceiver){
6 methodB () ;}
7 elseq{
8 methodC () ;}
0}
11 void methodB(){
12 LOG.info("Received block " + block); //Log@2

13}

14 void methodC (){

15 methodD () ;

16}

17 void methodD (D {

18 msg = "Join on responder thread, timed out.";

19 LOG.warn("Failed to delete restart meta file."); //Log@3
20 LOG.warn(msg); //Log4

21 }

Listing 5.1: A simplified example from HDFS.

5.2.2 Are Existing Datasets Comprehensive?

We first investigate whether the existing log datasets pro-
vide comprehensive coverage of logging statements. Consider-
ing the case in Listing from Hadoop, Log@2 will occur if
blockReceiver is enabled; otherwise, Log@3 and Log@4 will be
logged. Nevertheless, we find that the latter were absent in the
D-HDFS dataset, likely due to blockReceiver being enabled at
all times. As a result, the anomaly detection techniques trained

with an inadequate dataset may fail to tackle the unseen log,
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and even their experiment conclusions may not be representa-
tive. For instance, neglecting the responder connection time
anomaly, which is associated with Log@3 and Log®@4, can happen
if the dataset used for training lacks these logs. Furthermore,
Table reveals that the existing datasets collected through
passive-collection approaches are limited in the number of failure
types and workloads they cover. The literature [127, 128] im-
plies that although a range of workloads has been implemented,
it is still unrealistic to inject all types of anomalies to trigger
all log events. Thus, these datasets fall short of comprehensive

coverage, creating a significant gap with real-world scenarios.

5.2.3 Are Existing Datasets Scalable?

Validating the generalization ability over diverse systems is
critical for practical log analysis algorithms. We use the term
scalability to measure the effort (e.g., time, workforce) we should
put in to acquire logs from multiple system sources.

To determine the scalability of existing datasets, we sum-
marize their log message amounts and collection time in Ta-
ble El] The table reveals that it takes a long time to collect
logs, even after the system has been deployed and configured.
For example, collecting 207,820 log messages from the Zookeeper
takes more than 26 days. Additionally, since existing datasets
are obtained from running system applications, it requires ad-

ditional expert efforts to redeploy and rerun the applications
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when extending the workloads to a new system. Unfortunately,
software maintainers cannot afford to wait such a long time be-
fore developing or validating new algorithms. In short, existing
datasets are not scalable enough, necessitating the exploration

of a new, more efficient approach to log collection.

5.2.4 Are Existing Datasets Flexible?

Previous research has examined the impact of certain dataset
characteristics, such as data distribution and data selection, on
log-based anomaly detectors [39, 126]. However, to further in-
vestigate the performance of log analytics, it is necessary to cus-
tomize log datasets to simulate diverse scenarios, which requires
flexibility.

Ideally, all data can be collected, but in reality, data can-
not be completely collected (or collected in a large enough quan-
tity), and they suffer from restrictive flexibility. For example,
to increase the anomaly ratio from 0.1% to 15%, researchers
may need to remove a large number of normal logs (150x) from
the existing dataset, sacrificing data quantity [126]. Moreover,
logs collected from system files without component specifica-
tions raise difficulties for component-wise analysis. More ingre-

dients of the flexibility are elaborated in Section H.5.4. In this

regard, existing datasets cannot flexibly demonstrate model ef-
fectiveness under various scenarios, motivating a controllable log

sequence acquisition approach.
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5.3 Methodology

5.3.1 Overview

Log files are created every time when a system executes
logging statements. Therefore, we view the log sequence gener-
ation problem as a task of finding the execution paths related to
logging statements in the program. Generating log sequences for
anomaly detection involves two primary questions: how to gen-
erate program execution paths that include logging statements
(Phase2), and how to identify whether the execution path pro-
duces an anomaly or not (Phase3).

To tackle the problem, AutoLog takes the program as in-
put and outputs a dataset for anomaly detection by analyz-
ing its execution paths. It comprises three phases, as illus-
trated in Figure. @: The first phase builds call graphs for the
project and marks all methods that contain logging statements
(LogMethod), enabling comprehensive coverage of log events.
The second phase prunes out the call graph nodes and records
the log-related execution paths (LogEPs) within each remain-
ing method to overcome the scalability issue. The third phase
propagates logging statement labels from domain experts to all
LogEPs. AutoLog eventually generates flexible log sequences
with chaining LogEPs across methods based on their calling re-

lationship.
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Figure 5.2: The overall framework of AutoLog with three phases: logging
statement probing, log-related execution path finding, and log path walking.
The details of ”Acquiring Log-related Execution Path” are illustrated in Fig-
ure.

5.3.2 PHASEI1L: Logging Statement Probing

To cover comprehensive log events, AutolLog starts with
exploring the methods containing logging statements and the

calling relationships of these methods.

Deriving Call Graphs

Initially, we perform a standard static analysis to construct
a call graph that chains methods based on their execution-time
relationships in a program [129]. A call graph is a directed
graph where each node identifies a method and each edge rep-
resents a pair of (caller, callee) method-level relationships. Au-
toLog derives call graphs with the context-insensitive pointer
analysis [130] to enhance the precision of the call graph in han-
dling virtual method calls, calls through interfaces, and poly-
morphism. Afterwards, we treat each call graph as a directed

acyclic graph after marking the cycles induced by recursion in-
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vocation.

Marking LogMethod

Since we concentrate on logs, AutoLog identifies methods
containing logging statements (LogMethods) by checking whether
any logging API is used in a method. To detect a variety of log-
ging APIs used in different projects, we summarize commonly-
used logging frameworks (e.g., slf4j [131]) and capture logging
APIs by analyzing the invocation of these popular frameworks.
Compared to the regular expressions applied in LogCoCo [41],
this API-based analysis is capable of recognizing more compre-
hensive customized logging APIs by examining the inheritance
relationships. Figure. illustrates how AutoLog manages List-
ing , where methodA, methodB, and methodD are recognized
as LogMethod (highlighted in red).

5.3.3 PHASE2: Log-related Execution Path Finding

An intuitive idea to solve the execution path finding prob-
lem is to construct the entire execution graph of a project and
traverse it. However, in most cases, large-scale software contains
an infinite number of paths [132] so that exhaustive enumera-
tion undoubtedly causes path explosion problem [133]. To over-
come scalability challenges, AutoLog takes two steps: (1) prun-
ing out the call graph nodes that will not induce LogMethods;

(2) traversing the intra-method execution graph and recording
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the execution paths that are related only to logging activities.

Pruning Call Graph

The goal of pruning is to eliminate redundant nodes from
the call graph, particularly those that neither represent Log-
Method nodes nor nodes that lead to any LogMethod nodes.
A node may induce a LogMethod node in two ways: (1) by
calling it directly, or (2) by calling it indirectly through other
intermediate nodes. Identifying the LogMethod-inducing nodes
can be viewed as a graph sorting problem that finds all ancestor
nodes of specific nodes (i.e., LogMethod nodes) in the graph. To
do so, AutoLog performs topological sorting [134] over the call
graph. Using the topological sorting, a node is considered a non-
LogMethod-inducing method if it is neither a LogMethod nor
comes before any LogMethod, indicating that it is not an ances-
tor of any LogMethod. In Figure. , red, yellow, and dashed
contour nodes are used to represent LogMethod, LogMethod-
inducing methods, and non-LogMethod-inducing methods, re-
spectively.

All non-LogMethod-inducing nodes and the edges associ-
ated with them (represented by dashed lines) will be pruned out.
The resulting pruned graph (denoted as C'G’) is much smaller
than the original call graph since many methods do not contain
or induce other logging statements. For example, only 14.79%
of nodes are reserved after pruning call graphs for the HDFS

system. Because only the remaining methods are used for fur-
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Figure 5.3: The simplified execution graphs for methods in Listing EI

ther analysis, the pruning step significantly promotes AutoLog’s

efficiency and facilitates subsequent analysis.

Restoring Logging Statements

This step involves restoring logging statements by resolv-
ing run-time parameters to provide more detailed information
beyond the specific logging statements. A logging statement
typically includes constant strings written by developers (e.g.,
“Receiving block”) and run-time parameters (e.g., block).
Specifically, AutoLog resolves the parameters that are constant
string variables inside the methods. For example, the param-
eter msg (Line20) is resolved from its assignment (Linel8) in
Listing. @ For other types of parameters (e.g., block), Au-
toLog replaces them with a dummy token (i.e., <*>) since they
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are typically removed during preprocessing for anomaly detec-

tion models [23, [77].

Acquiring Log-related Execution Paths

Log sequences generate along with software run-time, re-
flecting the control-flow paths and execution states [51, 135, 87,
136]. However, obtaining the order of realistic log events by
enumerating execution paths from the entire application can be
challenging due to their huge size [137]. To solve this issue, Au-
toLog constructs and traverses the small-scale execution graph
for each method in the CG’ to enable scalability.

Particularly, AutoLog builds an execution graph with con-
trol flow information for each method and links the invocation
with the corresponding method in the entry and exit points.
Each node in the execution graph represents an executed activ-
ity, and the edge represents the relationship between two activ-
ities in the temporal order.

Afterwards, AutoLog traverses each execution graph and
only records log-related execution paths (LogEPs) for each method,
which includes the invocations and logging activities (i.e., log-
ging statements). The invocation is noteworthy because a log
sequence in a method can be interrupted by another log se-
quence introduced by the invocation. AutoLog derives LogEPs
for each method by using three strategies. Figure. depicts
the execution graphs for four methods of Listing p.1| to illustrate

the strategies.
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» Strategy #1: For nodes that are both non-leaf nodes and
LogMethod in the CG’, AutoLog considers the execution
order of invocations and logging activities. In our case,
we obtain two LogEPs for methodA: [Log@l, callB], and
[Log@l, callC].

> Strategy #2: For leaf nodes in CG' that are definitely Log-
Methods, AutoLog enumerates all possible execution se-
quence of logging activities. This strategy is applied to
methodB and methodD, leading to the LogEP of [Log@2]
and [Log@3, Log@4], respectively.

» Strategy #3: For the non-leaf and non-LogMethod nodes
in the CG’, AutoLog records all possible invocation se-
quences in execution. In this case, one LogEP is derived

for methodC: [callD] applying this strategy.

In AutoLog, loops (e.g., for, while) are viewed as paths
that are repeatedly traversed in a tail-recursive way and are
cycle-free. This crucial feature allows our approach to enumer-
ate all possible execution paths. Nodes within the loop can
occur multiple times in a row to mimic the actual execution
sequences. When acquiring LogEPs, we mark the nodes (i.e.,
first and last node) in a loop with a special sign. For instance,
LogEP for methodA will be marked as: [Log@l+, callB.,q],
and [Log®@ly+, callCepql.

Although LogEPs provide all possible executable paths,

there exist some paths that are not executable under any in-
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put values. To avoid such infeasible paths, we conduct intra-
procedural constraint analysis following previous studies [51].
In specific, we gather all constraints for each LogEP and fil-
ter out any LogEPs that contain unsatisfiable constraints. This
process makes the generated LogEPs more realistic. Using the
scalable traversal strategy, AutoLog obtains all LogEPs in less
than 1.5 hours in an HDF'S system that includes 3,749 methods
(pruned) and 2,535 logging statements.

5.3.4 PHASE3: Log Path Walking

This phase is devised with the goal of generating labeled log
sequences to simulate the actual application execution by chain-
ing LogEPs from each method. To achieve accurate labels while
saving annotation effort, AutoLog uses a seed-propagation strat-
egy that involves experts identifying a set of anomaly LogEPs as
seeds, followed by automatically propagating the labels of these
anomaly LogEPs to all acquired LogEPs. Labeled log sequences
are eventually generated by a succession of random LogEP se-
lection step which walks over the invoked methods. The choice
of LogEPs can be controlled by setting specified data size, ex-
ecution entrance and anomaly rate, allowing a flexible dataset

that simulates execution logs in multiple scenarios.
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Seed Anomaly LogEP Annotation

Since identifying anomalous logs is challenging and mostly
relies on domain expert knowledge, we adopt the human-annotation
process similar to existing log-based anomaly detection datasets [[113,
74, 10]. However, AutoLog differs from existing datasets in that,
it can automatically propagate labels from a set of anomaly unit
to the sequence-level, significantly improving the annotation ef-
ficiency.

We use LogEP as an anomaly unit for expert labeling as
it is a small execution path reflecting the system behavior in a
period. The output of this step is a set of seed anomaly LogEPs
that must produce anomalies. To obtain anomaly LogEPs, we
design the annotation process with alerting statement annota-
tion and anomaly LogEP identification. The alerting statement
annotation is designed to filter out a large number of normal log-
ging statements (e.g., Log@1). To do so, we present all logging
statements, their corresponding code snippets as the execution
context, as well as the nearby comments inserted by developers,
for annotators to decide whether they are alerting logging state-
ments for an anomaly. Taking the HDFS system as an exam-
ple, we present the example alerting statements and their corre-
sponding potential anomalies in Table . However, identifying
alerting statements is not enough for profiling system activities.
Hence, anomaly LogEP identification aims to further determine

whether LogEP will certainly lead to anomalies. To recognize
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Table 5.2: Alerting logging statements examples and their potential anomaly
types in HDF'S system.

Anomaly Type Alerting Logging Statements Examples

Layout version on remote node does not match this

Version mismatch , .
node’s layout version.

Unable to get json from Item.

Disk/Storage error Unexpected health check result for volume < * >.

Unresolved dependency mapping for host .

D d
ependency ertor Continuing with an empty dependency list

anomaly LogEPs, we ask annotators to manually check each Lo-
gEP that contains alerting statements. The identified anomaly
LogEP is considered anomaly seeds for propagation in the next

step.

Anomaly Label Propagation

To generate an effective anomaly detection dataset, it is
important to have labels at the sequence-level even though the
annotations are done at the LogEP-level to save human effort.
To this end, AutoLog uses a strategy called seed propagation
to propagate the labels of seed anomaly LogEPs to other Lo-
gEPs, with the goal of figuring out whether a LogEP is infected
by the anomaly label. The main idea is that: If a LogEP in
one method contains an anomaly (e.g., methodD), then all other
LogEP invokes this method (e.g., [callD]) may also induce an
anomaly.

The propagation starts from the seed anomaly LogEPs marked

infected. The propagation is done recursively by checking whether
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a LogEP contains other infected LogEPs brought from invoca-
tions. After the propagation, infected LogEPs are likely to, but
will not necessarily cause an anomalyz, whereas others must be

anomaly-free.

Generating Log Sequences

Given the LogEPs, AutoLog eventually generates each ac-
tual log sequence by selecting and chaining the LogEPs in a top-
down approach. The top-down random walking process works
as follows: It starts at an entrance method and walks along invo-
cations, with one LogEP being randomly chosen at each walking
step. If an invocation exists in the current chosen LogEP, Au-
toLog walks to the callee method and then chooses a LogEP in
the callee method. The logging statements in all chosen LogEPs
are chained according to the invocation relationships to form the
log sequence.

As one log sequence reflects the execution path of a single
thread, AutoLog generates a labeled sequence at each time with
two walking strategies and combines the sequences to form the

datasets for anomaly detection:

o To generate an anomaly log sequence, we always select the
infected LogEP in every step until we have selected an
anomaly LogEP that may contain alerting logging state-

ments.

o To generate a normal log sequence, we randomly select a
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LogEP of each method but take a step back when selecting
an anomaly LogEP, and re-choose another LogEP.

During the walking, invocations or logging statements within
the loop may occur successively more than once. The log se-
quence generation process with random path selection enables
the flexibility of datasets. It can be decorated with a set of
hyper-parameters to generate more controllable log sequences.
For example, the component indicator (CI) controls the start-
ing point to simulate the execution path in a specific component

(e.g., storage component), and the anomaly rate AR controls the

# Anomaly Sequence
#All__Sequence

anomaly ratio ( ) in the generated dataset.

5.4 Implementation

5.4.1 Experiment Environment

AutoLog has been implemented by 5,182 lines of Java code
with Soot [138], a Java bytecode optimization and analysis frame-
work. We run all experiments on Ubuntu 18.04. The experi-
ments are carried out on a machine with an Intel(R) Xeon(R)
Platinum 8255C CPU (@2.50GHz) with 128GB RAM. We set
the AR to be 3% and C1 to be all possible paths to ensure the

coverage, unless otherwise specified.
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5.4.2 Annotation

To ensure the correctness of annotation, we invite three
Ph.D. students who have at least two-year experience in dis-
tributed system research and development, two of whom anno-
tate individually, and the other one works as an adjudicator to
discuss the disagreements with annotators. They are all allowed
to access the Internet for searching answers. The agreement
score between annotators measured by Cohen’s kappa [139] be-
fore adjudication is 0.841 and 0.834 in alerting statement anno-
tation and anomaly LogEP identification, respectively. All an-
notators reach a consensus on the labels after discussing them

with the adjudicator.

5.5 Experiments

We evaluate AutoLog using four research questions:
RQ1: How comprehensive are the datasets generated by Au-
toLog?
RQ2: Is AutoLog scalable for real-world applications?
RQ3: How flexible are the datasets compared with passively-
collected datasets?

RQ4: Can AutoLog benefit anomaly detection problems?
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5.5.1 Experimental Settings

Existing Datasets

To verify the effectiveness of AutoLog, we choose three
widely-used publicly available datasets collected from Java ap-
plications. We use D-sys and AutoLog-sys to denote the baseline
datasets collected from system sys and collected by AutoLog, re-

spectively. Details of the datasets are illustrated as follows:

« D-Hadoop [74]. Hadoop is an open-source framework de-
signed to store and process large-scale data efficiently. The
dataset is collected via running two standard applications

and injecting three types of failures for anomaly detection.

« D-HDFS [10]. HDFS is a distributed file system for large-
data storage, enabling high-throughput access to data. D-
HDEF'S is collected from a private cloud environment exe-

cuting benchmark workloads with labeled anomalies.

o D-Zookeeper [[12]. Zookeeper provides a centralized ser-
vice to manage a large set of hosts (e.g., synchronization,
configuration information management). D-Zookeeper is
collected in a lab environment for log analysis without la-

belling.

Since this chapter presents the first methodology that ac-
tively generates log datasets without deploying and running the
system, we compare AutoLog with all existing Java-based log

datasets in our research questions.
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Evaluation Subjects

Apart from three projects associated with existing log datasets,
we extensively evaluate the effectiveness of AutoLog on the most
popular 50 projects from the Maven repository [140], with more
than 10,000 usage times for each. The selected projects in-
clude, but are not limited to, distributed streaming platforms
(e.g., Kafka), core Java packages (e.g., Apache HttpClient), and
unit testing frameworks (e.g., JUnit). Among them, we present
the detailed result of three widely-studied distributed system

projects below and report statistical results for other projects.

 Apache Storm [141]. It is a distributed real-time computa-
tion system, allowing large-scale data processing and high-

velocity data streams.

o Flink [[142]. Flink is a stream processing engine that can

handle scale system events with low latency.

« Kafka [143]. Kafka is a distributed event storage and stream-

processing platform applied in thousands of companies.

Metrics

» Coverage. Motivated by software testing studies [144, 41],
we evaluate the comprehensiveness of logging coverage, which

measures the percentage of the discovered log events to the

#Log_FEvent )
#Total__Log_Fvent/*

We also use D-Coverage to evaluate the ratio of log events

total log events designed in the application (
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Table 5.3: The comparison of datasets for comprehensiveness. D-Coverage
is reported for the systems with publicly log datasets.

Dataset ‘ # Log Event ‘ Logging Coverage ‘ D-Coverage ‘ Increment (1)
‘D-Hadoop 242 242/3426 (7.1%)
AutoLog-Hadoop 2879 2879/3426 (84.0%) | 219/242 (90.5%) 12x
D-HDFS 30 30,/1700 (1.8%)
AutoLog-HDFS 1367 13671700 (80.4%) | 27/30 (90-0%) 58x
D-Zookeeper 7 77/758 (10.2%)
AutoLog-Zookeeper 740 740/758 (97.6%) 77/77 (100%) ox
AutoLog-Apache Storm 1754 1754/1887 (93.0%) - -
AutoLog-Flink 1574 1574/1711 (92.0%) - -
AutoLog-Kafka 847 847/1002 (84.5%) - -

in existing datasets that are covered by AutoLog:

( #Log_ Fvent_Covered_by AutoLog )
#Log Fvent_in_ Existing_Dataset’*

o Ezecution Time. To validate the scalability of AutoLog, we
report the program execution time for each system, which
includes the time for code analysis and data generation in

a single machine.

5.5.2 RQ1: How Comprehensive are the Datasets Gen-
erated by AutoLog?

We evaluate the comprehensiveness of the dataset gener-
ated by AutoLog regarding the number of log events, logging
coverage, and D-Coverage, illustrated in Table .

Compared to the existing log datasets, AutoLog effectively
enhances the comprehensiveness of log events. Firstly, AutoLog cov-
ers an average of 87.38% logging statements over six systems,
demonstrating its ability to capture logging statements designed

in code. The number of log events generated by AutoLog is
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Figure 5.4: The number of generated log messages and their corresponding
real-time logging coverage.

12x, 58x, and 9x is more than existing datasets collected from
Hadoop, HDFS, and Zookeeper, respectively. Regarding the
missing parts, we analyze them as follows. They mainly come
from the restrictive call graph construction phase [51], the limi-
tation of logging statement restoring [145] across different meth-
ods, and unreachable execution paths that we have eliminated.
Taking the restoring process as an example, if the constant string
msg is defined outside methodD in Listing , AutoLog has dif-
ficulty restoring the Log@4. Secondly, the experiment results
illustrate that AutoLog covers most of the log events in the ex-
isting dataset, achieving 219/242, 27/30, and 77/77 for Hadoop,
HDFS, and Zookeeper systems, respectively. The missing log
events mainly come from optional components of complicated

systems and different deployment settings on varied platforms.
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Figure 5.5: The histogram of logging coverage and the number of log events
over 50 popular projects.

Logging coverage implies the upper limit of the discov-

ered log events in AutoLog; ideally, generating log sequences

for enough time will eventually reach that coverage. Figure p.4

shows the relationship between the number of real-time gener-
ated log messages and its corresponding logging coverage in the
HDFS system (denoted as real-time logging coverage). The re-
sults indicate that AutoLog achieves its logging coverage after
generating approximately 350,000 messages.

Besides, we display the logging coverage (left) and the num-

ber of generated log events (right) histogram over 50 popular

Java projects in Figure p.5. The results demonstrate that Au-

toLog achieves an average logging coverage of 87.77%, which is
superior to existing log datasets. Additionally, the number of log
events in different projects ranges from hundreds to thousands,
indicating that existing log datasets with limited log events are

inadequate.
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Table 5.4: The comparison of existing datasets for scalability.

. . # Messages/min Acceleration
Dataset Message | Execution Time
7 Messag (speed) ()
D-Hadoop 394,308 NA NA _
AutoLog-Hadoop 392,427 3.41 hours 1,918
D-HDFS 11,175,629 38.7 hours' 4,813 15x
AutoLog-HDFS 11,376,233 2.62 hours 72,367
‘D-Zookeeper 207,820 26.7 dayst 6 2079%
AutoLog-Zookeeper 211,425 17 mins 12,436
AutoLog-Apache Storm 1,001,245 1.28 hours 13,037 -
AutoLog-Flink 1,003,416 1.21 hours 13,821 -
AutoLog-Kafka 1,002,629 39 mins 25,708 -

T Collection time from its original paper. NA means the authors do not report the collection time.
“-” means the acceleration cannot be compared.

Answer to RQ1: AutolLog shows a significant improvement
(9x-58x) on the number of log events and can effectively cover

87.77% logging statements on average over studied projects.

5.5.3 RQ2: Is AutoLog Scalable for Real-world Appli-

cations?

We evaluate the scalability of our log generation methodol-
ogy, which measures the time required for generating data. To
compare the scalability, we generated the same amount of data
in a single machine as existing public datasets and compared
the data collection time.

The result in Table @ indicates that AutoLog is efficient
in analyzing and generating log sequences from real-world appli-
cations. It can produce messages at high speed, with a range of
1,918 to 72,367 messages per minute. Moreover, compared with

the HDF'S dataset that took 38.7 hours to collect, AutoLog can
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Figure 5.6: Time cost for acquiring LogEPs and the number of analyzed
methods over 50 popular projects.

generate the same amount of data within 2.62 hours (15 times
faster). This scalability is attributed to the call graph prun-
ing and intra-method LogEP derivation steps, which decrease
the number of methods for analysis and solve the path explo-
sion problem. Moreover, because AutoLog is built on source
code, deploying it into a new system is effortless, unlike the long
time required for configuring and rerunning applications in ex-
isting passively-collection methods. Additionally, we investigate
the time spent for execution path finding (Phasel and Phase2)
as LogEPs can be reusable to generate log sequences multiple
times. In particular, we apply AutoLog on 50 Java projects and
measure the execution time, ranging from 687 to 83,969 methods
in a project (as shown in Figure @) Our results demonstrate
that AutoLog can analyze most projects within one hour, indi-
cating its practicality and efficiency.

Although we did not include the annotation time in Ta-
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Table 5.5: The comparison of log datasets for flexibility.

Aspects | D-HDFS | D-Hadoop | AutoLog
Data Size H Partial ‘ Partial ‘ Complete
Component . .
Indicator Partial Partial Complete

Anomaly Rate H Deterministic ‘ Deterministic ‘ Non-deterministic

ble @, AutoLog has an efficient seed-propagation labeling strat-
egy that requires less time than labeling each log sequence in
passively-collected datasets. For instance, independent annota-
tors spent an average of 2 hours on alerting statement annota-
tion and 4 hours on anomaly LogEP identification for 1,367 log
events in HDFS.

Answer to RQ2: AutoLog considerably shortens the dataset
generation time (15x) compared with existing datasets. The
promising path finding time further manifests its scalability

for real-world applications.

5.5.4 RQ3: How Flexible are the Datasets Compared

with Passively-collected Datasets?

We assess the flexibility of AutoLog and its benefits for
log-based anomaly detection. In Table @, we compare Au-
toLog with existing datasets regarding the flexibility over data
size, component-indicator, and anomaly rate.

Different systems require varying amounts of data for algo-

rithm development. For example, a large amount of data can
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be exploited to build algorithms for distributed cloud systems
whereas naive systems only preserve a small amount of data to
study. AutoLog is capable of generating datasets of any size,
whereas D-HDFS and D-Hadoop have partial size restrictions
once they are released.

In addition, engineers may need to focus on specific com-
ponents’ functionality during software development and main-
tenance, which requires component-specific logs for anomaly
detection. While the existing datasets provide limited com-
ponent information, AutoLog is able to produce sequences of
component-indicator logs by starting to walk from constrained
entry nodes during generation.

Moreover, different systems have different fault-tolerance
abilities, which affect the potential anomaly rates in collected
logs. Existing datasets (e.g., D-HDFS) have fixed numbers
of anomaly sequences, requiring researchers to filter out some
anomaly sequences or significantly lower the number of nor-
mal sequences to increase the anomaly rate in a deterministic
way [126]. However, AutoLog can produce a huge amount of
various sequences iteratively, introducing the unseen patterns

and increasing the flexibility for anomaly detection.
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Answer to RQ3: AutoLog effectively generates datasets
with more flexibility of utilization (i.e., data size, component,
anomaly rate) than existing datasets, allowing imitating a

wider range of sophisticated application scenarios.

5.5.5 RQ4: Can AutoLog Benefit Anomaly Detection

Problems?

This RQ explores how AutoLog helps to resolve log-based
anomaly detection. In particular, we train state-of-the-art (SOTA)
detectors on AutoLog and evaluate their performance. This sec-
tion takes HDFSE] to evaluate models on real-machine-generated
logs D-HDFS (denoted as D) and AutoLog-HDFS (denoted as
AutoLog) from the same software version, followed by a perfor-

mance discussion.

Settings

We select the following representative log anomaly detec-
tion models for evaluation: (1) LogRobust [23], which leverages
a bi-directional LSTM network (bi-LSTM) with an attention
mechanism to learn the importance of each log for tackling un-
stable log patterns. (2) CNN [77], which transforms the log
sequence to a trainable matrix, then applies a Convolutional

Neural Network (CNN) for log-based anomaly detection. (3)

1Other widely-used anomaly detection datasets (e.g., BGL) are not generated from
open-sourced software.
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Table 5.6: Comparison of the anomaly detection models over two datasets
D and AutoLog.

Train set H D ‘ AutoLog
Test set  Approach H P R F1 ‘ P R F1
Transformer || 0.889 0.904 0.896 | 0.892 0.996 0.941
D CNN 0.936 0.995 0.965 | 0.959 0.997 0.978
LogRobust 0.942 0.994 0.967 | 0.947 0.988 0.967
Transformer A 0.723 0.755 0.739
AutoLog CNN -t 0.697 0.790 0.741
LogRobust -t 0.673 0.875 0.761
TThe large amount of unseen events will lead to considerably poor
performance.

Transformer [24], which applies a Transformer encoder to learn
context information to distinguish the anomaly logs from nor-
mal logs. When using AutoLog, we set the anomaly rate (3%),
and data split ratio (train: test = 8: 2) to be the same as the
original D.

Following previous research work [23, 99], we adopt Preci-
sion (P), Recall (R), and F1 to evaluate the performance. Pre-
cision is calculated by the percentage of log sequences correctly
identified with anomalies over all sequences that are recognized
with anomalies. Recall is calculated by the percentage of log
sequences correctly recognized with anomalies over the actual
anomaly sequences. F1 Score (F1) is the harmonic mean be-

tween Precision and Recall.
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Results

Table @ presents the performance of different anomaly de-
tection models on two datasets. First, we evaluate models on
the real-world dataset D (test set). We observe that models
trained with AutoLog perform consistently better (1.93% of F1
on average) than trained with D (train set). CNN can achieve
an F1 score of 0.978 after training with AutoLog, even surpass-
ing the SOTA performance by 1.1%. We analyze the reason for
performance improvement after training on AutoLog as follows.
AutoLog generates more comprehensive log events by imitating
a more varied system behavior. Once an anomaly detector has
seen such diverse log events in its training phase, it can effec-
tively detect the anomalies in production environments. The
result demonstrates that AutoLog is effective in generating re-
alistic log sequences, which can help models learn more varied
system behavior and improve anomaly detection accuracy.

Second, we observe that state-of-the-art approaches per-
form well in D dataset but can only reach an F1 score of 0.761
in AutoLog. We attribute the performance gap to the more com-
prehensive log events (e.g., 1367 rather than 30) and diverse se-
quential log patterns generated by AutoLog. This highlights the
need for further research on log semantic encoding and system
behavior profiling to address the challenges posed by complex

log data in real-world deployments of anomaly detection models.
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Answer to RQ4: AutoLog benefits anomaly detection de-
tectors by providing the training resource that allows existing
models to improve (1.93% on average) their performance con-
sistently. It is effective in generating more sophisticated and
practical log data than any existing Java log datasets. It can
serve as a benchmark data generator and training resource for
developing and validating promising anomaly detection mod-

els.

5.6 Case Study

Figure. @ exhibits a case from an HDFS user who tries
to delete blocks and encounters data loss issuea. The user re-
ports the log sequences from Datanode (left) and Namenode
(right). After matching this realistic log sequence in D-HDFS
and AutoLog-HDFS, we find that (1) both D-HDFS and Au-
toLog-HDF'S contain the sequence from Datanode, (2) only Au-
toLog-HDF'S can cover the sequence from Namenode. In Au-
toLog, the acquired execution paths via program analysis sim-
ulate how logging statements are executed (recorded) in soft-
ware to provide realistic log sequences in block deletion. In
addition, the case illustrates the comprehensiveness of logs pro-
duced by AutoLog. Although it is impractical to configure and
enumerate all system activities in software for log collection,

AutoLog addresses the issue by actively analyzing all possible

Zhttps://issues.apache.org/jira/projects/HDFS /issues/HDFS-16829
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Log sequence in Datanode Log sequence in Namenode
Received <*> size <*> from <*> BLOCK* allocate <*>
blk_3317 terminating ... updatePipeline <*> success
Deleted blk_3317 file /data/../blk_3317 updatePipeline <*> success
DIR* completeFile: <*> is closed by <*>

& o-HDFS () AuroLoc-HDFS €3 ouprs () AvroLoc-HDFS

Figure 5.7: User-reported log event sequences from HDFS.

execution paths.

5.7 Threats to Validity

We have identified the following four major threats to va-
lidity. (1) Unpredictable exception handlers: A few run-time
behaviors, such as exception catching, cannot be thoroughly an-
alyzed without actually executing the program. A logging state-
ment can be severed from the execution path by the exception
handler. While exceptions can reflect anomalies, these anoma-
lies are relatively “easy” to be detected (e.g., keyword search).
Existing log-based anomaly detection mainly focuses on the re-
maining “difficult” anomalies. To mitigate this threat, we can
simulate run-time exception-catching behaviors by randomly se-
lecting try-catch statements and setting interruptions in the try
body.

(2) Potential multi-thread intervention: AutolLog analyzes

execution paths and generates log sequences in a single thread.
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Thus, the intervention and communication between multiple
threads may be neglected. However, we notice that modern
anomaly detection models [23, [77, 24] are developed for single-
thread analysis, which starts with separating different threads
based on their thread IDs. In this regard, the lack of multi-
thread log sequences will not hamper the evaluation of existing
anomaly detection models. In the future, we plan to extend
AutoLog to support multi-thread settings.

(3) Unresolved parameters: AutoLog uses a dummy token to
replace unresolved parameters (e.g., addresses, digits, ID charac-
ter strings) in the logging statements, which is supposed to carry
system behavior information. However, previous studies [88, B9
reveal that log event (without run-time parameters) sequences
are sufficient to capture system activities, and parameters may
hinder deep learning-based detectors [23]. Even though the un-
resolved parameters are specified with certain values, they will
be wiped out before feeding into anomaly detection models. In
any case, we regard parameters resolving as an important fu-
ture direction for their utilization in other log analytics (e.g.,
log parser).

(4) Imprecise call graph: Generating precise call graphs
has been known as an open-challenging question in static anal-
ysis community for a long time [146, 147, 145]. Soot [138] uses
Class Hierarchy Analysis (CHA) [148] to handle dynamic dis-
patch (e.g., finding the callee), which has a relatively low accu-

racy due to the polymorphism of Java. To mitigate the impact
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of the imprecise graph, we refined the calling relationship with
context-insensitive pointer analysis that significantly improves

the precision of the call graph.

5.8 Summary

Although log-based anomaly detection has been widely stud-
ied, only a few approaches have been successfully deployed in the
real world because existing datasets suffer from comprehensive-
ness, scalability, and flexibility limitations. To overcome these
limitations, this chapter presents AutoLog, the first automated
log generation methodology for anomaly detection, with three
phases: logging statement probing, log-related execution path
finding, and log path walking. Extensive experiments demon-
strate that AutoLog produces comprehensive coverage of log
events in application with scalability. AutoLog is also equipped
with hyper-parameters to generate log datasets in flexible data
size, component indicator, and anomaly rate. With our replica-
tion package released, we believe AutoLog could be a starting
point for active dataset generation in the log analysis field, which
provides benchmarking data for building practical anomaly de-

tection algorithms.

O End of chapter.



Chapter 6

Empirical Study on
LLM-powered Logging

Statement Generation

6.1 Introduction

As shown in the example below, a logging statement typi-
cally consists of three ingredients: a logging level, logging vari-
ables, and logging texts [2]. Specifically, as illustrated in the
example below, logging level (e.g., warn) indicates the severity
of a log event; logging variables (e.g., url) contain essential run-
time information from system states; and logging texts (e.g.,
Failed to connect to host: <>) provides a description of the

system’s activities.

log.warn("Failed to connect to host: {}", url)

To help software developers decide the contents of logging

statements (i.e., what-to-log), logging statement generation tools

145
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are built to automatically suggest logging statements given code
snippets. Conventional logging suggestion studies [149, 91] re-
veal that similar code tends to have similar logging statements,
and thus, a retrieval-based approach is used to suggest simi-
lar logging statements from a historical code base [150]. How-
ever, such retrieval-based approaches are limited to the logging
statements encountered in that code base. To overcome such
limitation, recent studies employ neural-based methods to de-
cide about single ingredients of logging statements (i.e., log-
ging levels, logging variables, logging text). For example, prior
work [48, 27] predicts the appropriate logging level by feeding
surrounding code features to a neural network. While these
tools have also shown improvements in suggesting important
variables [28] or proper log levels [27, 49|, they lack the ability
to produce complete logging statements containing multiple in-
gredients simultaneously. Some tools [48] require the availability
of certain ingredients to suggest others, which can be impractical
for programmers who need to generate complete logging state-
ments. However, the complete statement generation has been
considered challenging as the model should analyze the code
structure, comprehend the developer’s intention, and produce
meaningful logging text [30]. Moreover, existing neural-based
tools are further restricted by training data with limited logging
statements and may not generalize to unseen code.

Recent large pre-trained language models (LLMs) [151], 152]

have achieved impressive performance in the field of natural lan-
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guage processing (NLP). Inspired by this, the latest logging-
specific model, LANCE [30], treats logging statements genera-
tion as a text-to-text generation problem and trains a language
model for it. LLMs have proven their efficacy in many code in-
telligence tasks, such as generating functional code [[153, 154] or
resolving bugs [155], and have even been integrated as plugins
for developers [[156] (e.g., Copilot [157], CodeWhisperer [158]).
However, their capacity for generating complete logging state-
ments has not been comprehensively examined. To fill this gap,
we pose the following question: To what extent can LLMs pro-
duce correct and complete logging statements for developers?
We expect LLMs, given their strong text generation abilities,
can improve the quality of logging statements. Further, LLMs
have exhibited a powerful aptitude for code comprehension [159],
which paves the way for uncovering the semantics of logging
variables.

Our work. To answer our research question, this empir-
ical study thoroughly investigates how modern LLMs perform
logging statement generation from two perspectives: effective-
ness and generalization capabilities. We extensively evaluate
and understand the effectiveness of LLMs by studying (1) their
ability to generate logging ingredients, (2) the impact of input
instructions and demonstrations, and (3) the influence of ex-
ternal program information. To assess the generalizability of
LLMs, since LLMs are trained on a significant portion of pub-

licly available code, there is a potential data leakage issue in
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which logging statements used for evaluation purposes may be
included in the original training data [155, 160, 161]. It remains
unclear whether LLMs are really inferring logging statements or
merely memorizing the training data. Thus, we further evaluate
the generalization capabilities of LLMs using unseen code.

In particular, we evaluate the performance of eleven top-
performing LLMs encompassing a variety of types—including
natural language and code-oriented models, covering both aca-
demic works and commercial coding tools on LogBench-0O, a
new dataset we collected, consisting of 2,430 Java files, 3,870
methods, and 6,849 logging statements. Additionally, we em-
ploy a lightweight code transformation technique to generate a
semantics-equivalent modified dataset LogBench-T, which con-
tains previously untrained data and thus can be used to evaluate
the generalization capabilities of LLMs. Based on our large-scale
empirical study on LogBench-O and LogBench-T, we summarize
eight key findings and five implications with actionable advice

in Table @

Contributions. The contribution of this chapter is three-

fold:

o We build a logging statement generation dataset, LogBench,
containing the collection of 6,849 logging statements in
3,870 methods (LogBench-0), along with their functionally

equivalent unseen code after transformation (LogBench-T).

o We analyze the logging effectiveness of eleven top-performing



CHAPTER 6. LOGGING STATEMENT GENERATION 149

LLMs by investigating their performance over various log-
ging ingredients, analyzing prompt information that influ-
ences their performance, and examining the generalization

capabilities of these LLMs with unseen data.

o We summarize our results into eight findings and draw five
implications to provide valuable insights for future research

on automated log statement generation.
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Table 6.1: Summarization of key findings and implications in this chapter.

(a) Key findings

Key findings

>» The performance of existing LLMs in generating complete logging statements
needs to be improved for practical logging usage.

©? Comparing the LLMs’ logging capabilities presents a challenge, as models perform
inconsistently on different ingredients.

©? Directly applying LLMs yields better performance than conventional logging base-
lines.

> Instructions significantly impact LLMs, but there is consistency in the relative
ranking of LLMs when used with the same instructions.

©? Demonstrations help, but more demonstrations does not always lead to a higher
logging performance.

> Since comments provide code intentions from developers, ignoring them leads to
decreased effectiveness for LLMs.

¥ Compared to comments, LLMs gain greater advantages from considering additional
methods in the same file.

? Unseen code significantly degrades all LLMs’ performance, particularly in variable
prediction and logging text generation.

(b) Key implications & actionable advice

Key implications & Actionable advice

® How to generate proper logging text warrants more exploration.

® Intriguing alternative, possibly unified metrics to assess the quality of logging
statements.

® LLM-powered logging is promising. Refining prompts with instructions and
demonstration selection strategies for effective few-shot learning should be investi-
gated.

® Providing proper programming contexts over the projects that reveal execution
information can boost LLMs’ logging performance.

® To advance the generalization capabilities of LLMs, developing prompt-based learn-
ing techniques to capture code logic offers great potential for LLMs in automated

logging.
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6.2 Background

6.2.1 Problem Definition

This study focuses on the logging statement generation task
(i.e., what-to-log), which can be viewed as a statement comple-
tion problem: given lines of code (typically a method) and a
specific logging point between two statements, the generator is
then required to predict the logging statement at such point.
The prediction is expected to be similar to the one removed
from the original file. Figure (in dashed line) illustrates an
example of this task, where an effective logging statement gen-
erator should suggest 1o0g.debug("Reload received for path:" + path)
that is highlighted with green for the specified logging pointE].
Following a previous study [30], for the code lines with n logging
statements, we create n-1 inputs by removing each of them one

at a time.

6.2.2 Challenges in Logging Statement Generation

The composition of logging statements naturally makes the
logging generation problem a joint task of code comprehen-
sion and text generation. Compared to code completion tasks,
the generation of logging statements presents two distinct chal-
lenges: (1) inference of critical software runtime status and (2)

the creation of complicated text that seamlessly integrates both

'In this chapter, the logging statement that the generator should predict is always
highlighted by
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Original file

public void handleEvent(Event event){
String path = event.getProperty(PATH);
- log.info("Library at {} validated.", path);
if (PATH != null) {
String includePath = PATH

* Remove logging statement
* Construct <Logging Point>

/" Model input
1 public void handleEvent(Event event){
String path = event.getProperty(PATH);
<Logging Point>
if (PATH != null) {
String includePath = PATH

Model output l Generate logging statements @;

public void handleEvent(Event event){
String path = event.getProperty(PATH);
+ log.debug(“Reload received for path:” + path);
if (PATH != null) {
String includePath = PATH

Figure 6.1: Task formulation for logging statement generation.

natural language and code elements.

First, while code generation produces short methods with a
high degree of functional similarity, logging statements are non-
functional statements not discussed in code generation datasets
(e.g., HumanEval [162], APPS [163]). Nevertheless, logging
statements are indispensable in large-scale software repositories
for documenting run-time system status. To log proper system
status, a logging statement generator shall comprehend program
structure (e.g., exception handling) and recognize critical code
activities worthy of logging. Second, integrating natural lan-
guage text and code variables poses a unique challenge. Logging
statement generators must be mastered in two distinct languages

and harmoniously aligned. Developers describe code functional-
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ities in natural language and then incorporate relevant logging
variables. Likewise, a logging statement generator should be
capable of translating runtime code activities into natural lan-

guage and explaining and recording specific variables.

6.2.3 Study Subject

Motivated by the code-related text generation nature of
the logging statement generation, we opt to investigate top-
performing LLMs from three fields as our study subjects: LLMs
designed for general natural text generation, LLMs tailored for
logging activities, and LLMs for code intelligence. We also eval-
uate state-of-the-art logging suggestion models, which usually
work on a single ingredient, to discuss whether advanced LLMs
outperform conventional ones.

We summarize the details of eleven LLMs in and three con-
ventional approaches in the following sections. Since we already
included official models [164, 165, 166] from the GPT series,
other models that have been tuned on GPT [167, [168] are not
included in our study (e.g., GPT-Neo [167] and GPT-J [168]).

General-purpose LLMs

The GPT-series models are designed to produce natural
language text closely resembling human language. The recent
GPT models have demonstrated exceptional performance, dom-

inating numerous natural language generation tasks, such as
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question-answering [169] and text summarization [170]. Re-
cently, Meta researchers built an open model, LLaMa, as a
family member of LLMs [171], which showed more efficient and
competitive results with GPT-series models. In our chapter, we
select the two most capable GPT-series models based on pre-
vious work [172], i.e., Davinci, ChatGPT for evaluation. We
also select one competitive open-sourced model, Llama2, as the

representative of general-purpose LLMs.

 Davinci (175B) is derived from InstructGPT [173] is an “in-
struct® model meant to generate texts with clear instruc-
tions. We access the Text-davinci-003 model by calling the
official API from OpenAl. We access the model by calling
the official API from OpenAl.

o ChatGPT (175B) is an enhanced version of GPT-3 mod-
els [166], with improved conversational abilities achieved
through reinforcement learning from human feedback [174].
It forms the core of the ChatGPT system [165]. We access
the GPT3.5-turbo model by calling the official API from
OpenAl

e Llama2 (70B) [171] is an open-sourced LLM trained on
publicly available data and outperforms other open-source
conversational models on most benchmarks. We deploy the

Llama2-70B model provided by the authors.
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Logging-specific LLMs

To the best of our knowledge, LANCE [30] is the only work
on training LLMs for automatically generating logging state-
ments, which has been published in top-tier software venues (i.e.,
FSE, ICSE, ASE, ISSTA, TSE, and TOSEM). Consequently, we
choose it as logging-specific LLMs.

« LANCE (60M) [30] accepts a method that needs one log-
ging statement and outputs a proper logging statement in
the right position in the code. It is built on the T5 model,
which has been trained to inject proper logging statements.
We re-implement it based on the replication package [175]
provided by the authors.

Code-based LLMs

Inspired by the considerable success of LLMs in the natu-
ral language domain, researchers also derive Code-based LLMs
that can support code understanding and generation tasks, so
as to assist developers in completing codes. These LLMs are ei-
ther commercial models powered by companies, or open-access
models in academia. For the open-access models with publicly
available weights, we follow the selection of code models on re-
cent comprehensive evaluation studies [176, 177, 178], and re-
serve the LLMs with larger sizes than 6B. The process leads to
four LLMs as our subjects, i.e., InCoder [153], CodeGeex [179)],
StarCoder [177], and CodeLlama [176]. In terms of the com-
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mercial models, we select three popular developer tools as the
study subjects, i.e., TabNine [180], Copilot [156], and Code-
Whisperer [158] from Amazon.

« InCoder (6.7B) [153] is a unified generative model trained
on vast code benchmarks where code regions have been ran-
domly masked. It thus can infill arbitrary code with bidi-
rectional code context for challenging code-related tasks.
We deploy the InCoder-6.7B model provided by the au-
thors.

o CodeGeeX (13B) [179] is an open-source code generation
model, which has been trained on 23 programming lan-
guages and fine-tuned for code translation. We access the

model via its plugin in VS Code.

o StarCoder (15.5B) [177] has been trained on 1 trillion to-
kens from 80+ programming languages, and fine-tuned on
another 35B Python tokens. It outperforms every open
LLM for code at the time of release. We deploy the StarCoder-
15.5B model provided by the authors.

o Codellama (34B) [176] is a family of LLMs for code gen-
eration and infilling derived from Llama2. After they have
been pretrained on 500B code tokens, they are all fine-
tuned to handle long contexts. We deploy the CodeLlama-
34B model provided by the authors.



CHAPTER 6. LOGGING STATEMENT GENERATION 157

« TabNine [[180] is an Al code assistant that can suggest the
following lines of code. It can automatically complete code
lines, generate entire functions, and produce code snippets

from natural languages. We access the model via its plugin

in VS Code.

 Copilot [156] is a widely-studied Al-powered code genera-
tion tool relying on the CodeX [[164]. It can extend existing
code by generating subsequent code trunks based on nat-
ural language descriptions. We access the model via its

plugin in VS Code.

o CodeWhisperer [158], developed by Amazon, serves as a
coding companion for software developers. It can generate
code snippets or full functions in real-time based on com-
ments written by developers. We access the model via its

plugin in VS Code.

Conventional Logging Approaches

Apart from LLMs that can offer complete logging state-
ments, we also select conventional logging approaches that work
on single logging ingredients for comparison. Specifically, for
each ingredient, we choose the corresponding state-of-the-art
logging approaches from the top-tier software venues: DeepLV [4§]
for log level prediction, Liu et al’s [2§8] (denoted as WhichVar)
for logging variable prediction, and LoGenText-Plus [181] for

logging text generation. These approaches learn the relation-
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ships between specific logging ingredients and the corresponding

code features based on deep learning techniquesa.

o DeepLV [48] leverages syntactic context and message fea-
tures of the logging statements extracted from the source
code to make suggestions on choosing log levels by feeding
all the information into a deep learning model. We reimple-
ment the model based on the replication package provided

by the authors.

o WhichVar [28] applies an RNN-based neural network with
a self-attention mechanism to learn the representation of
program tokens, then predicts whether each token should
be logged through a binary classifier. We reimplement the

model based on its chapter due to missing code artifacts.

o LoGenText-Plus [181] generates the logging texts by neu-
ral machine translation models (NMT). It first extracts
a syntactic template of the target logging text by code
analysis, then feeds such templates and source code into
Transformer-based NMT models. We reproduce the model
based on the replication package provided by the authors.

2All the baselines we have reimplemented have been organized in our artifacts.
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Figure 6.2: The overall framework of this study involving five research ques-
tions.

6.3 Study Methodology

6.3.1 Overview

Figure 6.2 depicts the overview framework of this study

involving five research questions from two perspectives: (1) ef-
fectiveness: how do LLMs perform in logging practice? and (2)
generalizability: how well do LLMs generate logging statements
for unseen code?

To start, we develop a benchmark dataset LogBench-O com-
prising 0,849 logging statements in 3,870 methods by crawl-
ing high-quality GitHub repositories. Inspired by the success of
LLMs in NLP and code intelligence tasks, our focus is on assess-

ing their efficacy in helping developers with logging tasks. This
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study first evaluates the effectiveness of state-of-the-art LLMs in
terms of multiple logging ingredients (RQ1). We then conduct a
comparative analysis between state-of-the-art conventional log-
ging tools and LLMs, elucidating differences and providing in-
sights into potential future model directions (RQ2). Next, we
investigate the impact of instructions and demonstrations as in-
puts for LLMs, offering guidance for effectively prompting LLMs
for logging (RQ3). Furthermore, we investigate how external
influencing factors can enhance LLM performance, identifying
effective program information that should be input into LLMs
to improve logging outcomes (RQ4). Last but not least, we ex-
plore the generalizability of LLMs to assess their behavior in
developing new and unseen software. To this end, we evaluate
models on an unseen code dataset, LogBench-T, which contains
code derived from LogBench-O that was transformed to pre-

serve readability and semantics (RQ5).

6.3.2 Benchmark Datasets

Due to the lack of an existing dataset that can meet the
benchmark requirements, we developed the benchmark dataset
LogBench-O and LogBench-T for logging statement generation
in this section. Although we chose Java as the target lan-
guage of our study, due to its wide presence in industry and
research [182], the experiments and findings can be extended to

other programming languages.
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Creation of LogBench-O

We build a benchmark dataset, consisting of high-quality
and well-maintained Java files with logging statements, by min-
ing open-source repositories from GitHub. As the largest host
of source code in the world, GitHub contains a great number of
repositories that reflect typical software development processes.
In particular, we begin by downloading high-quality Java repos-

itories that meet the following requirementsaz

o Gaining more than 20 stars, which indicates a higher level

of attention and interest in the project.

e Receiving more than 700 commits, which suggests the project

is actively maintained and not likely to be disposable.

« Engaging with at least 5 contributors, which demonstrates
the quality of its logging statements by simulating the col-

laborative software development environment.

We then extract the files that contain logging statements in
two steps. We first select the projects whose POM file includes
popular logging utility dependencies (e.g., Logdj, SLF4J), re-
sulting in 3,089 repositories. We then extract the Java files con-
taining at least one logging statement by matching them with
regular expressions [41], because logging statements are always
written in specified syntax (e.g., log.info()). Afterward, we ran-

domly sample the collected files across various repositories, re-

3 All repositories were archived on July 2023
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Table 6.2: Our code transformation tools with eight code transformers, de-
scriptions, and associated examples.

Transformer Descriptions & Example

Add logically neutral elements (e.g., &€ True or /| False)

Condition-Dup
if (exp0) — if (expO || false)

Swap the symmetrical elements of condition statements

Condition-Swap
if (var0 != null) — if (null != var0)

Extract constant values and assign them to local variables

Local variable
var) = const0; — int varl = const0; var0 = varl;

. Separate variable declaration and assignment
Assignment ] )
int var0 = varl; — int varQ; varQ) = varl;

Replace constant values with equivalent expressions

Constant
onstan int varQ) = const0 — int var0 = const0 + 0
For-While Convert for-loops to equivalent while-loops
for (var0 = 0; var0 < varl; var0++) {} «
While-For Convert while-loops to equivalent for-loops
var0 = 0; while (varO0++ < varl) {}
Parenthesis Add redundant parentheses to expression

varQ) = arithExpr0 — varQ = (arithExpr0)

sulting in a dataset of 2,420 files containing 3,870 methods and
6,849 logging statements, which we refer to as LogBench-O.

Creation of LogBench-T Dataset to Avoid Data Leakage

LLMs deliver great performance in multiple tasks; however,
evaluating their performance solely on publicly available data
can be problematic. Since LLMs are trained on datasets that
are obtained through large-scale web scraping [183], these mod-
els may have already seen the benchmark data during their train-

ing, raising concerns about assessing their generalization abili-
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Figure 6.3: An example of how the code (constant) transformer works.

ties [[155, [160, 161]. This issue, commonly known as data leakage,
requires particular attention since most code models [153] have
been trained on public code.

To fairly evaluate the generalization ability of LLMs, we fur-
ther develop an unseen code dataset LogBench-T that consists of
the code transformed from LogBench-O. Prior works have devel-
oped semantics-preserving code transformation techniques that
do not change the functionality of the original code, for the pur-
pose of evaluating the robustness of code models [184, [185, 186,
187]. However, these approaches randomly replace informative
identifiers with meaningless ones, degrading the readability of
the code. For example, after transforming an informative vari-
able name (e.g., totalMemory) to a non-informative name (e.g.,

var0), even a programmer can hardly understand the variables
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and log properly. Such transformations make the transformed
code less likely to appear in daily programming and not suit-
able for logging practice studies. To avoid this issue, we devise
a code transformation tool that generates semantics-preserving
and readability-preserving variations of the original code.

In particular, our code transformation tool employs eight
carefully engineered, lightweight code transformers motivated
by previous studies [[184, 186, 188, 189], whose descriptions, to-
gether with their examples, are illustrated in Table . These
code transformation rules work at the Abstract Syntax Tree
(AST) level, ensuring that the transformed code remains se-
mantically equivalent to the original code. Besides, readability-
degrading transformations, such as injecting dead code [190] and
modifying the identifier names, are eliminated. Additionally,
to affirm the soundness of our transformations, we have limited
our selection to widely-used transformation rules that have been
proven effective in various code-related tasks [187, [184, [191] over
time. Transformation rules are further verified by executing unit
tests on sample projects, which confirm that our code transfor-
mations will not hurt functionality.

The process of transformation begins with converting the
source code into an AST representation using JavaParser [192].
To detect potential transformation points (i.e., specific nodes
and subtrees) for each transformer, a series of predefined check-
ers traverse the AST in a top-down manner. Once the trans-

formation points are identified, each checker will independently
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call its corresponding transformer to perform a one-time trans-
formation. We denote one-time transformation as T : * —
2/, where x and 2’ represent the source AST and the trans-
formed AST, respectively. Each transformer functions indepen-
dently, allowing multiple transformations to be applied to the
same code snippet without conflicts. These single transforma-
tions are chained together to form the overall transformation:
T=1TioT50..07T,. Once all the identified points have been
transformed or the number of transformations reaches a prede-
termined threshold, the AST is converted back into the source
code to complete the transformation process. Figure ex-
hibits a case concerning how a Local variable transformer works.
The constant checker firstly detects transformation points, then
the Local variable transformer replaces the constant expression
{inMb=1024%1024} by {const_1=1024%1024; inMb=const_1} involving a
new variable const 1. The AST changes via transformation

are highlighted in red area.

6.3.3 Implementations

Evaluation

Based on the access ways offered by different LLMs, we
evaluated them as follows.

(1) Released models (Llama2, LANCE, InCoder, StarCoder,
CodeLlama): we ran them on a 32-Core workstation with an In-

tel Xeon Platinum 8280 CPU, 256 GB RAM, and 4x NVIDIA
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GeForce RTX 4090 GPUs in Ubuntu 20.04.4 LTS, using the
default bit precision settings for each model.

(2) APIs (ChatGPT, Davinci): we called their official APIs
to generate the logging statement by providing the following
instruction: Please complete the incomplete logging statement

at the logging point: [Code with corresponding logging point].

As we discussed in Section 6.4.4, we choose the median value

of all metrics across the top five instructions, as determined by
voting, to approximate the instructions most commonly utilized
by developers. We set its temperature to 0 so that ChatGPT
would generate the same output for the same query to ensure
reproducibility. For ChatGPT and Davinci, we use the public
APIs provided by OpenAl with gpt-3.5-turbo-0301 and text-
davinci-003, respectively.

(3) Plugins (Copilot, CodeGeeX, TabNine, CodeWhisperer):
we purchased accounts for each author to obtain the logging
statement manually at the logging point that starts with the
original logging API (e.g., 10g.). This starting point forces these
plugins to generate logging statements instead of other func-
tional codes.

For conventional logging approaches, we reproduced them
based on the replication packages released by the authors, or the
paper descriptions if the replication package is missing. For all
experiments that may introduce randomness, to avoid potential
random bias, we repeat them three times and report the median

results following previous works [193, 194, 195].
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Code Transformation

Our code transformation technique (Section £.3.2) was im-

plemented using 4,074 lines of Java code, coupled with the Java-
Parser library [[192], a widely-used parser for analyzing, trans-
forming, and generating Java code. All transformations were

performed on the same workstation as in the evaluation.

6.4 Result analysis

6.4.1 Metrics

In line with prior work [2], we evaluate the logging state-
ment generation performance concerning three ingredients: log-
ging levels, logging variables, and logging texts. Although differ-
ent ingredients emphasize various aspects of runtime informa-
tion, they are indispensable and complementary resources for
engineers to reason about system behavior.

(1) Logging levels. Following previous studies [48, 27], we
use the level accuracy (L-ACC) and Average Ordinal Distance
Score (AOD) for evaluating logging level predictions. L-ACC
measures the percentage of correctly predicted log levels out
of all suggested results. AOD [48] considers the distance be-
tween logging levels. Consequently, given the five logging lev-
els in their severity order, i.e., error, warn, info, debug, trace,
the distance of Dis(error,warn) = 1 is shorter than the dis-

tance of Dis(error,info) = 2. AOD takes the average distance
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between the actual logging level a; and the suggested logging

level (denoted as Dis(a;, s;)). AOD is therefore formulated as

N . .
AOD — Zizl(1—Dzs(ai}\s;)/Males(ai))

, where NN is the number of
logging statements and Maxz Dis(a;) refers to the maximum pos-
sible distance of the actual log level.

(2) Logging variables. Evaluating predictions from LLMs is
different from neural-based classification networks, as the pre-
dicted probabilities of each variable are not known. We thus
employ Precision, Recall, and F'1 to evaluate predicted logging
variables. For each predicted logging statement, we use 5,4 to
denote variables in LLM predictions and Sy to denote the vari-
ables in the actual logging statement. We report the proportion

of correctly predicted variables (precision:Spdstgt), the propor-
P

tion of actual variables predicted by the model (recallzw),
gt

F1=2 x Precision*Recall)

Precision+Recall

(3) Logging texts. To align with previous research [30,

and their harmonic mean (

29], we assess the quality of the produced logging texts us-
ing two well-established machine translation evaluation metrics:
BLEU [196] and ROUGE [197]. These n-gram metrics com-
pute the similarity between generated log messages and the ac-
tual logging text crafted by developers, yielding a percentage
score ranging from 0 to 1. A higher score indicates greater
similarity between the generated log messages and the actual
logging text. In particular, we use BLEU-K (K = {1,2,4})
and ROUGE-K (K = {1,2,L}) to compare the overlap con-

cerning K-grams between the generated and the actual logs. In
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Table 6.3: The effectiveness of LLMs in predicting logging levels and logging
variables.

Logging Levels Logging Variables
Model L-ACC AOD | Precision Recall F1

General-purpose LLMs

Davinci 0.631 0.834 0.634 0.581 0.606
ChatGPT 0.651 0.835 0.693 0.536  0.604
Llama2 0.595 0.799 0.556 0.608  0.581
Logging-specific LLMs
LANCEf 0.612 0.822 0.667 0.420  0.515
Code-based LLMs
InCoder 0.608 0.800 0.712 0.655  0.682
CodeGeex 0.673 0.855 0.704 0.616  0.657
TabNine 0.734 0.880 0.729 0.670  0.698
Copilot 0.743 0.882 0.722 0.703 0.712
CodeWhisperer 0.741 0.881 0.787 0.668 0.723
CodeLlama 0.614 0.814 0.583 0.603  0.593
StarCoder 0.661 0.829 0.656 0.649  0.653

addition to the token-based match in a sparse space, we also in-
corporate semantic similarity in our evaluation. Following prior
works [[198, 199, 194], we also leverage widely-used code embed-
ding models, UniXcoder [154] and OpenAl embedding [200], to
embed the logging texts to calculate the semantics similarity
between generated and original logging texts, offering another

evaluation metric from a semantic perspective.

6.4.2 RQ1: How do different LLMs perform in decid-

ing ingredients of logging statements generation?

To answer RQ1, we evaluate eleven top-performing LLMs

on the benchmark dataset LogBench-O. The evaluation results
are shown in Table (.3 (levels, variables) and Table @ (logging
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texts), where we underline the best performance score for each
metric. T Note that since LANCE decides logging point and log-
ging statements simultaneously, we only consider its generated
logging statements with correct locations.

Intra-ingredient. Regarding the logging levels, we ob-
serve that Copilot achieves the best L-ACC performance, i.e.,
0.743, indicating that it can accurately predict 74.3% of the log-
ging levels. While other baselines do not perform as well as
Copilot, they also accurately suggest logging levels for at least
60% logging statements. Compared with logging levels, there
are greater differences among models when recommending log-
ging variables. While 70% of the variables are recommended
by Copilot, LANCE can only correctly infer 42% of them. The
recall rate for variable prediction is consistently lower than the
precision rate across models, indicating the difficulty of identify-
ing many of variables. Predicting variables is more challenging
than logging levels, as variables are diverse, customized, and
have different meanings across systems. To address this chal-
lenge, logging variables should be inferred based on a deeper
comprehension of code structure, such as control flow informa-
tion.

Concerning logging text generation shown in Table @,
both Copilot and CodeWhisperer demonstrate comparable per-
formance across syntax-based metrics (BLEU, ROUGE) and
semantic-based metrics, outperforming other baselines by a wide

margin. The comparison between syntax-based metrics and
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Table 6.4: The effectiveness of LLMs in producing logging texts.

Logging Texts
Model .
BLEU-1 BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE.L _cmantics
Similarity
General-purpose LLMs
Davinci 0.288 0.211 0.138 0.295 0.127 0.286 0.617
ChatGPT 0.291 0.217 0.149 0.306 0.142 0.298 0.633
Llama2 0.235 0.168 0.102 0.264 0.116 0.261 0.569
Logging-specific LLMs
LANCE? H 0.306 0.236 0.167 0.162 0.078 0.162 0.347
Code-based LLMs
InCoder 0.369 0.288 0.203 0.390 0.204 0.383 0.640
CodeGeex 0.330 0.248 0.160 0.339 0.149 0.333 0.598
TabNine 0.406 0.329 0.242 0.421 0.241 0.415 0.669
Copilot 0.417 0.338 0.244 0.435 0.247 0.428 0.703
CodeWhisperer 0.415 0.338 0.249 0.430 0.248 0.425 0.672
CodeLlama 0.216 0.146 0.089 0.258 0.103 0.251 0.546
StarCoder 0.353 0.278 0.195 0.378 0.195 0.369 0.593

semantic-encoding metrics reveals a consistent trend across var-
ious LLMs: models exhibiting strong syntax similarity also ex-
hibit high semantic similarity. On average, the studied models
produce logging statements with a similarity of 0.194 and 0.341
for BLEU-4 and ROUGE-L scores, respectively. The result in-
dicates that recommending appropriate logging statements re-

mains a great challenge.

Finding 1. While existing models correctly predict levels for
74.3% of logging statements, there is significant room for im-

provement in producing logging variables and logging texts.

Inter-ingredient. From the inter-ingredient perspective,
we observe that LLM performance trends are not consistently the
same across various ingredients, e.g., models that perform well

in logging level prediction do not necessarily excel in generating
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logging texts. For instance, Incoder fares worst in predicting log-
ging levels but performs better in generating logging texts (the
fourth best performer). Upon manual investigation, we observe
that Incoder predicts 41% of the cases with a debug level, most of
which are actually intended for the info level statements. Nev-
ertheless, either Copilot or CodeWhisperer outperforms other
baselines in all reported metrics. This is likely because sug-
gesting the three ingredients requires similar code comprehen-
sion capabilities, such as understanding data flows, specific code

structures, and inferring code functionalities.

Finding 2. LLMs may perform inconsistently on deciding
different ingredients, making model comparisons more difficult

based on multiple ingredient-wise metrics.

6.4.3 RQ2: How do LLMs compare to conventional
logging models in logging ability?

We compare the results of directly using LLMs for log-
ging against conventional logging models on LogBench-O. As
conventional logging models can only predict one ingredient,
we opt for state-of-the-art models for each one (i.e., DeepLV,
WhichVar, and LoGenText-Plus) and present their performance
against LLMs in Figure @ The boxplot illustrates the perfor-
mance range of LLM-powered models, while the points depict
conventional logging models.

Despite being carefully designed for the logging task, the
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Figure 6.4: Comparison between traditional logging models and LLM-
powered models.
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conventional logging models do not surpass LLMs. As shown
in Figure @, conventional models exhibit inferior performance
compared to any LLMs on five metrics (i.e., below the lower
whiskers) and fall below the median on the other three metrics
(i.e., below the line in the box). In terms of logging level pre-
diction, DeepLV performs worse than any of our studied LLMs,
correctly predicting only 57.7% of statements. Regarding gen-
erating logging variables and texts, WhichVar and LoGenText-
Plus show comparable performance to LANCE, but lag behind
other studied LLMs. While the most effective model (Copilot)
achieves a 0.703 semantic-based similarity in logging texts, the
state-of-the-art logging model, LoGenText-Plus, only produces
a 0.485 similarity (yielding a 21.8% drop). These surprising
results show that, without any specific change or fine-tuning,
directly applying LLMs for logging statement generation yields
better performance compared to conventional logging baselines.

Figure @ displays the Venn diagram illustrating the log-
ging levels correctly predicted by DeepLV in comparison to three
chosen LLMs on the LogBench-O dataset. Notably, 97% of the
cases handled by DeepLV can also be predicted by LLMs. In
contrast, DeepLV can only handle 70%, 62%, and 60% of the
cases successfully predicted by Copilot, ChatGPT, and Star-
Coder, respectively.

To demonstrate the ability of LLMs, we present Figure @
to illustrate some statements produced by ChatGPT, InCoder,
Copilot, and TabNine, respectively. Through pre-training, these
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{

register(drivers);

+ bundle);

public Object addingBundle(Bundle bundle, BundleEvent event)
List<Driver> drivers = loadDrivers(bundle, providerURL);

+ LOG.debug("Registered {} drivers in bundle {}", drivers, bundle);

LOG.info(“Bundle {0} has been added in event.", bundle.getName())

Models Generated Logging Statements

ChatGPT

InCoder LOG.info("Registered JDBC drivers: {}", drivers);
TabNine LOG.info("Registered " + drivers.size() + " drivers")
Copilot

LOG.debug("Found " + drivers.size() + " registered drivers in bundle”

Figure 6.6: An example of the generation results from eight models.
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LLMs gain a basic understanding of method activity in adding
bundles with drivers, leading to the generation of relevant log-
ging variables. Notably, code-based LLMs produce more ac-
curate logging statements compared to models pre-trained for
general purposes. In Figure @, general-purpose LLMs (i.e.,
ChatGPT) mispredict the logging statement by focusing on the
event variable in the method declaration, overlooking the driver
registration process preceding the logging point. Conversely,
most code models (e.g., InCoder) capture such processes, rec-
ognizing that are critical variables describing a device
status. We attribute the performance difference to the gap be-
tween natural and programming languages. Training on a code
base enables these models to acquire programming knowledge,

bridging the gap and enhancing logging performance.

Finding 3. When directly applying LLMs to logging state-
ment generation, without fine-tuning, they still yield better

performance than conventional logging baselines.

6.4.4 RQ3: How do the prompts for LLMs affect log-

ging performance?

Previous literature has identified the variance of input prompts
can significantly affect the performance of LLMs’ [198]. For the
LLMs that can take prompts (e.g., ChatGPT, LLaMa2), we
investigate the influences of instructions and demonstrate ex-

amples for their logging purpose.
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Impact of different instructions. LLMs have been shown
to be sensitive to the instructions used to query the LLM some-
times. To compare the impact of different instructions, we con-
ducted a two-round survey involving 54 developers from a world-
leading technical company, each possessing a minimum of two
years of development experience. To begin with, we ask the de-
velopers to individually propose 10 instructions that they would
consider when utilizing LLMs for generating logging statements.
Subsequently, we distributed a second questionnaire, asking de-
velopers to choose the top 5 instructions from the initial round
that they likely to employ. Eventually, instructions receiving
the top 5 votes will be considered for evaluation, shown as fol-

lows.

1. Your task is to generate the logging statement for the cor-

responding position.

2. You are an expert in software DevOps; please help me write

the informative logging statement.

3. Complete the logging statement while taking the surround-

ing code into consideration.

4. Your task is to write the corresponding logging statement.
Note that you should keep consistent with current logging
styles.

5. Please help me write an appropriate logging statement be-

low.
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Figure 6.7: The selected metrics of LLMs’ logging performance with different
instructions.

We then feed these representative instructions into two stud-
ied LLMs, that is, ChatGPT, and LLaMaz2, respectively. The
box plot in Figure @ exhibits logging performance associated
with different instructions. The selected instructions result in
approximately 3% performance variance for each metric, reveal-
ing the importance of designing prompts. Among all metrics, the
difference in logging variable prediction for ChatGPT is slightly
larger, but still in the range of 4% variation. Despite there being
small variations due to different instructions, these variances do
not alter the consistent superiority of ChatGPT over LLaMa2.
In summary, as long as the logging ability of LLMs is evaluated

using the same instructions, such evaluation and comparison are

meaningful.
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Figure 6.8: The selected metrics of LLMs’ logging performance with different
numbers of examples.

Finding 4. Although instructions influence LLMs to varying
extents, there is cohesiveness in the relative ranking of LLMs

with the same instructions.

Impact of different numbers of logging examples.
In-context learning (ICL) is a prevalent prompt strategy, en-
abling LLMs to glean insights from few-shot examples in the
context. Many studies have shown that LLMs can boost compli-
cated code intelligence tasks through ICL implementation [198].
Despite being promising, there are intriguing properties that re-
quire further exploration, for example, the effects of parameter
settings in ICL.

Figure presents the logging performance (i.e., logging
level, variable, texts) in terms of different numbers of demon-
stration examples provided. In this experiment, we vary the
number of demonstrations for ChatGPT and LLaMa2 from 1
to 9. We select and order demonstration examples measured by
using BM25 retrieval methods, as previous works have demon-

strated its effectiveness in code tasks [19§].
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The figure illustrates the impact of the number of demon-
stration examples on LLMs’ logging performance, resulting in a
increment of 2%-8%. Initially, the performance of ICL improves
across all metrics as the number of demonstration examples in-
creases. However, when the number of examples surpasses 5,
divergent trends emerge for different tasks. For instance, in de-
termining logging levels (AOD) and logging variables (F1), the
LLaMa performance peaks at 5 demonstration examples but ex-
periences a decline with further increments to 7. Conversely, in
logging text generation (BLEU-4, Semantics Similarity), LLaMa
performance continues to rise and stabilizes beyond 7 examples.
We attribute these diverse trends to the model distraction prob-
lem [201]. Tasks involving predicting logging levels and vari-
ables demand an intricate analysis of individual program struc-
tures and variable flows, and the introduction of additional ex-
amples with longer input lengths can potentially distract the
model, leading to performance degradation. In contrast, log-
ging text generation involves a high-level program understand-
ing and summarization. More examples allow LLMs to learn

proper logging styles from other demonstrations.

Finding 5. More demonstration examples in the prompt do
not always improve performance. It is recommended to use

5-7 examples in the demonstration to achieve optimal results.
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Table 6.5: The results of logging statement generation without comments.

Logging Levels | Logging Variables Logging Texts

Model AOD F1 BLEU-4 ROUGE-L Semantics Similarity
Davinci 0.834 (0.0%-) 0.587 (3.1%)) 0.133 (3.6%))  0.283 (1.0%)) 0.608 (1.5%))
ChatGPT 0.833 (0.2%1) 0.592 (2.0%)) 0.149 (0.0%-)  0.294 (1.3%4) 0.614 (3.0%))
Llama2 0.789 (1.3%)) 0.574 (1.2%)) 0.099 (2.9%)) 0.255 (2.3%)) 0.544 (4.4%))
InCoder 0.789 (1.4%) 0.674 (1.2%]) 0.201 (1.0%))  0.377 (9.2%).) 0.622 (2.8%J)
CodeGeex 0.848 (0.8%J) 0.617 (6.1%J) 0.149 (6.9%1) 0.306 (8.1%).) 0.578 (3.3%)
TabNine 0.876 (0.5%J) 0.690 (1.1%t) 0.239 (1.2%)) 0.412 (0.7%).) 0.655 (2.1%J.)
Copilot 0.878 (0.5%1) 0.696 (2.2%)) 0.241 (1.2%)) 0.419 (2.1%}) 0.689 (2.0%.)
CodeWhisperer || 0.877 (0.7%]) 0.718 (0.7%) 0.244 (2.0%]) 0.418 (1.6%]) 0.661 (1.6%J.)
CodeLlama 0.804 (1.2%]) 0.581 (2.0%J) 0.087 (2.2%))  0.247 (1.6%J.) 0.544 (0.3%J.)
StarCoder 0.823 (0.7%J) 0.647 (0.9%J) 0.193 (1.0%))  0.369 (2.4%).) 0.591 (0.3%J.)
Avg. A 0.835 (0.8%J) 0.638 (2.1%J) 0.173 (2.2%))  0.338 (3.0%J.) 2.1%J

6.4.5 RQ4: How do external factors influence the ef-

fectiveness in generating logging statements?

While RQ3 discusses the prompt construction for LLMs,
some external program information is likely to affect their effec-
tiveness in logging generation. In particular, we focus on how
comments and the scope of programming contexts will impact
the model performance.

With comment v.s. without comment. Inspired by
the importance of human-written comments for intelligent code
analysis [154, 202, 203], we also explore the utility of comments
for logging. To this end, we feed the original code (with com-
ment) and comment-free code into LLMs separately, compare
their results, and analyze the corresponding performance drop
rate (A) in Table @ in terms of AOD, F1, BLEU, and ROUGE
score. The results show that LLMs consistently encounter per-

formance drops without comments, with an average drop rate
on 0.8%, 2.1%, 2.2%, and 3.0% for AOD, F1, BLEU-4, and
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public void setPhysicalName(String physicalName) {

// Parse off the sequenceld off the end.
// this can fail if the temp destination is Comments
// generated by another JMS system via the JMS<->JMS Bridge

try {
sequenceld = Integer.parselnt(seqStr);
} catch (NumberFormatException e) {
+ LOG.debug("Did not parse sequence Id from " + physicalName);

Without commets (wo/ cmt)
LOG.warn("Invalid sequence number: " + seqStr);

With commets

LOG.debug("Failed to parse sequence Id from " + physicalName);

Figure 6.9: A logging statement generation case using code comments.

ROUGE-L, respectively. The reason is that, comments are used
to describe the functionalities of the corresponding code, thus
sharing similarities to logging practices that record system ac-
tivities.

Figure @ presents an example with CodeWhisperer that
can be facilitated by reading the comment of parse sequence Id.
Without the comment, CodeWhisperer only concentrates on the
invalid sequence number but fails to involve parsing descrip-
tions, which may further mislead maintainers on parsing failure
diagnosis. Moreover, the comments highlight that the exception
is a foreseeable and potentially common issue, which helps the
LLMs in correctly selecting the log level, changing the logging

level from warn to debug.
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public abstract class BrokerPluginSupport extends MutableBrokerFilter

public void start() throws Exception {

super.start(); Method1
LOG.info("Broker Plugin {} started", getClass().getName());}

public void stop() throws Exception {

super.stop(); Target method
+ LOG.info("Broker Plugin {} stopped", getClass().getName());}

Method-level input
LOG.info("Stopped");

File-level input (w/ file)

LOG.info("Broker Plugin {} stopped", getClass().getName());

Figure 6.10: A logging statement generation case using different program-
ming contexts.

Finding 6. Ignoring code comments impedes LLMs in generat-
ing logging statements, resulting in an average 2.43% decrease

when recommending logging texts.

Programming contexts: method v.s. file. Current
logging practice tools restrict their work on code snippets or
methods [30, 29, 28], and ignore the information from other
related methods [204]. However, methods that implement simi-
lar functionalities can contain similar logging statements [150],
which can be used as references to resolve logging statements. In
past works, this constraint was mainly due to the limits in input
size in previous neural-based models. But since LLMs can now
process thousands of input tokens without suffering from such
limitations, we aim to assess the benefits of larger programming

contexts, i.e., file-level input.
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Table 6.6: The results of logging statement generation with file-evel contexts.

Logging Levels | Logging Variables Logging Texts

Model AOD F1 BLEU-4 ROUGE-L Semantics Similarity
Davinci 0.854 (2.6%1) 0.638 (5.3%1) 0.156 (13.0%1)  0.318 (11.2%1) 0.635 (2.9%1)
ChatGPT 0.858 (2.8%t) 0.650 (7.6%1) 0.253 (51.5%7)  0.389 (30.5%1) 0.704 (11.2%1)
Llama2 0.832 (4.1%t) 0.617 (6.2%1) 0.149 (46 1%1)  0.392 (50.2%1) 0.669 (17.6%1)
InCoder 0.815 (1.9%1) 0.745 (9.2%1) 0.307 (51.2%71)  0.521 (35.3%1) 0.734 (11.7%1)
CodeGeex 0.869 (1.6%1) 0.696 (5.9%1) 0.241 (50.6%J.)  0.395 (18.6%71) 0.644 (7.7%1)
TabNine 0.912 (3.6%t) 0.767 (9.9%1) 0.375 (55.0%1)  0.530 (27.7%7) 0.783 (17.0%1)
Copilot 0.916 (3.9%1) 0.742 (4.2%1) 0.346 (41.8%71)  0.522 (22.0%1) 0.816 (16.1%7)
CodeWhisperer 0.913 (3.6%1) 0.792 (9.6%1) 0.401 (61.0%1) 0.559 (31.5%1) 0.811 (20.7%1)
CodeLlama 0.817 (0.4%t) 0.607 (2.4%1) 0.144 (61.8%7)  0.378 (50.6%71) 0.642 (17.6%1)
StarCoder 0.847 (2.2%t) 0.714 (9.3%1) 0.314 (61.0%71)  0.517 (40.1%1) 0.679 (14.5%1)
Avg. A 2.7%1 6.9%1 49.3%71 31.8%71 13.7%1

In this regard, we feed an entire Java file for generating
logging statements rather than the target method. The result in
Table @ presents the effectiveness of file-level input (w/ File)
and the corresponding increment ratio (A). The result suggests
that file-level programming contexts consistently enhance per-
formance in terms of all metrics where, for example, TabNine
increases 3.6%, 9.9%, and 55.0% for AOD, F1, and BLEU score,
respectively. On average, all models generate logging statements

that are 49.3% more similar to actual ones (reflected by BLEU-

4) than using a single method as input. We take Figure 6.10

as an example from CodeWhisperer to illustrate how LLMs can
learn from an additional method, where the green line represents
the required logging statements. The model learned logging pat-
terns from Method1, which includes the broker plugin name and
its status (i.e., start). Regarding stop(), CodeWhisperer may re-
fer to Method1 and write similar logging statements by changing
the status from started to stopped. Additionally, by analyzing the

file-level context, LLMs can identify pertinent variables, learn
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Table 6.7: The generalization ability of LLMs in producing logging state-
ments for unseen code.

Levels Variables Texts Average
Model AOD A F1 A BLEU-4 A ROUGE-L A Semantics A Avg. A
General-purpose LLMs
Davinci 0.820 1.7%| | 0.523 13.7%| 0.116 15.9%/ 0.234 20.7%] 0.533 13.6%) | 13.1%
ChatGPT 0.830 0.6%J) | 0.532 11.9%] 0.118 20.8% 0.240 19.5% 0.541 14.5%) | 13.5%]
Llama2 0.788  1.4%]) | 0.568  2.2%] 0.094 7.8% 0.213 18.4% 0.513 9.8%1 7.9%1
Logging-specific LLMs
LANCE H 0.817  0.6%J | 0475 7.5%] 0.153 8.4% 0.144 11.1%] 0.301 13.3%) | 8.2%]
Code-based LLMs
InCoder 0.778  2.8%) | 0.587 13.9%l 0.175 13.8%. 0.316 17.5%] 0.584 8.8%1 11.4%)
CodeGeex 0.850  0.6%) | 0.534 18.7%]| 0.115 28.1%] 0.253 25.4%] 0.549 8.2%] 16.2%
TabNine 0.869 1.3%J) | 0.596 14.6% 0.202 16.5%., 0.342 18.8%, 0.608 9.1%] 12.1%),
Copilot 0.881 0.1%/ | 0.610 14.3%| 0.234 4.1%] 0.377 13.3%J 0.641 8.8%1 8.2%1
CodeWhisperer || 0.871 1.1%] | 0.629 13.0%] 0.219 12.0%/, 0.362 14.6%., 0.612 8.9% 9.9%]
CodeLlama 0.801 1.6%J) | 0.574 3.2%| 0.078 12.6%. 0.211 15.9%. 0.482 11.7%) | 9.0%]
StarCoder 0.811  22%]) | 0.619 5.2%] 0.175 10.3%/. 0.309 16.3% 0.546 7.9%] 8.4%]
Avg. A - 1.4% - 11.6% - 15.0%/ - 19.2%] 10.4%) | 11.5%)

relationships between multiple methods, and recognize consis-
tent logging styles within the file. Last but not least, the com-
parison of Table @ and Table @ implies that expanding the
range of programming texts has a stronger impact than incor-
porating comments, even though certain models (e.g., Copilot)

are trained to generate code from natural language.

Finding 7. Compared to comments, incorporating file-level
programming contexts leads to a greater improvement in logging
practice by providing access to additional functionality-similar

methods, variable definitions and intra-project logging styles.

6.4.6 RQ5: How do LLMs perform in logging unseen

code?

In this RQ, we assess the generalization capabilities of lan-

guage models by evaluating them on the LogBench-T (Table )
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Original code
public void countMemory(ITestContext ctx, int totalMemory) {
long inMb = 1024 * 1024;
+ log.info("Total memory : " + totalMemory / inMb + " MB");
MemoryMXBean memoryMXBean = ManagementFactory.getMemoryMXBean();
MemoryUsage heapMemoryUsage = memoryMXBean.getHeapMemoryUsage();

Code after transformation

public void countMemory(ITestContext ctx, int totalMemory) {
long const_1 = 1024 * 1024;
long inMb = const_1;
+ log.info("Total memory : " + totalMemory / inMb+ " MB");
MemoryMXBean memoryMXBean = ManagementFactory.getMemoryMXBean();
MemoryUsage heapMemoryUsage = memoryMXBean.getHeapMemoryUsage();

Original code

CodeWhisperer log.info("Memory usage: " + totalMemory / inMb + " MB");

ChatGPT log.info("Current heap memory usage: " +
heapMemoryUsage.getUsed() / inMb + " MB");

Incoder log.debug("Memory used: " + totalMemory / inMb + "MB");

Tansformed code

CodeWhisperer log.info("Total Memory: " + totalMemory + " MB");
ChatGPT log.info("Starting memory count...");
Incoder log.warn("Memory usage: " + heapMemoryUsage);

Figure 6.11: A case of code transformation and its corresponding predicted
logging statement from multiple models.

As stated in Section (.3.2, predicting accurate logging state-

ments does not necessarily imply that a model can be general-
ized to unseen cases well. As the modern software codebase is
continuously evolving, we must explore LLMs’ ability to handle
these unseen cases in daily development.

We present the result in Table E?l, where we underline the
best performance for each metric and the lowest performance
drop rate (A) compared to corresponding results in LogBench-
O. Our experiments show that all models experience different
degrees of performance degradation when generating logging
statements on unseen code. LANCE has the smallest average

decrease of 6.9% across metrics, while CodeGeex is most im-
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pacted with a 16.2% drop. Copilot exhibits the greatest gener-
alization capabilities by outperforming other baselines for three
out of four metrics on unseen code. Additionally, we observe
that predicting logging levels the smallest degradation in perfor-
mance (1.4%), whereas predicting logging variables and logging
text (BLEU-4) experience significant performance drops, 11.6%
and 15%, respectively. Such experiments indicate that resolving
logging variables and logging texts is more challenging than pre-
dicting logging levels, thus warranting more attention in future

research.

Figure 6.11 illustrates a transformation case where we high-

light code differences in red and demonstrate how LLMs (Code-
Whisperer, ChatGPT, Incoder) log accordingly. Regarding the
original code, all models correctly predict that inMB should be
used to record memory. However, after transforming the con-
stant expression 1024x1024 to a new variable const_1 and then
assigning const_1 to inMB, all models fail to understand and iden-
tify inuB (or const_1) as a logging variable. CodeWhisperer
and Incoder mistakenly predict totalMemory and heapMemoryUsage
as the memory size indicator without dividing it by 1024*1024
to be converted into MB units, while ChatGPT does not suggest
any variables. Even though the transformation retains code se-
mantics, existing models exhibit a significant performance drop,

indicating their limited generalization abilities.
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Finding 8. LLMs’ performance on wvariable prediction and
logging text generation drops significantly for unseen code by
11.6% and 15.0% on average across models, respectively, high-
lighting the need to improve the generalization capabilities of

these models.

6.5 Implications and Advice

Pay more attention to logging texts. According to

Section 6.4.2, while existing models offer satisfactory predictions

for logging levels, recommending proper logging variables and
logging texts is difficult, particularly the latter. Since LLMs
have shown stronger text generation ability than previous neural
networks, future research should focus on using LLMs for the
challenging problem of logging text generation instead of simply

predicting logging levels.

Implication 1. Future logging studies are encouraged to take
advantage of prompting LLMs and focus on the challenging

problem of logging text generation.

Devise alternative evaluation metrics. Section 6.4.2

extensively evaluates the performance of LLMs in generating
logging statements using twelve metrics over three ingredients.
We observe that a model may excel in one ingredient while per-
forming poorly in others, and such inconsistency makes any com-

parison and selection of LLMs difficult. Existing metrics like
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BLEU and ROUGE, while suitable and being widely-used [30,
29], may not be optimal for logging statements evaluation be-
cause they do not consider semantics when assessing similar-
ity between texts: they aggressively penalize lexical differences,
even if the predicted logging statements are synonymous to the
actual ones [205].

An alternative perspective to assessing the quality of log-
ging statements involves examining the information entropy for
operation engineers. Past research has highlighted that a small
number of logging statements often dominate an entire log file [32],
posing challenges for engineers in figuring out failure-indicating
logs. These limitations underscore the need for a succinct and

precise logging strategy in practical applications.

Implication 2. [t is recommended to investigate better, pos-
sibly unified metrics addressing all ingredients, to evaluate log-

ging statement generation quality.

Refine prompts with domain knowledge. In Section (£.4.4

we highlight that effective example demonstrations play a cru-
cial role in enhancing the logging performance of LLM by im-
parting domain knowledge for few-shot learning. Nevertheless,
our experiments reveal that augmenting the number of examples
does not consistently result in improved performance. These in-
sights elicit the development of an advanced selection strategy
for choosing demonstrations, aiming to include the most infor-

mative ones in the prompt. The selection strategy can draw



CHAPTER 6. LOGGING STATEMENT GENERATION 190

inspiration from program structure similarity (e.g., try-catch),
syntax text similarity (e.g., TF-IDF), or code functional simi-

larity [206].

Implication 3. Designing a demonstration selection frame-

work for effective few-shot learning can yield better results.

Provide broader programming contexts for LLMs.

In Section 6.4.5, we investigate how expanding programming

contexts can significantly enhance the logging performance of
LLMs. Such a finding implies that extending the context to the
file level, rather than the method level, is beneficial for acquir-
ing extra information as well as learning logging styles. How-
ever, including the entire repository as input for LLMs may be
impractical for large programs due to input token limitations.
Additionally, LLM performance tends to decline with longer in-
puts, even when within the specified context length [207, 208].
To capture effective programming contexts for specific methods,
a promising solution involves identifying methods with associ-
ated calling relationships and variable definitions. Providing
methods spanning multiple classes can also contribute to gener-
ating logging statements consistent with existing ones, thereby

learning intra-project logging styles.

Implication 4. When using LLMs for logging, future research
could broaden the programming context by incorporating infor-

mation from function invocations and variable definitions.
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Enhance generalization capabilities of LLMs. In Sec-

tion p.4.5, we observe that current LLMs show significantly

worse performance on unseen code, reflecting their limited gen-
eralization capabilities. The result can be attributed to the ca-
pacity of parameters in LLMs to memorize large datasets [160)].
This issue will become more severe when tackling code in a
rapidly evolving software environment, resulting in more un-
seen code. One effective idea is to apply a prompt-based method
with few chain-of-thought demonstrations [209, 210] to foster the
generalization capabilities of ever-growing LLMs. The chain-
of-thought strategy allows models to decompose complicated
multi-step problems into several intermediate reasoning steps.
For example, we can ask models to focus on special code struc-
tures (e.g., if-else), then advise them to elicit key variables and
system activities to log. While the chain-of-thought strategy has
shown success in natural language reasoning tasks [211], future
work should explore such prompt-based approaches to enhance

generalization capabilities.

Implication 5. We should investigate prompt-based strategies

with zero-shot or few-shot learning to improve the generalization

ability of LLMs.
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6.6 Threats to Validity

Internal Threats. (1) A concern of this study is the po-
tential bias introduced by the limited size of the LogBench-
O dataset, which consists of 3,840 methods. This limitation
arises due to the fact that those plugin-based code completion
tools impose usage restrictions to prevent bots; therefore, hu-
man efforts are needed. To address the threat, we acquired
and sampled LogBench-O and LogBench-T datasets from well-
maintained open projects, which we believe are representative.
Note that existing Copilot testing studies also have used datasets
of comparable sizes [202, 212].

(2) Another concern involves the context length limitations
of certain language models [153, 165, [166] (e.g., 4,097 tokens
for Davinci), which may affect the file-level experiment. To ad-
dress this concern, we analyze the collected data and reveal that
98.6% of the Java files fall within the 4096-token limit, and
94.3% of them are within the 2048-token range. Such analysis
implies that the majority of files in our dataset remain unaf-
fected by the context length restrictions.

(3) The other threat is the potential effect of various prompts
on Davinci and ChatGPT. To address this, we invited four au-
thors to independently provide three prompts according to their
usage habits. These prompts were evaluated using a dataset of
100 samples, and the one that demonstrated the best perfor-

mance was selected. This approach ensures that the chosen
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prompt is representative for daily development.

External Threats. One potential external threat stems from
the fact that the LogBench-O dataset was mainly based on
the Java language, which may affect the generalizability of our
findings to other languages. However, according to previous
works [48, 27, B0], Java is among the most prevalent program-
ming languages for logging research purposes, and both SLF4J
and Log4j are highly popular and widely adopted logging APIs
within the Java ecosystem. We believe the representativeness
of our study is highlighted by the dominance of Java languages
and these APIs in the logging domain. The core idea of the
study can still be generalized to other logging frameworks or

languages.

6.7 Summary

In this chapter, we present the first extensive evaluation of
LLMs for generating logging statements. To achieve this, we
introduce a logging statement generation benchmark dataset,
LogBench, and assess the effectiveness and generalization capa-
bilities of eleven top-performing LLMs. While LLMs are promis-
ing in generating complete logging statements, they can still be
promoted in multiple ways.

First, our evaluation indicates that existing LLMs are not
yet adept at generating complete logging statements, particu-

larly in producing effective logging texts. Nonetheless, their di-
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rect application surpasses the performance of conventional log-
ging models, indicating a promising future for leveraging LLMs
in logging practices.

In addition, we delve into the construction of prompts that
influence LLMs’ logging performance, considering factors such
as instructions and the number of example demonstrations. While
our experiments demonstrate the advantages of incorporating
demonstrations, we observe that an increased number of demon-
strations does not consistently result in improved logging per-
formance. Thus, we recommend the development of a demon-
stration selection framework in future research. Furthermore,
we identify external factors, such as comments and program-
ming contexts, that enhance model performance. We encourage
the incorporation of such factors to enhance LLM-based logging
tools.

Last but not least, we evaluate LLMs’ generalization ability
using a dataset that includes transformed code. Our findings
indicate that directly applying LLMs to unseen code results in
a significant decline in performance, highlighting the necessity
to enhance their inference abilities. We suggest employing the
chain-of-thought technologies to break down the logging task
into smaller logical steps as a future step, unlocking LLMs’ full
potential. We hope this chapter can stimulate more work in the

promising direction of using LLMs for automatic logging.



Chapter 7

Conclusion and Future Work

In this chapter, we summarize the main contributions of
this thesis and present several promising directions for future

work.

7.1 Conclusion

As modern software has evolved into large-scale, complex,
and interconnected services, reliability engineering techniques
have similarly progressed, shifting from human inspection to
automated approaches. Logs play a critical role in the software
lifecycle for two main reasons: (1) they are often the only ac-
cessible resource reflecting the system’s runtime status, and (2)
they bridge the gap between developers and operators through
the execution of logging statements. This thesis focuses on en-
hancing software reliability engineering by utilizing logs for per-
formance monitoring, anomaly detection, and system behavior

profiling.

195
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Chapter j addresses the challenges associated with analyz-
ing high-variety logs. We revisit existing log parsers and iden-
tify their limitations in extracting semantics. Moreover, exist-
ing parsers predominantly focus on individual log messages and
overlook correlations between different logs. To overcome these
shortcomings, we propose the first semantic-aware log parser,
AutoLog. This parser automatically identifies semantics from
both intra-message and inter-message levels. Extensive exper-
iments were conducted on six real-world log parsing datasets,
along with evaluations in anomaly detection and failure identi-
fication.

Next, in Chapter @, we developed an automatic anomalous
log localization framework named EvLog for evolving software
systems. The key insight behind EvLog is that although log-
ging statements may be revised during software evolution, their
semantics often remain consistent. Therefore, the core design
of EvLog utilizes a cluster-based approach to align historical
logs with new, revised logs, ensuring that the new represen-
tations remain similar. EvLog outperforms existing log mining
frameworks on two real-world datasets, demonstrating its strong
capability in handling frequently evolving systems.

After that, in Chapter H, we address one longstanding chal-
lenge in the log analysis community: the insufficiency of com-
prehensive datasets. Existing datasets are passively collected by
manually executing a limited number of workloads, which re-

stricts the diversity of log events captured. To counter this lim-
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itation, we devised AutoLog to actively generate log sequences
based on program analysis. Experiments show that AutoLog can
efficiently synthesize log sequences with high coverage of system
behavior. Additionally, AutoLog proves effective in enhancing
the performance of anomaly detection models when they are
trained with synthesized data.

Last but not least, in Chapter E, we conduct the first ex-
tensive evaluation study of large language models (LLMs) for
their ability to generate logging statements. This study involves
eleven top-performing LLMs and three state-of-the-art conven-
tional logging approaches. Specifically, we introduce a logging
statement generation benchmark dataset, LogBench, which in-
cludes a collection of 6,849 logging statements across 3,870
methods (LogBench-O), along with functionally equivalent un-
seen code (LogBench-T) to evaluate generalization ability. Based
on the evaluation results, we summarize eight key findings and
draw five implications, providing valuable insights for future re-
search on automated log statement generation.

In summary, this thesis presents novel techniques for the
automated processing and analysis of system runtime logs. These
techniques include: (1) A semantic-aware log parser that cap-
tures both intra-message and inter-message semantics, (2) An
anomalous log localizer tailored for evolving software systems,
(3) A log sequence synthesizer that generates comprehensive log
data via program analysis, (4) An extensive evaluation study on

LLM-powered logging statement generators, providing crucial
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insights for future research. These contributions collectively en-
hance our ability to effectively monitor, diagnose, and analyze
complex software systems, thereby improving overall software

reliability and operational efficiency.

7.2 Future Work

We envision a future where Al technologies are universally
accessible, delivering substantial benefits to everyday life, and
where everyone can depend on reliable software. My past re-
search has demonstrated the effectiveness of data-driven meth-
ods in advancing software reliability engineering (SRE) through
log analysis.

Although this thesis proposes several novel approaches that
contribute significantly to reliability engineering, the era of large
language models (LLMs) offers numerous further opportunities.
Future work will explore these possibilities. The following sec-
tions introduce three promising directions: multi-modal intel-
ligent software operations, operation-guided software develop-
ment, and LLM-powered software reliability engineering ecosys-

tems.

7.2.1 Multi-modal Intelligent Software Operations

Modern software generates diverse data during runtime,
each reflecting system behavior from different perspectives. Be-

sides logs, these data also encompass topologies, KPIs, and
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Figure 7.1: Multimodal operations example.

alerts: (1) KPIs (Key Performance Indicators): Metrics sam-
pled uniformly from the running system, such as response time
and memory usage. (2) Topologies: Graph data in cloud sys-
tems that indicate dependencies and interactions between var-
ious nodes. (3) Alerts: Textual data, also known as alarms,
raised in real-time to signal potential issues. Alerts are based
on predefined policies and conditions within the program. When
a failure occurs in an online system, it may be indicated by warn-
ing logs, anomalous KPIs, and multiple alerts. Although these
data types are highly correlated, past research has often tackled
them in isolation.

The success of multi-modal large language models has in-
spired us to create a similar approach for operations. As shown
in Figure iil], the desired model can process different types of
data—textual (such as logs), numeric (such as KPIs), and graph-

ical (such as topologies). Each data type provides complemen-
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tary information. With this unified operation model, engineers
can conduct more comprehensive analyses, such as performing
root cause analysis by examining a combination of service depen-
dency graphs and log entries. Such a multi-modal approach aims
to provide a holistic understanding of system behavior, enabling
more effective monitoring, diagnosis, and troubleshooting. This
can significantly enhance the reliability and performance of com-

plex software systems.

7.2.2 DevOps: Operation-guided Software Development

Software operations provide invaluable feedback that can
guide the elimination of potential faults during the develop-
ment phase, as illustrated in Figure @ This insight under-
lies the "DevOps” paradigm, which aims to remove the barriers
between traditionally siloed development and operation teams.
This paradigm enables faster development of new products and
easier maintenance of existing deployments, leading to the con-
tinuous delivery of reliable software versions. In our context,
operation-guided fault removal involves leveraging operational
data (such as logs) to develop program-fixing strategies for gen-
eral bugs.

Our goal is to create intelligent development environments
that not only diagnose runtime failures during operations but
also use these failure cues to automatically remove correspond-

ing faults from the source code. There have been exploratory
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Figure 7.2: Future topics in DevOps paradigm.

studies on log-guided bug localization [213] and debugging pro-
duction failures [214]. For instance, in log-guided program re-
pair, the solution typically involves two steps: (1) Profiling pro-
gram execution paths by matching log message sequences to
determine where and how failures occur. (2) Repairing the bugs
based on failure clues extracted from the log messages. This
approach fosters a proactive fault-removal process, enhancing
the efficiency and effectiveness of both development and oper-
ations by ensuring that real-world operational insights directly
inform and improve software quality. The integration of such
intelligent systems within the DevOps paradigm is a promising

direction for future research and development.

7.2.3 LLM-powered Software Reliability Engineering

Ecosystems

This research direction will continue to explore the poten-
tial of multi-agent large language models (LLMs) for software

engineering. While LLMs have proven powerful in generating
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code snippets for specific tasks, they can struggle with plan-
ning complex tasks and retaining long-term information. Recent
studies suggest that LLM agents can think more like humans and
plan ahead by breaking down big, complex tasks into smaller,
more manageable steps.

Inspired by these advances in other fields, this research aims
to embed LLMs into the software reliability engineering lifecycle.
This involves exploring two main areas: (1) advancing LLMs for
software engineering tasks, such as: refining LLM-based code
generation tools, developing program testing algorithms, and
creating frameworks for automatic code bug fixes; and (2) en-
hancing human-agent interaction, for example, developing re-
sponsible LLMs that not only execute human commands but
also engage in a collaborative partnership with engineers, offer-
ing new ideas and insights. By integrating multi-agent LLMs
into software reliability engineering, this direction seeks to en-
hance the overall efficiency and effectiveness of software devel-
opment processes. The ultimate goal is to create intelligent sys-
tems that can autonomously handle various engineering tasks
while collaborating seamlessly with human engineers, leading to

more reliable and innovative software solutions.

O End of chapter.
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