# Binary Heaps in Dynamic Arrays

CSCI 2100 Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

## Outline

- 1. An array-based implementation of the binary heap.
- 2. A heap building algorithm with O(n) time complexity.

Review: Priority Queue

A **priority queue** stores a set S of n integers and supports the following operations:

- Insert(e): Add a new integer e to S.
- Delete-min: Remove the smallest integer from S.

Review: Binary Heap

Let S be a set of n integers.

A **binary heap** on S is a binary tree T satisfying:

- T is complete.
- 2 Every node u in T stores a distinct integer in S, which is called the **key** of u.
- If u is an internal node, the key of u is smaller than those of its child nodes.

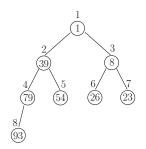
#### Storing a Complete Binary Tree in an Array

Let **7** be any complete binary tree with **n** nodes. We can **linearize** the nodes in the following manner.

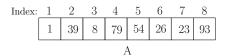
- Put nodes at a higher level before those at a lower level.
- Within the same level, order the nodes from left to right.

The linearized node sequence can be stored in an array A of length n.

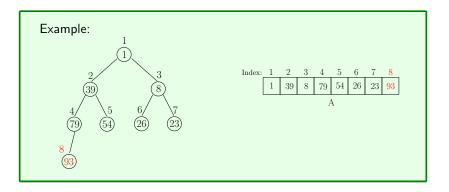
### Example



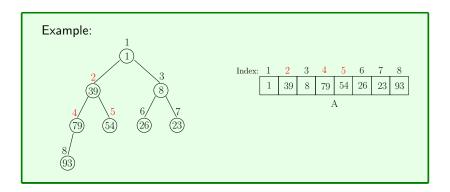
#### Stored as



### **Property 1:** The rightmost leaf at the bottom level is at A[n].



**Property 2:** Suppose that node  $\underline{u}$  of T is at A[i]. Then, the left child of u is at A[2i] and its right child at A[2i+1].



Property 2 implies:

**Property 3**: Suppose that node  $\underline{u}$  of T is stored at  $A[\underline{i}]$ . Then, the parent of u is stored at  $A[\lfloor i/2 \rfloor]$ .

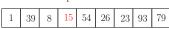
Now, we are ready to implement the insertion and delete-min algorithms using an array.

### Insertion Example

Insert 15 and swap-up.

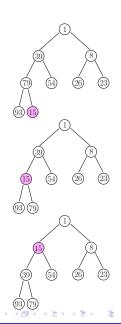
Indov

| Index | C: |   |    |    |    |    |    | 8  |
|-------|----|---|----|----|----|----|----|----|
| 1     | 39 | 8 | 79 | 54 | 26 | 23 | 93 | 15 |



9

|   | 2  |   |    |    |    |    |    |    |
|---|----|---|----|----|----|----|----|----|
| 1 | 15 | 8 | 39 | 54 | 26 | 23 | 93 | 79 |



#### Delete-min Example

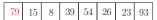
Replace 1 with 79 and swap-down.

Index:

9

| 1 | 15 | 8 | 39 | 54 | 26 | 23 | 93 | 79 |
|---|----|---|----|----|----|----|----|----|

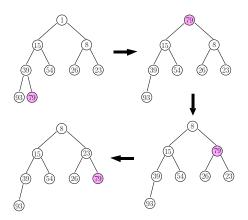
1 2 3



 3
 6
 7

 8
 15
 79
 39
 54
 26
 23
 93

8 15 23 39 54 26 **79** 93



#### Performance Guarantees

Combining our analysis on (i) binary heaps and (ii) dynamic arrays, we obtain the following guarantees on a binary heap implemented using a dynamic array:

- Space consumption O(n).
- Insertion:  $O(\log n)$  time amortized.
- Delete-min:  $O(\log n)$  time **amortized**.

How much time do we need to build a heap? Naively, this can be done in  $O(n \log n)$  time by making n insertions. Next, we will see how to accomplish this in O(n) time.

### Fixing the Root

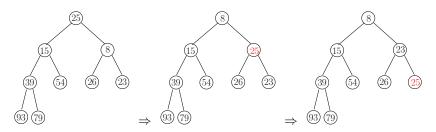
#### The Root Fixing Problem

**Input:** Let S be a set of integers and T be a complete binary tree where each node stores a distinct integer from S as its key. Denote by r the root of T. Both the left and right subtrees of r are binary heaps. However, the key of r may not be smaller than the keys of its children.

**Output:** Turn T into a binary heap on S.

This can be done in  $O(\log n)$  time using the swap-down procedure from the delete-min algorithm.

### Example



### Building a Heap

Given an array A storing a set S of n integers. Alternatively, we can view A as a complete binary tree T. The following algorithm turns A into a binary heap on S.

- For each  $i = \lfloor n/2 \rfloor$  downto 1
  - Solve the root-fixing problem on the subtree of A[i]

## Example

|                          |    |    |    | i  |    |    |    |    |
|--------------------------|----|----|----|----|----|----|----|----|
| after processing $i=4$   | 54 | 26 | 15 | 39 | 8  | 1  | 23 | 93 |
|                          |    |    | i  |    |    |    |    |    |
| after processing $i = 3$ | 54 | 26 | 1  | 39 | 8  | 15 | 23 | 93 |
|                          |    | i  |    |    |    |    |    |    |
| after processing $i=2$   | 54 | 8  | 1  | 39 | 26 | 15 | 23 | 93 |
|                          | i  |    |    |    |    |    |    |    |
| after processing $i = 1$ | 1  | 8  | 15 | 39 | 26 | 54 | 23 | 93 |

### Running Time

Next, we analyze the time of the heap-building algorithm. Let h be the height of T. Hence,  $n \ge 2^{h-1}$  (why?).

- Each node at level h-1 incurs O(1) time in swap-down. There are at most  $2^{h-1}$  such nodes.
- Each node at level h-2 incurs O(2) time in swap-down. There are exactly  $2^{h-2}$  such nodes.
- Each node at level h-3 incurs O(3) time in swap-down. There are exactly  $2^{h-3}$  such nodes.
- ...
- A node at level 0 incurs O(h) time in swap-down.
   There is 2<sup>0</sup> = 1 such node.



#### Running Time

Hence, the total time is bounded by

$$\sum_{i=1}^{h} O\left(i \cdot 2^{h-i}\right) = O\left(\sum_{i=1}^{h} i \cdot 2^{h-i}\right)$$

The next slide proves that the right hand side of the above is  $O(2^{h+1})$ . Note that  $O(2^{h+1}) = O(n)$ 

#### Running Time

#### Suppose that

$$x = 2^{h-1} + 2 \cdot 2^{h-2} + 3 \cdot 2^{h-3} + \dots + h \cdot 2^{0}$$
 (1)

$$\Rightarrow 2x = 2^{h} + 2 \cdot 2^{h-1} + 3 \cdot 2^{h-2} + \dots + h \cdot 2^{1}$$
 (2)

Subtracting (1) from (2) gives

$$x = 2^{h} + 2^{h-1} + 2^{h-2} + \dots + 2^{1} - h$$
  
 $\leq 2^{h+1}$ .