Optimal (Multiway) Spatial Joins’

RU WANG and YUFEI TAO, The Chinese University of Hong Kong, China

In a spatial join, we are given a constant number k > 2 of sets — denoted as Ry, Ry, ..., R — containing
axis-parallel rectangles in a 2D space. The objective is to report all k-tuples (r1,ra,...,7x) € Ry X Ry X ... X Ry
where the rectangles rq, ro, ..., 1 have a non-empty intersection, i.e., 71 N rz N ... N rg # 0. The problem holds
significant importance in spatial databases and has been extensively studied in the database community. In
this paper, we show how to settle the problem in O(nlogn + OUT) time — regardless of the constant k —
where n = Zi.il |R;| and OUT is the result size (i.e., the total number of k-tuples reported). The runtime is
asymptotically optimal in the class of comparison-based algorithms, to which our solution belongs. Previously,
the state of the art was an algorithm with running time O(n long_1 n+OUT).

CCS Concepts: « Theory of computation — Design and analysis of algorithms.
Additional Key Words and Phrases: Multiway Spatial Joins; Computational Geometry; Theory

ACM Reference Format:
Ru Wang and Yufei Tao. 2024. Optimal (Multiway) Spatial Joins. Proc. ACM Manag. Data 2, 5 (PODS), Article 210
(November 2024), 25 pages. https://doi.org/10.1145/3695828

1 Introduction

This paper studies the spatial join (SJ) problem formulated as follows. Let k > 2 be a constant
integer. In the k-S7 problem, the input comprises k sets — denoted as Ry, Ry, ..., Ry — of axis-parallel
rectangles! in R2. The goal is to find all k-tuples (r1, r2, ..., 1) where

e r; € R; foreach i € [1,k]; and

e r1 NryN...Nri # 0, namely, the k rectangles ry, ry, ..., 1y have a non-empty intersection.
We represent the set of k-tuples described above as J (Ry, Ry, ..., Ri), referred to as the join result.
Setn = Zle |R;|, i.e., the input size, and OUT = | J (Ry, Ry, ..., R)|, i.e., the output size.

SJ is a fundamental operation in spatial databases (SDB), which manage geometric entities such
as land parcels, service areas, habitat zones, commercial districts, administrative boundaries, etc.
The operation plays a crucial role in implementing the filter-refinement mechanism, which is the
dominant approach for computing overlay information in an SDB. To explain this mechanism, first
note that a geometric entity is typically modeled as a polygon. Determining whether two entities
overlap amounts to deciding if two polygons intersect, which can be exceedingly expensive when
the polygons have complex boundaries. To mitigate the issue, an SDB stores, for each polygon y, its
minimum bounding rectangle (MBR) defined as the smallest axis-parallel rectangle enclosing y; this
way, each set I' of geometric entities spawns a set R of MBRs. Consider k sets of geometric entities
I, T3, ..., Ik, and the corresponding sets of MBRs Ry, Ry, ..., R¢. To compute overlays from Iy, I, ..., T,

“This work was supported in part by GRF projects 14207820, 14203421, and 14222822 from HKRGC.
1A rectangle is axis-parallel if it has the form r = [x1,x2] X [y1, ya].

Authors’ Contact Information: Ru Wang, rwang21@cse.cuhk.edu.hk; Yufei Tao, taoyf@cse.cuhk.edu.hk, The Chinese
University of Hong Kong, Hong Kong, Shatin, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/11-ART210

https://doi.org/10.1145/3695828

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

https://doi.org/10.1145/3695828
https://doi.org/10.1145/3695828

210:2 Ru Wang and Yufei Tao

filter-refinement first executes (i) a “filter step”, which performs an SJ to obtain J (Ry, Ry, ..., Rg),
and (ii) a “refinement step”, which, for each (r, 72, ..., 7x) € T (Ry, Ry, ..., Ri), examines if y1, y2, ..., Yk
indeed have a non-empty intersection, where y; (i € [1, k]) is the entity in I; whose MBR is r;.

Math Conventions. For any integer x > 1, we use [x] to represent the set {1,2,...,x}. Given
k > 2 sets Sy, Sy, ..., Sk (of arbitrary elements), we often treat a k-tuple (e, ey, .., €) in the Cartesian
product S; X Sy X ... X S as a k-dimensional vector t with #[i] = e; for each i € [k]. Unless otherwise
stated, every mention of the word “rectangle” henceforth will refer to an axis-parallel rectangle in
R2. All logarithms have base 2 by default.

1.1 Previous Results

SJs have been extensively studied in the database-system community, leading to the development
of numerous methods that, although lacking strong theoretical guarantees, exhibit good empirical
performance in real-world applications. We refer interested readers to [3, 4, 7, 8, 10-15, 18, 19] as
entry points into the literature.

From the perspective of theory, SJs are best understood when k = 2, i.e., the pairwise scenario,
where it is folklore that the problem can be solved by a comparison-based algorithm in O(nlogn +
OUT) time (e.g., by planesweep [5]). However, the problem becomes much more challenging for
k > 3, known as the multiway scenario. All the solutions developed before 2022 (see [7, 13, 14, 18]
and the references therein) suffer from a worst-case time complexity of O(n*), offering essentially
no improvement over the naive method that enumerates the entire cartesian product Ry X Ry X... X Rg.

Year 2022 witnessed two independent works [9, 21] that, although not tackling k-SJ directly,
imply provably fast k-SJ algorithms. Specifically, in [21], Tao and Yi studied several variants of
“interval intersection joins” under updates. Most relevant to our context is the variant where the
input includes, for each i € [k], a set Z; of 1D intervals in R, and the join result comprises all
k-tuples (I, I, ..., Iy) € Iy X I, X ... X I} with ﬂ{;l I; # 0. The objective is to design a data structure,
which, given the insertion (resp., deletion) of an interval in one of the k sets, can identify all the
newly-appearing (resp., disappearing) k-tuples in the join result in O((1 + A) - polylog n) time,
where n = Zle |Z;| and A is the number of such k-tuples. Tao and Yi [21] presented a structure of
O(npolylogn) space achieving the purpose. Combining their structure with planesweep, one can
obtain an algorithm for solving the k-SJ problem in O((n + OUT) - polylog n) time.

In [9], Khamis et al. investigated a type of joins that extends the conventional equi-join in
two ways. First, each attribute value in a relation is an interval (rather than a real value); second,
each equality predicate in an equi-join is replaced with a “non-empty intersection” predicate on
the attributes involved. The k-SJ problem can be converted to a join under the framework of [9]
as defined next. For each i € [k], define R; as a relation over two attributes X and Y. For each
tuple ¢ € R;, its values #(X) and £(Y) on the two attributes are both intervals (effectively defining
a rectangle). The objective is to output all k-tuples (t1, 25, ...,tx) € Ry X R X ... X Ry, satisfying
ﬂle t;(X) # 0 and ﬂle t;(Y) # 0. It is clear that there is one-one correspondence between the
result of this join and that of k-SJ. Khamis et al. [9] developed an algorithm that can process the
join in O(nlog®~! n + OUT) time.

Q(nlogn) is a lower bound on the runtime of any comparison-based k-SJ algorithms even for
k = 2. This can be established via a reduction from the element distinctness problem; see [6].

1.2 Our Results

In this paper, we solve the k-SJ problem with a comparison-based algorithm that runs in O(nlogn+
OUT) time regardless of the constant k. The time complexity is asymptotically optimal in the class
of comparison-based algorithms.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:3

k ‘ method ‘ runtime ‘ remark
2 folklore O(nlogn+ OUT) optimal
> 3 | before 2022 0o(nf)
>3 [21] O((n+ OUT) - polylog n)
>3 [9] O(nlog®*~' n+0UT)
>3 ours O(nlogn + OUT) optimal

Table 1. Result comparison on k-SJ problem for a constant k

Our primary technical contribution is the revelation of a new property on the problem’s mathe-
matical structure. Fix any k > 3 and an arbitrary algorithm A for the (k — 1)-SJ problem. Define
function Fj_;(n, OUT) to return the worst-case running time of A on any instance of the (k —1)-SJ
problem having input size at most n and output size at most OUT. We will establish:

THEOREM 1.1. Equipped with the algorithm ‘A as described above, the k-SJ problem with k > 3 can
be solved in time

O(k?) - (Fx-1(n,OUT) + nlogn + k - OUT) (1)

where n (resp., OUT) is the input (resp., output) size of the problem. Furthermore, if A is comparison-
based, the obtained k-S7 algorithm is also comparison-based.

The theorem implies a recursive nature of k-SJ. Indeed, we will see that an k-SJ instance with
input size n and output size OUT can be converted to O(k®) instances of the (k — 1)-SJ problem —
all having input size at most n and output size at most OUT — plus an additional cost of O(k%) -
(nlogn + k - OUT). For 2-SJ, we can set A to the “folklore algorithm” mentioned in Section 1.1,
which ensures F;(n,OUT) = O(nlogn + OUT). Combining this with (1) gives a recurrence that
relates the time complexity of k-SJ to that of (k — 1)-SJ. Solving the recurrence yields:

THEOREM 1.2. Fork > 3, we can settle k-SJ with a comparison-based algorithm in
O(ck - (k)3 - (nlogn +k - OUT))
time, where ¢ > 1 is a positive constant.

When k = O(1), the time complexity becomes O(nlogn +OUT), as promised; the space con-
sumption of our algorithm is O(n + OUT). Now that Theorem 1.2 offers a satisfactory k-SJ result
for k = O(1) in 2D space, it is natural to wonder whether the constraint on dimensionality 2 is
necessary. Interestingly, the answer is “yes” as far as k > 3 is concerned, subject to the absence of
breakthroughs on a classical problem in graph theory. Specifically, if the 3D version of the 3-SJ
problem (which we will formally define in Appendix E) could be solved in O((n+OUT) - polylog n)
time, we would be able to detect the presence of a triangle (i.e., 3-clique) in a graph of m edges
in O(m polylog m) time, which would make a remarkable breakthrough because the state of the
art needs O(m!4!) time [2]. This reduction can be inferred from an argument in [9] used to prove
a more generic result. We simplify the argument for 3D 3-SJ and present the full reduction in
Appendix E.

2 Preliminaries in Geometry

This section will first introduce some definitions and notations to be frequently used in our
presentation and then formulate several computational geometry problems, whose solutions will
serve as building bricks for our k-SJ algorithm.

Terminology. A horizontal segment is a segment of the form [x1, x2] X y, and a vertical segment
is a segment of the form x X [y, y,]. We say that a horizontal segment h; is lower (resp., higher)

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:4 Ru Wang and Yufei Tao

1

T2

T4

"3
Fig. 1. For 4-tuple t = {r1,ra,r3,r4}, Bt is the rectangle in gray, left-guard(¢) = r3 and bot-guard(¢) = rs.

than another horizontal segment h; if the y-coordinate of h; is smaller (resp., larger) than that of
h;. Similarly, a vertical segment v, is to the left (resp., right) of another vertical segment v, if the
x-coordinate of v; is smaller (resp., larger) than that of v,.

Given a horizontal segment h = [x1, x;] X y, we say that a rectangle r is a lefi-end covering
rectangle of h if r contains the left endpoint of (i.e., (x1,y) € r). A horizontal/vertical segment
s crosses a rectangle r if s N r # @ but r covers neither of the two endpoints of s. A rectangle r
contains a horizontal/vertical segment s if r covers both endpoints of s.

Let S be a set of segments where either all segments are horizontal or all are vertical. Given a
rectangle r, we define

crosss(r) = {s € S| s crosses r}; (2)

namely, crosss(r) is the set of segments in S crossing r. Let R be a set of rectangles. Given a
horizontal segment h, we define

containg(h) = {r € R | r contains h}; (3)

namely, containg(h) is the set of rectangles in R containing h.

Given a rectangle r = [x1,x2] X [y1,y2], we define left(r) = x1, right(r) = x2, bot(r) = y;, and
top(r) = y,. Consider a k-tuple t = (ry,r2,...,7x) where k > 2 and each ¢[i] = r; (i < [k])isa
rectangle. We define

k
By = (s @
i=1
namely, By is the intersection of the rectangles in ¢ (note: B; is a rectangle itself). Also, if B; is not
empty, define:

o left-guard(t) as the rectangle r;, i € [k], satisfying left(r;) = left(B;). In case multiple values
in [k] fulfill the condition, let i be the smallest of such values.

o bot-guard(t) as the rectangle r;, i € [k], satisfying bot(r;) = bot(B;). In case multiple values
in [k] fulfill the condition, let i be the smallest of such values.

See Figure 1 for an illustration. It is worth mentioning that since a horizontal segment h is a
degenerated rectangle, notations such as left(h) and right(h) are well-defined.

Problem .o The input involves a set P of 2D points and set R of rectangles. In the detection version
of Problem 7, the goal is to output, for each point p € P, whether it is covered by at least one
rectangle in R. Figure 2a gives an example where P = {p1, p2, p3} and R = {ry, r,}; the output is
“yes” for p, and p; and “no” for p;. The problem can be solved in O(nlog n) time where n = |P|+|R|
as shown in Appendix A.

In the reporting version of Problem .7, the goal is to output, for each point p € P, all the rectangles
r € R containing p; if no such r exists, report nothing for p. In Figure 1a, for instance, the output is
{(p2 : r1,12), (p3 : r2)}. As shown in Appendix A, the problem can be solved in O(nlogn + OUT)
time, where OUT is the number of pairs (p,r) € P X R such that p € r.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:5

hy D Iy
hy
hy P2 ha }1;

DP2e

hs

p3e hy L hy |

T2

(a) Problem o/ (b) Problem £ (c) Problem ¥ (d) Problem 2 (e) Problem &

Fig. 2. Five geometric building brick problems

Problem . The input involves a set H of horizontal segments and a set V of vertical segments.
The goal is to report, for each segment h € H, the leftmost point p on h such that p is on some
vertical segment in V. If h does not intersect with any segment in V, report nothing for h. Figure 2b
gives an example where H = {hy, hy, h3} and V = {ov1,v,}; the output is {(hy, p1), (h2, p2)}. The
problem can be solved in O(nlogn) time where n = |H| + |V|, as shown in Appendix A.

Problem %. The input involves a set H of horizontal segments and a set R of rectangles. The goal is
to report, for each segment h € H, the rightmost point p on h such that p is covered by at least one
left-end covering rectangle of h in R — formally, for h = [x, x2] X y, we aim to find the maximum
X € [x1,x2] such that at least one rectangle r € R covers both the point (x1, y) and the point (x, y).
If the point p exists (i.e., h has at least one left-end covering rectangle in R), we should output a
tuple (h, p); otherwise, output nothing for h. Figure 2c¢ gives an example where H = {hy, hy, h3}
and R includes the three rectangles shown; the output is {(h1, p1), (h2, p2) }. The problem can be
solved in in O(nlogn) time where n = |H| + |R|, as shown in Appendix A.

Problem Z. The input involves a set H of horizontal segments and a set R of rectangles. In the
find-lowest version of the problem, the goal is to report, for each rectangle r € R, the lowest
segment in crossy (r); see (2) for the definition of crossy (r). If no segment in H crosses r, output
nothing for r. Figure 2d gives an example where H = {hy, hy, h3} and R = {ry, r2}; the output is
{(r1, h3), (r2, hy) }. The problem can be solved in O(nlogn) time where n = |H| + |R|, as shown in
Appendix A.

In the find-all-sorted version of the problem, the goal is to report, for each rectangle r € R, the
entire crossy(r) sorted by y-coordinate. Formally, if crossy(r) = {hi, hy, ..., h,} for some z > 1,
we output (r : hy, hy, ..., h;), provided that y; > y;_; for each i € [2, z] where y; (resp., yi—1) is the
y-coordinate of h; (resp., h;—1). In the example of Figure 2d, the output is {(r : ks, hy), (r2 : ho, hy)}.
In Appendix A, we explain how to solve the problem in O(nlogn + OUT) time where OUT is the
number of pairs (h,r) € H X R such that h crosses r.

Problem &'. The input involves a set H of horizontal segments and a set R of rectangles. The goal
is to report, for each segment h € H, the set containg(h) — defined in (3) — where the rectangles
are sorted by their right boundaries; if containg(h) is empty, output nothing for h. Formally, if
r1, T2, ..., I, for some z > 1 are all the rectangles in containg (h), we output (h : ry, 12, ..., 1), provided
that right(r;) > right(r;_;) for each i € [2, z]. Figure 2e gives an example where H = {hy, hy, h3}
and R = {ry,rs, r3}; the output is {(hy : ro,r1), (hz : r3,72)}. In Appendix A, we explain how to
solve the problem in O(nlogn + OUT) time where n = |H| + |R| and OUT is the number of pairs
(h,r) € H X R such that r contains h.

3 The Core: H-V Multiway Spatial Joins

Recall that the input of k-S] comprises k sets of rectangles: Ry, Ry, ..., Ri. We now formulate a special
version of k-SJ, named the H-V k-SJ problem. The special nature is reflected in the introduction of
three constraints: (i) k > 3, (i) Rg—; should be a set of horizontal segments, and (iii) Rx should be

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:6 Ru Wang and Yufei Tao

T2

1

h

v
() Type 1 (b) Type 2
Fig. 3. Classifying H-V k-SJ result tuples (k = 4)

a set of vertical segments. For better clarity, we will represent the input sets as Ry, Ry, ..., Rx—2, H
(= Ri—1), and V (= Ry). The goal is to output the join result J (Ry, ..., Rk—2, H, V), including every
k-tuple (rq, ..., 7k—2,h,0) € Ry X ... X Rg_a X H X V such that hNo N f:_lz r; is not empty.

Our objective is to prove that H-V k-SJ can be efficiently reduced to (k —1)-SJ (note: it is (k—1)-SJ
here, rather than H-V (k — 1)-S]). To ensure the soundness of our notation system, let us formulate
the “1-SJ” as the trivial problem where the input is a set R of n rectangles, and the goal is simply to
enumerate each rectangle of R; the problem can obviously be “solved” in O(n) time. We assume
the existence of an algorithm A that can settle x-SJ for all k € [1, k — 1]. Denote by F,.(n, OUT)
the worst-case runtime of A on any instance of x-SJ that has input size n and output size OUT. We
consider that Fy.(n, OUT) < Fyy1(n, OUT) for any k > 1, that is, its overhead on k-SJ should not be
larger than that on (x + 1)-S].

We will establish:

LEmMA 3.1. Equipped with the algorithm A described above, the H-V k-SJ problem can be solved in
O(k) - (Fx-1(n,OUT) + nlogn + k - OUT)

time where n (resp., OUT) is the input (resp., output) size of the problem. Furthermore, if A is
comparison-based, the H-V k-SJ algorithm obtained is also comparison-based.

The part of the paper from this point till the end of Section 5 will be devoted to proving the
above lemma. This is the most challenging step in solving the general k-SJ problem optimally, as
will be discussed in Section 6, where we will prove Theorems 1.1 and 1.2 based on Lemma 3.1.

Consider any k-tuple (ry, ..., rk—2, h,0) in the join result J(Ry, ..., Rk—2, H, V). We classify the
tuple into one of the two types below:

e Type 1: h crosses all of r4, ..., r¢_» and, at the same time, v crosses all of rq, ..., rg_2;
o Type 2: either h or v fails to cross at least one rectangle in {ry, ry, ..., rx—2}. Equivalently, at
least a rectangle r; (for some i € [k — 2]) covers an endpoint of either A or v or both.

Figure 3 illustrates a result tuple of each type, assuming k = 4. In Section 4 (resp., 5), we will explain
how to produce the result tuples of Type 1 (resp., 2) in the time complexity claimed in Lemma 3.1.

Remark. In [20], Rahul et al. studied the problem of storing a set H of horizontal segments and
a set V of vertical segments in a data structure such that, given a query rectangle r, all the pairs
(h,v) € HXV satisfying hNoNr # () can be reported efficiently. They gave a structure of O(nlog n)
space that can be built in O(nlogn) time and can be used to answer a query in O(log n + K) time,
where n = |H| + |V| and K is the number of pairs reported. Their structure can be utilized to solve
H-V 3-SJ in O(nlog n + OUT) time. Oh and Ahn [17] developed a structure for solving a problem
more general than that of [20]; however, in the specific scenario of [20], the structure of [17] offers
the same guarantees as [20]. We are unaware of a way to extend these solutions to handle H-V k-SJ
of k > 3. Our method for proving Lemma 3.1 is based on drastically different ideas even for k = 3.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:7

4 H-V k-SJ: Result Tuples of Type 1

As before, let Ry, ..., Rk—2, H, and V be the input sets of the H-V k-SJ problem. Denote by 7; the set
of type-1 result tuples defined in Section 3. In this section, we aim to compute a set J* satisfying

g?l Cc j* - j(Rl’ ~~~>Rk—2>Ha V) (5)
where J (Ry, ..., Rk—2, H, V), let us recall, is the join result of the (whole) H-V k-SJ. Remember
that the output size OUT is defined as | J (Ry, ..., Rk—2, H, V)|. From g, we will report only those
k-tuples belonging to 77 and ignore the rest.

Example 4.1. To illustrate our algorithm, we will utilize the running example in Figure 4a, where
k = 4, and R; = {a} (the solid rectangle), R, = {f1, 2} (the dashed rectangles), H = {hy, hy,
. he},and V = {01, v,, ..., v5}. The set J; contains the following tuples: (a, B2, ha, v3), (@, Sz, ha, v5),
(a5/325 h5,03), and (a> ﬁz, hS’US)' O
Sets R, R, ..., R;c—z' Fix any i € [k — 2]. For each rectangle r € R;, we compute four segments:

e h, (resp., ht): the lowest (resp., highest) segment in H that crosses r;

e v, (resp., v,): the leftmost (resp., rightmost) segment in V that crosses r.
Define r’ = [x.,x3] X [yL, y7], where x (resp., x,) is the x-coordinate of v, (resp., v.), and y, (resp.,
y) is the y-coordinate of b, (resp., ht). We say that r’ is the trimmed rectangle of r, and conversely,
r is the full rectangle of r’. Note that r’ exists if and only if r is crossed by at least one horizontal

segment in H and by at least one vertical segment in V.
Construct

R = {r'|r € R, and its trimmed rectangle r’ exists}. (6)

Computing the “segment h, ” for each r € R; is an instance of Problem & (the find-lowest version,
with H and R; as the input). By symmetry, so is computing the A+, v, and v, segments for each
r € R;. It thus follows from Section 2 that R}, R), ..., Rllc—z can be produced in O(knlogn) total time.
We now solve a (k — 2)-5] problem on the input {R{, R}, ..., R, _, } using the algorithm A supplied
(see Lemma 3.1). This (k — 2)-S]J clearly has an input size at most n, and let us represent its result as
J (R, R, ... R;_,). We prove in Appendix B:
Lemma 4.1. |J (R, R, ... R _,)| < OUT.

As a corollary of Lemma 4.1, the (k — 2)-S] can be settled in F_,(n, OUT) time.

Example 4.2. Figure 4b shows the rectangles in R] = {a’} and R, = {f], f5;}. For instance, a’, which
is trimmed from rectangle «, is decided by h; = hy, h+ = hg, vy = v3, and v, = vs. The (k — 2)-SJ] on

R} and Rj returns J (R}, Ry) = {(a’, B7), (&, B;) }. O

Generating J™. Take any (k —2)-tuple t = (r{,75, ..., r,’c_z) € J(RL,R,, ..., R,’C_z). The reader should
recall from Section 2 that

o Byis 52 t[i] = NE2 s
o left-guard(#) is the r{ (1 < i < k — 2) with left(r}) = left(B;);
e bot-guard(t) is the r] (1 < i < k — 2) with bot(r]) = bot(B;).
We now introduce:
d-crossy (t) = {h € H | h crosses both B; and bot-guard(#)} (7)
d-crossy (t) = {v € V | v crosses both B; and left-guard(#)}.

The prefix “d-” stands for “double”. These sets have important properties as stated in the next
lemma, whose proof can be found in Appendix B:

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:8 Ru Wang and Yufei Tao

«
12 +— : he 12 —
11 B | ™3 1 N,
e CEEE EEEVERTEE -- o
- lns w0 I
v T n |
9 — [. 9]
. '
L iV R T T N 8 g
A —— M :] 7L P2]
] 1 hs ' N
6 — —r T T ' 6 == L i
5L | = 1 it b 5L g7, - :
4L]] L hl ' 4 rmcemmme——= L]
N : :
3L a| L L 3
LLoh o F-F---F-
2 —] : 2 —
1 1
N O O Y N O O Y
1 2 345 6 7 8 9101112 1 2 345 6 7 8 9101112
(@) Ry, Ry, Hyand V (b) R} and R,
A (2 Vs A
12— _ he 121 he
1 v o 1
e Gl Y4 F__hy 101 G hs

C
T

[R -
1
=4
o
=
&
[N - I)
[
=)
los
>
S

3//

ar”
81

hy [E

Y B B Y O I
1 2 3 5 6 7 8 9 10 11 12 12 3 45 6 7 8 9 10 11 12

|
L
()R, R}, H,and V (d) R!, R, (= 0), and H

Fig. 4. Finding H-V k-S) result tuples of type 1 (k = 4)

LEMMA 4.2. All the following statements are true:

(1) Consider any (k — 2)-tuplet € J (R, R}, ... R, _,). Letr; (i € [k — 2]) be the full rectangle of
t[i]. Then, for any h € d-crossy(t) and any v € d-crossy (t), the k-tuple (r1, 12, ..., r'k—2, h,v)
must belong to J (Ry, ..., Rk—2, H, V).

(2) Consider any k-tuple (ry, 1o, ..., ri—2, h,0) € Ji. Let r] (i € [k — 2]) be the trimmed rectangle of
ri, and sett = (ry,ry, ..., r,’cfz). Then, we must have
ete J(R,R,...R ,);

e h € d-crossy(t) and v € d-crossy (t).

(3) X2t |d-crossy(t)| < OUT and), |d-crossy (t)| < OUT, where the two summations are over all

te J(R,R,...R_,).

Example 4.3. Let us examine, in turn, the two 2-tuples t; = (a’, f]) and t; = (&', ;) in J (R}, R;).
For t1, By, is the rectangle ABCD in Figure 4c, and left-guard(#;) = bot-guard(¢;) = a’. Accordingly,
d-crossg (1) = {h,} and d-crossy (t1) = {vs}. For t,, By, is the rectangle AEFG, and left-guard(#,) =
bot-guard(t;) = a’. Accordingly, d-crossg (¢2) = {hz, ha, hs} and d-crossy (t2) = {vs,vs5}. O
Equipped with Lemma 4.2, we generate our target J* as follows:

algorithm generate- g~

1. J°=0

2. for each (k —2)-tuplet € J(R,...,R__,) do

3. r; « the full rectangle of ¢[i], for each i € [k — 2]

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:9

4. for each (h,v) € d-crossy(t) X d-crossy (t) do
5. add (ry, ..., rk_2, h,0) to J*

By statements (1) and (2) of Lemma 4.2, the set J* thus computed indeed satisfies (5). Furthermore,
if we are given d-crossy(t) and d-crossy (¢) for each ¢, the above algorithm runs in O(1 + k -
|T (R}, s Ry _)+ k- |T7) =0(1+k - OUT) time, where the derivation used (5) and Lemma 4.1.

The rest of the section will focus on how to prepare the sets d-crossy (t) of all t € J(R], ... R, _,)
in O(knlogn + k - OUT) time. An analogous method can be used to compute the sets d-crossy ()
of all ¢ within the same time complexity.

Example 4.4. In our running example, the J* computed includes 7 tuples: (a, f1, bz, v3), and {a} X

{B2} X {hz, ha, hs} X {vs, v5}. All these 7 tuples belong to J (Ry, R, H, V) and include the 4 tuples
in 9 (see Example 4.1). o

Sets R}, R, ..., RZ-z' Fix any i € [k — 2]. Define for each v’ € R!:

maxtop(r’) = top(By). (8)

max
te J(R,...R; _,):bot-guard(¢)=r’

We set maxtop(r’) to —co if not € J (R}, ..., R, _,) has r’ as the bot-guard(t). When maxtop(r’) #
—oo, assuming r’ = [x1, x2] X [y1, y2], we introduce a rectangle

*

r* = [x1,x] X [y, maxtop(r’)]. 9)
and call it the top-sliced rectangle of r’.

Example 4.5. Recall from Example 4.3 that rectangle @’ is both bot-guard(#;) and bot-guard(#,).
Thus, maxtop(a’) = max{top(By,), top(Bs,)} = max{6, 9.5} = 9.5. The top-sliced rectangle of &’ is
the rectangle o* in Figure 4d. Rectangles] and f; do not have top-sliced rectangles. O

Next, we construct from le a new set of rectangles:
R ={r" | ¥’ € R} and its top-sliced rectangle r* exists}. (10)

In Appendix B, we show how to compute R}, ..., R; _, altogether in O(n + k - OUT) total time.

Our interest lies specifically in the sets crossy (r*) of the rectangles r* in R}, where crossy (r*) —
defined in (2) — is the set of segments in H crossing r*. The following lemma, proven in Appendix B,
presents some useful properties of these sets.

LEMMA 4.3. Both statements below are true:

(1) Zf-:f Zrer: |crossy (r*)| < OUT.

(2) Consider any tuplet € J (R,R, _,). Letr’ = bot-guard(t) and r* be the top-sliced rectangle
of r’. Then, we have d-crossy (t) C crossy(r*). Furthermore, if the (horizontal) segments of
crossy (r*) are sorted in ascending order of their y-coordinates, then d-crossy (t) includes a
prefix of the sorted order.

Example 4.6. 1t is clear from Figure 4d that crossy(a*) contains hy, hs, and hs, sorted in ascending
order of their y-coordinates. Recall that bot-guard(¢;) = bot-guard(¢;) = «’. Both d-crossy (1) =
{h,} and d-crossg(#2) = {hs, hy, h5} are indeed prefixes of the sorted crossy(a*), as stated in
Lemma 4.3.]

Finding the crossg (r*) sets of all ¥* € R; is an instance of the find-all-sorted version of Problem
2 (with H and R} as the input). Statement (1) of Lemma 4.3, as well as the discussion in Section 2,
assures us that the total time to do so for all R}, ..., szz is bounded by O(knlog n+OUT). Note that,
for each crossy (r*) computed, the (horizontal) segments therein have been sorted in ascending
order of y-coordinate.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:10 Ru Wang and Yufei Tao

@] o
12 12
1k Bs | v 1 v
PO I PRI -
0 Paa=o=q========-5 | ! 10—
L]
9 Bi s : : 9
S I A B B g
] [} [} . E 3
Lo : ol at hsog L o A
6L 1 By ! oo 6 D C
5 o : ' 1 5
5 — : :: ' hy N H 5 —
T Y S — oo B
31— 1 ' ' 3
--- - o Spp— L]
2 [y m—— __: 2
1+ 1+
S s) By) [B By
1 2 3456 78 9101112 1 2 3456 78 9101112
(@) Ry, Ry, Hyand V (b) R, H',and V
A y
12k 12
p .
11 — ed:s 11 ‘33
L, Ammmmmmmm--—-————— L AmmEmmm s s ==
10 Poram===========-a 0 Boram====mmmmmmm-
. [N} [N}
91 Bi s ' ' 91 B aa ' '
O I v P Vo
E [3] [] []
7T ::o—oB—:#:-oA—: 7L hy b b
61 Dis A o 6L 1o e .
| Orr——o—2! ' ' o 2! ' '
5+ 1 a1 ' ' ' 5+ 1 1a ' ' '
N e L] L] 1] N ' 1 1 1]
4 4 o ! v 4 4 o ' v
L] “-pmmm==—- Lemm=s ' ' L] “-pmmm==—- LEE LR ' '
s ' ' N ' '
R e R T R A
2 - L s : 2 - L s :
1 1
A Y T O A I N O I
1 2 345 6 7 8 9101112 1 2 345 6 7 8 9101112
()R, H',and V (d) R; and H*

Fig. 5. Finding H-V k-S) result tuples of type 2 (k = 4)

Computing the “d-cross” Sets. We are ready to compute d-crossy(t), defined in (7), for any
te J(R, ..., Rl,c—z)’ thanks to Statement (2) of Lemma 4.3. First, compute By, obtain the rectangle
r’ = bot-guard(#), and fetch the (already computed) top-sliced rectangle r* of r’; these steps require
O(k) time. Then, scan the segments in crossy (r*) in ascending order of their y-coordinates. For
each segment h scanned, check whether h belongs to d-crossy (#), namely, whether h crosses By
(the reader can verify that h must cross bot-guard(#)); this can be done in constant time. Abort the
scan as soon as h ¢ d-crossy(t). This way, we produce d-crossg(t) in O(k + |d-crossy (t)|) time.
Doing so forallt € J (R}, ... R, _,) takes O(k - |J| + X |d-crossy (2)|) = O(k - OUT) time, where
the derivation used Lemma 4.1 and statement (3) of Lemma 4.2.

We conclude that 97 — the set of type-1 result tuples — can be computed in Fy_,(n, OUT) +
O(knlogn + k - OUT) time.

5 H-V k-SJ: Result Tuples of Type 2

Still, denote by Ry, ..., Rx—s, H, and V the input sets of the H-V k-SJ problem. This section will explain
how to find the result tuples of Type 2 as defined in Section 3.

As mentioned before, for a result tuple (ry, ..., rx—2, b, v) of this type, a rectangle r;, for some
i € [k — 2], covers an endpoint of h or v or both. As (i) there are k — 2 choices for i and (ii) h and v
together have four endpoints, we can divide Type 2 further into 4(k — 2) “sub-types”: in subtype 1
(resp., 2), r; covers the left (resp., right) endpoint of h, in subtype 3 (resp., 4), r; covers the bottom
(resp., top) endpoint of v, in subtype 5 (resp., 6), r2 covers the left (resp., right) endpoint of h, etc. It

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:11

is possible for the result tuple to belong to multiple sub-types simultaneously. Next, we will focus
on producing the result tuples of a particular sub-type:

J2 = A{(r,..rk-2,hv) € J(Ry, ... Rk—2, H, V) | ri_z covers the left endpoint of h}. (11)

The other sub-types can be found analogously.

A remark is in order about duplicate removal. By finding each sub-type separately, we may
see the same result tuple multiple times (precisely, up to 4(k — 2) times) in the whole algorithm.
However, this does not mean that the tuple needs to be reported multiple times. Whenever a type-2
result tuple is found, we can immediately decide in O(k) time all the sub-types it belongs to. To
avoid outputting the tuple more than once, we can enforce a policy to designate a specific sub-type
for outputting. One such policy is the following: among all sub-types that the tuple belongs to,
identify the one with the smallest sub-type number ¢ (an integer from 1 to 4(k — 2)); report the
tuple only when we are computing the particular sub-type ¢.

Example 5.1. To illustrate our algorithm, we will utilize the running example in Figure 5a, where
k =4,and Ry = {a}, Ry = {p1, 2, B3}, H = {hy, hy, h3}, and V = {vy, v,}. The set J, contains the
following tuples: (a, f1, ha, v1), (@, f1, h3,v1), (@, P2, hs, v1), (@, B3, hs,v1), and (@, B3, hs, v2). O

Set H’'. Take any horizontal segment h = [x1, xz] X y € H. Recall from Section 2 that a left-end
covering rectangle of h is a rectangle covering the left endpoint of h. Let p be the rightmost point
on h such that at least one left-end covering rectangle of h in Rx_, covers p. This p exists if and
only if h has at least one left-end covering rectangle in Ry _,. If p exists and has coordinates (x,y),
we refer to the segment b’ = [x1, x] X y as the trimmed segment of h; conversely, we call h the full
segment of h’.

Construct

H" = {W | he€ H and its trimmed segment h’ exists}. (12)

The construction is an instance of Problem % (with H and Ry_, as the input) and finishes in
O(nlogn) time based on the discussion in Section 2.

Now, solve a (k — 1)-SJ problem on the input {Ry, ..., Rk_3, H', V} using the algorithm A sup-
plied (by Lemma 3.1). Let J (Ry, ..., Rx_3, H’, V) represent the result of this (k — 1)-SJ, whose
input size is at most n. Given the lemma below (which is proved in Appendix C), we assert that
J(Ry, ..., Rk—3,H', V) can be computed in Fi_;(n, OUT) time.

LemMMA 5.1. | T (Ry, ..., Rr_3,H', V)| < OUT.

Example 5.2. Segment h; has no left-covering rectangle in R; (see Figure 5a) and thus has no trimmed
segment. Segment h, has one left-covering rectangle in Ry, which is f;. As the entire h;, is covered
by fi, it is equivalent to its trimmed segment h’; see Figure 5b. Segment h3; has two left-covering
rectangles in Ry, which are f8, and fs. The right endpoint of its trimmed segment A, as shown in
Figure 5b, is decided by the right edge of f3. Therefore, H" = {h,, h}}. It is clear from Figure 5b that
J (R1,H',V) has 3 tuples: t; = (a, hy,v1),t2 = (a, h3,0v1), and t3 = (a, b3, 03). m]

Generating ;. Take any (k — 1)-tuple t = (rq, ..., k-3, h",0) € T (Ry, ..., Rx_3, H', V). Note that B;
— defined in (4) — is the point A’ N v (the intersection of A" and v). Suppose that b’ = [x1, %3] X y
and B; = (x,y); we define the effective horizontal segment of t as the horizontal segment [x1, x] X y.
This allows us to define

containg, ,(t) = {r € Rr_, | r contains the effective horizontal segment of ¢} (13)

The above should not be confused with (3), where the “contain” function takes a segment as the
parameter, rather than a tuple.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:12 Ru Wang and Yufei Tao

Example 5.3. Consider the tuples t1, t,, and t3 of J(Ry, H’,V) given in Example 5.2. For ¢; =
(a, hy, v1), its effective horizontal segment is DC (see Figure 5b). For t, = (a, h;,01), its effective
horizontal segment is EB. For t3 = (a, h},02) € J (R, H', V), its effective horizontal segment is EA.
Accordingly, as can be seen from Figure 5c, containg, , (1) = containg, (1) = {f}, containg, (t2) =
{B1, B2, B3}, and containg, (t3) = {f3}. a

We prove the next lemma in Appendix C (the reader may want to be reminded that, for each
te J(Ry,...,Rk_3,H', V), t[k — 2] is a horizontal segment and #[k — 1] is a vertical segment).

LEMMA 5.2. All the following statements are true:

(1) Consider any (k — 1)-tuplet € J (Ry, ..., Rk—3, H', V). Denote by h the full segment of t[k — 2].
Then, for any r € containg, ,(t), the k-tuple (t[1], ...,t[k — 3], 7, h,t[k — 1]) belongs to J,.

(2) Consider any k-tuple (11, ...,rk—2, h,v) € Jo. Let ' be the trimmed segment of h and set t =
(r1, .. rk=3, W', 0). Then, t € T (Ry, ..., Rk_3, H', V) and r_, € containg,__, (t).

(3) 2t |containg, ,(t)| < OUT, where the summation is over allt € J (Ry, ..., Rk_3, H', V).

Equipped with Lemma 5.2, we generate our target 7, as follows:

algorithm generate-7;
1. =0
2. for each (k — 2)-tuple t € J(Ry,...,Rx_3,H', V) do
3. h « the full segment of t[k — 2]
for each r € containg, ,(t) do
add (t[1],...t[k = 3], r, ht[k — 1]) to J>

The correctness of the algorithm follows from statements (1) and (2) of Lemma 5.2. Furthermore,
if we are given containg, ,(t) for each t, statement (3) of Lemma 5.2 assures us that the algorithm
runs in O(1+k - [J(Ry, ... Re—3, H', V)| + k 24 |containg, ,(t)|) = O(1 + k - OUT) time, where the
derivation used Lemma 5.1 and statement (3) of Lemma 5.2.

e

Example 5.4. For t; = (a, hj,v1), the full segment of h) is h,. As fB; is the only rectangle in
containg, (#1), Line 5 of the algorithm adds tuple (e, f1, h2,v1) to Jz. For t; = (a, h,v1), the full
segment of h; is h3. As containg, (t2) = {1, fo, B3}, Line 5 adds (a, B1, h3,v1), (@, B2, h3,01), and
(a, B3, h3,v1) to Js. Finally, the processing of t3 = (&, h},v2) adds (a, B3, h3, v2) to . m]

Set H*. For each segment b’ € H’, define

minleft(h’) = x-coordinate of t[k — 1]. (14)

min
te TRy, ... Re_s, H',V) :
tlk-2]=H
We set minleft(h’) tocoifnot € J (Ry, ..., Rk_3, H', V) has b’ inits field #[k—2]. When minleft(h’) #
oo, assuming h’ = [x1, x2] X y, we introduce a horizontal segment
h* =[x, minleft(h")] X y.

and call it the minimal segment of h’.

Example 5.5. As mentioned, J (R;, H’,V) has 3 tuples t,, t;, and ¢3. Both t; = (e, hj,v1) and
t; = (a, h3,v2) have h; as the horizontal segment. Therefore, minleft(h}) equals 5, which is the
smaller between the x-coordinate of v; and that of v,. The minimal segment h; of A} is shown in
Figure 5(c). On the other hand, it is easy to verify that minleft(h;) is the x-coordinate of ;. The
minimal segment h; of h; is also shown in Figure 5(c). O

Next, we construct a new set of horizontal segments:

H* ={h" | ¥ € H’ and its minimal segment h" exists}. (15)

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:13

This can be done in O(n + k - OUT) time, as shown in Appendix C.
We are interested in the sets containg, ,(h*) of the segments A" in H*, where containg, ,(h*) —
defined in (3) — is the set of rectangles in R_, containing h*. These sets have some useful properties:

LEMMA 5.3. Both statements below are true:
(1) Xprep |containg, ,(h*)| < OUT.
(2) Consider any tuplet € J(Ry,...,Rk—3,H', V). Set h’ = t[k — 2] and let h* be the minimal
segment of h’. Then,
containg, , (¢) C containg,_, (h").

Furthermore, if the rectangles r in containg, ,(h*) are sorted in descending order of right(r),
then containg, , (t) includes a prefix of the sorted order.

The proof can be found in Appendix C.

Example 5.6. 1t is clear from Figure 5(d) that containg, (h3) has rectangles fis, fo, f1, sorted in de-
scending order of their right boundaries’ x-coordinates. Consider t, = (a, h3,v;) and t3 = (a, h3, v2).
Segment h; is the minimal segment of ;. As stated in Lemma 5.3, both containg, (t2) = {f1, B2, B3}
and containg, (t3) = {f} are prefixes of the sorted order of containg, (h3). Regarding hj, it is the
minimal segment of h7, and containg, (h}) contains only ;. Fort; = (a, h},v1), containg, (t;) = {1}
is a (trivial) prefix of containg, (h}), as is also consistent with the lemma. o

Finding the containg, ,(h*) sets of all h* € H* is an instance of Problem & (with H* and Ri_; as
the input). The cost is O(nlog n+ OUT) according statement (1) of Lemma 4.3 and the discussion in
Section 2. Note that, for each containg, ,(h*) computed, the rectangles r therein have been sorted
in descending order of right(r).

Computing the “containg, , (#)” Sets. Statement (2) of Lemma 5.3 allows us to produce containg, , (¢)
— defined in (13) — for each t € J (Ry, ..., Rx—3, H', V) as follows. First, fetch the (already computed)
minimal segment h* of t[k — 2] in O(1) time. Then, scan the rectangles r of containg, ,(h*) in
descending order of right(r). For each r scanned, check whether r € containg, ,(t), or equivalently,
whether r covers B; (recall that By is a point); the cost of this inspection is O(1). Abort the scan as
soon as r ¢ containg, , (¢). This way, containg, , (¢) can be decided in O(k + |containg, ,(t)|) time.
Doing so forallt € J(Ry, ..., Rk—_3, H', V) takes O(k - | T | + X}; |containg, ,(t)|) = O(k-OUT) time,
where the derivation used Lemma 5.1 and statement (3) of Lemma 5.2.

We conclude that J, — see (11) — can be computed in Fi_;(n, OUT) + O(nlogn + k - OUT) time.
Remember that, to generate the entire type-2 result, we need to repeat the algorithm 4(k — 2) times
(one for each sub-type). The total running time is therefore O(k) - (Fx—1(n, OUT) +nlog n+k-OUT),
as claimed in Lemma 3.1.

6 Settling k-S)

This section will tackle the k-SJ problem in its general form, where the input comprises k > 3 sets

of rectangles Ry, Ry, ..., Rk. The join result J (Ry, Ry, ..., Ry) is the set of k-tuples t = (ry,rs, ..., 7%) €

Ry X Ry X ... X Ry, satisfying the condition that B; — which is %, ; # 0 (see (4)) — is non-empty.
Consider any result tuple t = (r1,rs, ..., 1) € J (Ry, Ry, ..., R), and let p be the top-left corner of

B;. Depending on how p is determined, we classify t into one of the two categories below:

o Cat. 1: p is the top-left corner of r; for some i € [k].

e Cat. 2: p is not a corner of any of ry, ..., r. This means p must be the intersection point
between the top edge of some rectangle r; and the left edge of another rectangle r;, where
i,je[k]andi # j.

Figure 6 illustrates a tuple of each category, assuming k = 4.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:14 Ru Wang and Yufei Tao

1 1

T4

r
4 T3 T3

(a) Category 1 (b) Category 2
Fig. 6. Classifying k-SJ result tuples (k = 4)

The rest of this section serves as a proof of Theorem 1.1. Theorem 1.2 is a corollary of Theorem 1.1,
as proved in Appendix D. As stated in Theorem 1.1, we are given an algorithm A that can solve
any (k — 1)-SJ problem in F;_;(n, OUT) time, where n and OUT are the input and output sizes,
respectively. Equipped with A, we will show how to find the result tuples of each category within
the time complexity of (1).

Category 1. Given an i € [k], we denote by ji"a” the set of k-tuples t = (rq,...,rx) € J (Ry, ..., R)
such that the top-left corner of By is the top-left corner of ¢[i] = r;. We will show how to compute
J " for i = k; the set T of every other i can be produced in the same manner.

For every t = (ry,r2,....,Tk) € jkcatl, the top-left corner of rx must be covered by all of ry, ..., rk_1.
This observation motivates us to find %Catl as follows. First, collect the set P of top-left corners of
all the rectangles in R;. Remove from P every point p with the property that, there exists at least
one j € [k — 1] such that p is covered by no rectangle in R;. This requires solving k — 1 instances of
the detection version of Problem .27 (in each instance, the input includes P together with a different
R;, j € [k = 1]); the cost is O(knlogn) by the discussion in Section 2.

Let P’ be the set of remaining points in P after the aforementioned removal. Next, for each
Jj € [k — 1], solve the reporting version of Problem &/ by feeding P’ and R; as the input. This
produces the set containg, (p) for each point p € P, where containg, (p) is defined in (3) (treating
p as a degenerated “horizontal segment”) and includes all rectangles of R; covering p. By the
discussion in Section 2, the total cost of this step is bounded by

O(knlogn+z Z |containRj(p)|). (16)

peP’ jelk-1]

We are ready to generate jk"’a”. Take any point p € P, and let r € Ry be the rectangle with p as
the top-left corner. For every (k — 1)-tuple

(r1, ... rk—1) € containg, (p) X ... X containg,__, (p)

we add (ry,...,rk_1,7) to J;f"‘”. Performing the above for all p € P’ generates the whole j;fa” in
O(1+k- |jk°at1) time. The way P’ is computed ensures that containg, (p) # 0 for each j € [k —1].
Hence, 3, jc[x-1] |containg;, (p)| < [];c[k-1] |containg; (p)|, which implies that (16) is bounded by
O(knlogn +k - |) = O(knlogn + k - OUT) .

Therefore, the total time of computing all of J%", ..., 5" is O(k) - (knlogn + k - OUT). A
category-1 result tuple £ may be seen more than once (this happens if the top-left corner of By is
the top-left corner of more than one rectangle in #). Duplicate removal can be implemented at no
extra cost asymptotically, following the ideas explained in Section 5.

Category 2. Given i, j € [k] with i # j, we denote by J;’“jatz the set of k-tuples t = (ry,...,rx) €
J (R4, ..., Ry) such that the top-left corner of B; is the intersection between the top edge of r; and
the left edge of r;. The Category 2 of result tuples is the union of the ji,cj?tz of all possible i, j.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:15

The computation of 1.33‘“2 is an instance of the H-V k-SJ problem. Specifically, collect the top-
edges of all rectangles of R; into a set H, and collect the left-edges of all the rectangles of R; into a
set V. This yields an H-V k-S] instance whose input comprises all the R, with z € [k] \ {i, j}, H,
and V. Each result tuple consists of a rectangle r, € R,, for z € [k] \ {i, j}, a horizontal segment
h € H, and a vertical segment v € V such that h 0o N (\c[x)\(ij) 7z # 0. There is one-one
correspondence between the output of the H-V k-SJ and Jifjf‘tz. Thus, by Lemma 3.1, the H-V k-SJ
can be solved in O(k) - (Fx_;(n, |Jifjf‘t2)+nlogn+k- |1.3?‘t2 |) time. Converting the output into jl.,cjatz
takes another O(k - |$3?t2|) time. Applying |jif]f“t2| < OUT, we know that jff‘tz can be produced
in O(k) - (Fx-1(n,OUT) + nlogn + k - OUT) time

Performing the above for all i, j € [k] with i # j leads to a total time complexity of O(k?) -
(Fx—1(n,OUT) + nlogn+ k - OUT). A category-2 result tuple t may be seen more than once (this
can happen if, for example, more than one rectangle in has the same top-edge). Again, duplicate
removal can be achieved at no extra cost asymptotically.

We now complete the proof of Theorem 1.1.

Appendix
A Building Brick Algorithms

Terminology. Each point (x, y) is said to define a y-coordinate y, a horizontal segment [x1, xz] X y
is said to define a y-coordinate y, and each rectangle r = [x, x2] X [y1,y2] is said to define two
y-coordinates y; and y,. These definitions permit us to conveniently specify a set of y-coordinates
using expressions like “the set of four y-coordinates defined by point p, horizontal segment h, and
rectangle r”.

Fundamental Data Structures. The interval tree [5] stores a set S of intervals in R using O(|S|)
space such that, given any real value g, the intervals of S containing ¢ can be found in O(log |S|+K)
time, where K is the number of intervals reported. It can also be used to detect whether S has at
least one interval containing g in O(log |S|) time. The structure supports insertions and deletions
on S in O(log |S]) time.

Now, let us assume that each interval of S is associated with a real-valued weight. Given a real
value g, a stabbing max query returns the maximum weight of all the intervals in S covering q (if no
such intervals exist, the query returns —co). We can store S in a structure of [1] using O(|S|) space
that can answer such a query in O(log |S|) time. The structure supports insertions and deletions on
S in O(log |S|) amortized time.

The priority search tree (PST) [16] stores a set P of points using O(|P|) space such that, given a
3-sided rectangle g = [x1, x3] X [y, o), the points of S covered by q can be found in O(log |P| + K)
time, where K is the number of points reported. The structure supports insertions and deletions on
S in O(log|S|) time.

The PST can be deployed to answer queries on intervals. Let S be a set of intervals in R. Given
an interval q = [z1, z2], a containment query reports all the intervals of S that are contained by
q.- We can store S in a PST of O(|S|) space that solves such a query in O(log |S| + K) time, where
K is the number of intervals reported. To see why, observe that an interval [x,y] is contained
by another [z1, z;] if and only if the point (x, y) falls in the 3-sided rectangle [z, 00) X (—o9, z2].
Thus, we create from S a point set P = {(x,y) | [x,y] € S} and store P in a PST. Given an interval
q = [z1, z2], we can answer the containment query by using the PST to find all the points in P
covered by [z1, 00) X (—09, 23] and, for each such point (x, y), report [x, y].

Another closely related query is the reverse-containment query, which, given an interval q =
[z1, z2], finds all the intervals of S that contain g (rather than “being contained by ¢”). Again, we

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:16 Ru Wang and Yufei Tao

can store S in a PST of O(|S]) space that answers such a query in O(log |S| + K) time, where K is
the number of intervals reported. In general, an interval [x, y] contains another [z, zz] if and only
if the point (x, y) falls in the 3-sided rectangle (—o0,z1] X [23,). Thus, we create from S a point
set P = {(x,y) | [x,y] € S} and store P in a PST. Given an interval q = [z1, z2], we use the PST to
find all the points in P covered by (—c0, z;] X [z2, %) and, for each such point (x,y), report [x, y].

Algorithm for Problem .o7. Consider first the detection version. Sort the set of y-coordinates
defined by the points of P and the rectangles of R. Next, sweep (conceptually) a horizontal line ¢
from y = —co to y = oco. At all times, maintain the set Ry of rectangles in R that intersect with ¢. Let
S¢ be the set of x-ranges of the rectangles in R,; we store S, in an interval tree 7. Specifically, when
¢ hits the bottom (resp., top) edge of a rectangle r = [x1, x2] X [y1, y2] of R, we insert (resp., delete)
[x1, x2] into (resp., from) 7, which can be done in O(log n) time. When ¢ hits a point p = (x,y) of
P, search 7 to determine if any interval in Sy contains the value x. If so, point p is covered by at
least one rectangle in R; otherwise, it is not. The overall running time is O(nlog n).

The algorithm for the reporting version of Problem .27 is similar. The only difference is that,
when ¢ hits a point p = (x,y) of P, we use 7 to report all the intervals in S, that contain x; the
cost is O(nlogn + K,), where K, is the number of such intervals. Every interval corresponds to a
rectangle in R that contains p. The total running time is O(nlogn + 3, K;,) = O(nlogn + OUT).

Algorithm for Problem . Sort the set of y-coordinates defined by all the segments of H and V.
Next, sweep a horizontal line £ from y = —co to y = co. At all times, maintain the set V; of segments
in V that intersect with ¢. Let S; be the set of x-coordinates of the segments in V;; we store S, in a
binary search tree (BST) 7. Specifically, when ¢ hits the lower (resp., upper) endpoint of a vertical
segment v = x X [y, y2] of V, we insert (resp., delete) the value x into (resp., from) 7, which can
be done in O(log n) amortized time. When ¢ hits a horizontal segment h = [x1, x;] X y of H, search
7 to determine the successor x” of x; in S;. If x” < x5, then we output a pair (h, p), where p is the
point (x’, y); otherwise, output nothing for h. The overall running time is O(nlog n).

Algorithm for Problem %. Sort the set of y-coordinates defined by all the segments in H and all
the rectangles in R. Next, sweep a horizontal line £ from y = —co to y = co. At all times, maintain the
set R, of rectangles in R that intersect with £. Let S, be the set of x-ranges of the rectangles in R;; we
store Sy in a stabbing-max structure 7~ of [1]. Specifically, when ¢ hits the bottom (resp., top) edge
of a rectangle r = [x1, x2] X [y1, y2] of R, we insert (resp., delete) [x1, x;] with weight x, into (resp.,
from) 77, which can be done in O(log n) time. When ¢ hits a horizontal segment h = [x1, x;] X y of
P, search 7 to determine the maximum weight w of all the intervals in S; containing the value x;.
If w # —oo, we output (h, p) where the point p is defined in a way depending on w: if w < x,, then
p = (w,y); otherwise p = (x2,y). The overall running time is O(nlogn).

Algorithm for Problem Z. Consider first the find-lowest version. Sort the set of y-coordinates
defined by all the horizontal segments and rectangles. In the outset, all rectangles of R are marked
as inactive. During our algorithm, the status of each rectangle will turn from inactive to active at
some point, turn from active back to inactive at a later point, and then stay that way forever.

Sweep a horizontal line ¢ from y = —oco to y = co. At all times, we maintain the set R, of active
rectangles in R that intersect with ¢. Let S; be the set of x-ranges of the rectangles in R;; we store
Se in a PST 7. Specifically, when ¢ hits the top edge of a rectangle r = [x1, x2] X [y, y2] of R, we
insert [x, x2] into 7~ and mark r as active, which can be done in O(logn) time. The rectangle r
will be referred to as the host of [x1, xz] and is stored together with [xy, x;] in 7.

When ¢ hits a horizontal segment h = [z;, z;] X y of P, perform a containment query on 7~
to find all the intervals in S; that are contained by [zy, z,]; if K}, is the number of such intervals,
this retrieval takes O(log n + K},) time. For each retrieved interval [x;, x;], we also obtain its host
rectangle r (stored along with [xy, x,] in 7). As can be verified shortly, h is the lowest segment in

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:17

H that crosses r; we therefore output (r, h). After that, r is marked as inactive, and accordingly,
its x-range [x1, x2] is deleted from 7~ in O(log n) time. As r will remain inactive in the rest of the
execution, its x-range will not be retrieved again by another containment query in the future. This
implies that h is indeed the lowest segment in H crossing r.

When ¢ hits the bottom edge of a rectangle r = [x1, x2] X [y1, y2] of R, we check whether r is
active. If so, delete [x1, x2] from 7 and mark r as inactive; otherwise, do nothing.

Overall, each rectangle of R necessitates one insertion and one deletion in 7. All these insertions
and deletions take O(nlog n) time in total. Each segment h of H performs a containment query on
7, which has a cost of O(logn + Kj,). All these queries demand a total cost of O(nlogn + X}, Kp).
Recall that the x-range of a rectangle in R can be retrieved by at most one containment query.
Hence, }};, K < |R| < n and the runtime of our algorithm is O(nlogn).

Next, we consider the find-all-sorted version of Problem . For each r € R, we keep a linked
list, which at the end of our algorithm will store the horizontal segments of crossy(r) in ascending
order of their y-coordinates. In the outset, all linked lists are empty. Unlike the detection version,
we will not need to keep the active status for the rectangles.

Again, sweep a horizontal line £ from y = —oo to y = co. At all times, we maintain the set R, of
rectangles in R that intersect with £. Let Sy be the set of x-ranges of the rectangles in R,; we store S,
in a PST 7. Specifically, when ¢ hits the bottom (resp., top) edge of a rectangle r = [x1, x2] X [y1, y2]
of R, we insert (resp., delete) [x1, x2] into (resp., from) 7, which can be done in O(log n) time. Again,
the rectangle r — the host of [x1, x;] — is stored together with [x1, x;] in 7.

When ¢ hits a horizontal segment h = [z1, z2] X y of P, perform a containment query on 7~ to
find all the intervals in S, that are contained by [z;, z;]; the query cost is O(log n + Kj), where K,
is the number of intervals reported. For each retrieved interval [xj, x;], we also obtain its host
rectangle r. It is clear that h is a segment crossing r and is thus appended to the linked list of r.
Note that & is higher than all the segments already in that linked list.

Overall, each rectangle of R necessitates one insertion and one deletion in 7°. All these insertions
and deletions take O(nlog n) time in total. Each segment h of H performs a containment query on
7, which has a cost of O(log n + Kj). All these queries demand a total cost of O(nlogn + X, Kp).
However, unlike the detection version, the sum }}; Kj, here is equal to the total size of crossy(r)
for all the r € R. The total size is equivalent to OUT.

Algorithm for Problem &. Sort all the rectangles r € R in ascending order of right(r) (namely,
the x-coordinate of the right edge of). To each r € R, we assign an ID i € [|R]] if r is at the i-th
position of the sorted list.

Next, we aim to produce, for each pair (h,r) € H X r such that k crosses r, a pair (h, 1) where A
is the ID of r. These pairs may be output in an arbitrary order. Sort the set of y-coordinates defined
by all the horizontal segments and rectangles. Sweep a horizontal line ¢ from y = —co to y = oo.
At all times, we maintain the set R, of rectangles in R that intersect with ¢. Let S, be the set of
x-ranges of the rectangles in R,; we store Sy in a PST 7. Specifically, when ¢ hits the bottom (resp.,
top) edge of a rectangle r = [x1, x2] X [y1, y2] of R, we insert (resp., delete) [x1, xz] into (resp., from)
7, which can be done in O(log n) time. We call the rectangle r the host of [x1, x2] and store its
ID together with [x7, x;] in 7. When ¢ hits a horizontal segment h = [z1, 23] X y of H, perform a
reverse-containment query on 7 to find all the intervals in S, that contain [z;, z;]; the query cost
is O(log n + K},), where Kj, is the number of intervals reported. For each retrieved interval [x1, x2],
we also obtain the ID A of its host rectangle r, and output the pair (h, 1).

Each rectangle of R necessitates one insertion and one deletion in 7. All these insertions and
deletions take O(nlogn) time in total. Each segment h of H performs a reverse-containment query
on 7, which has a cost of O(log n+ Kp,). All these queries demand a total cost of O(nlogn+ >, Kp).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:18 Ru Wang and Yufei Tao

The sum), Kj, here is equal to the total size of containg(h) for all the A € H. The total size is
equivalent to OUT. The cost so far is therefore O(nlogn + OUT).

Let L be the list of (h, 1) pairs produced (the size of L is OUT). We now proceed to sort L in
ascending order of the A-field (which is a rectangle ID), breaking ties arbitrarily. Because the IDs are
integers created by the algorithm, we are permitted to sort L using counting sort without violating
the comparison-based requirements. The counting sort finishes in O(|R| + |L|) = O(n + OUT) time,
recalling that all the IDs are in [|R]].

Finally, we generate, for each A, its set containg (h) (i.e., the set of rectangles covering h), where
the rectangles r are sorted by right(r). To start with, initialize an empty linked list for every h € H.
Inspect the pairs (h,A) € L in ascending order of the ID-field A. For each pair (h, 1) examined,
identify the rectangle r whose ID is A and add r to the linked list of . By the way the rectangle
IDs were generated, it is clear that right(r) is larger than or equal to the x-coordinates of the right
edges of the rectangles already in the linked list. The whole scan over L finishes in O(1 + OUT)
time, and produces the correct output for Problem &.

B Supplementary Proofs for Section 4

We start by presenting two properties underneath the procedures designed in Section 4. These
properties will enable us to construct simpler proofs later.

ProPosITION B.1. Consider any rectangle r taken from Ry, Ry, ..., or Ri_3. Let '’ be the trimmed
rectangle of r defined in Section 4.

o If a horizontal segment h € H crosses r, then h must also crossr’.
o If a vertical segmentv € V crosses r, then v must also crossr’.

Proor. We will prove only the first bullet due to symmetry. Let us represent h as [xy, x2] X y. The
fact of h crossing r indicates that [x1, x;] contains the x-range of r. Since the x-range of r contains
that of r’, we know that [xy, x,] must also contain the x-range of r’. To prove that h crosses r’,
we still need to show y € [bot(r’), top(r’)]. Recall that bot(r’) is the y-coordinate of the lowest
segment in H crossing r. This implies y > bot(r") because h itself is a segment in H crossing r.
Analogously, it also holds that y < top(r”). We can now conclude that h crosses r’. O

ProrosiTiON B.2. Consider the sets R, R, ..., R, _, defined in (6). Let t be any (k — 2)-tuple in
J (R, RS, ... R _,). Then, neither d-crossy (t) nor d-crossy (t) can be empty.

Proor. Due to symmetry, we will give the proof only for d-crossg (t) # 0. Set r’ = bot-guard(t),
and let r be the full rectangle of r’. Define h as the lowest segment crossing r (note that h definitely
exists because otherwise r has no trimmed rectangle, contradicting the definition of r"). We will
show that h € d-crossy (), which indicates d-crossy () # 0. For this purpose, we should explain
why h crosses both B; and r’. However, by Proposition B.1, h crossing r directly implies h crossing
r’. It remains to prove that h crosses B;.

By the definitions of r” and h, the bottom edge of ' must be contained in h (note that A is one of
the segments used to trim r into r’). Because r’ = bot-guard(t), the bottom edge of B; is contained
in the bottom edge of r’ and thus also contained in h. This means that h N By # (. On the other
hand, the x-range of h must cover that of r’ (because h crosses r’), which in turn must cover that of
By (because r’ covers B;). Thus, the x-range of h covers that of B;. This together with h N By # 0
tells us that A must cross Bs.]

We now proceed to elaborate the proofs postponed from Section 4. The order of the subsequent
proofs will not strictly follow the sequence in which they are referenced in Section 4. In particular,

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:19

we will prove Lemma 4.2 before Lemma 4.1, because the claims of the former lemma can be used to
produce a succinct argument for the latter.

Proof of Lemma 4.2. We will prove each statement in turn.

Proof of Statement (1). Take any (k — 2)-tuple t € J (R}, R), ..., R, _,). Let r; (i € [k — 2]) be the full
rectangle of ¢[i]. Fix any h € d-crossy(t) and any v € d-crossy (t). The segments h and v both
cross By, as can be seen directly from the definitions of d-crossy (¢) and d-crossy (t). Thus, hNo
is a point in By = ﬂf-:lz t[i]. Asr; (i € [k — 2]) is the full rectangle of ¢[i], we know that ﬂi-:lz ri
covers By = f:_lz t[i]. Hence, point h N v falls in ﬂi—‘:_lz r, indicating that h N o N ﬂf:_lz ri 0.1t
follows that (ry, ..., Fx—2, b, v) is a result tuple in J (Ry, ..., Rk, H, V).

Proof of Statement (2). Take any k-tuple (ry, ..., rx—2, h,v) € Ji. By definition of 77, segments h and
v cross each of the rectangles ry, ..., rx_y. By Proposition B.1, segments # and v must also cross each

of the trimmed rectangles r{,...,r,_,. Hence, B = ﬂf:_lz r; is non-empty as it contains the point
h N o, which proves the first claim £ = (r{, ..., r,’c_z) egJR,.., RI’C_Z).

Next, we prove the second claim, i.e., h € d-crossy (t) and v € d-crossy (t). It suffices to show
only the former due to symmetry. For that purpose, we need to argue that h crosses bot-guard(t)
and B;. The first part, h crossing bot-guard(t), is done because as mentioned h crosses each of
A r,’(_z, and bot-guard(#) is merely one of those rectangles. To prove that h crosses By, first note
that h N By # 0 because as explained before By contains h N v. On the other hand, as bot-guard(t)
covers By, the fact of h crossing bot-guard(t) indicates that the x-range of h contains that of By.

Combining this with A N By # 0 shows that h crosses By.
Proof of Statement (3). We will prove

|d-crossg ()] - |d-crossy (t)| < OUT (17)
te T (R)R._,)

which implies statement (3) because, by Proposition B.2, |[d-crossy (t)| = 1 and |d-crossy (¢)| > 1
for any t in the summation. Our proof resorts to the algorithm generate-J* given in Section 4.
This algorithm adds to J* as many tuples as calculated by the left hand side of (17). By statement
(1) of Lemma 4.2, the J* produced must be a subset of J (Ry, ..., Rx_2, H, V), whereas OUT =
| T (Ry, ..., Rk—2, H, V)|. This establishes the inequality in (17).

Proof of Lemma 4.1. Our proof again resorts to the algorithm generate- J* in Section 4. By Proposi-
tion B.2, both d-crossy (t) and d-crossy () are non-empty for any t € J (R}, .., R; _,). Therefore, in
processing this t, the algorithm adds at least one new tuple to J*. Hence, | (R}, ... R, _,)| < [T | <
| T (Ry, ..., Rk—2, H, V)| = OUT, where the second inequality used Statement (1) of Lemma 4.2.

Computing R}, R}, ..., RZ-z' We consider, w.l.o.g., that each rectangle in the input R; U ... U Rg_;
is given a distinct integer ID in [n]. This allows us to create an array of size n and allocate an array
cell to each r € Ry U ... U Ri_». The cell can be accessed by the ID of r in constant time.

To compute R}, R}, ..., R, _,, we start by deriving maxtop(r’) for each rectangle r" in RiU...UR; _,.
For this purpose, first initialize maxtop(r’) = —oo for each such r’. Recall that r’ is the trimmed
rectangle of some rectangle r in Ry U ... U Ry._,. We store maxtop(r’) in the array cell allocated to
r. Then, we scan J (R], ..., R, _,). For each tuple ¢ therein, use O(k) time to identify the rectangle
r’ = bot-guard(t), and then update in constant time maxtop(r’) to the maximum between its
current value and top(r’). The scan requires O(n + k - OUT) time.

Finally, for each i € [k — 2], we construct R] by collecting the top-sliced rectangle (see definition
in (9)) of every rectangle r’ € R] with maxtop(r’) # —oo. This step takes O(|R;|) time for each
i € [k - 2], or O(n) total time for all i.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:20 Ru Wang and Yufei Tao

Proof of Lemma 4.3. We will prove each statement in turn.
Proof of Statement (1). We will map each r* of U]f:_lz R} to a unique tuple ¢ in J (R}, ..., R, _,) satis-
fying crossy (r*) C d-crossy (). The mapping allows us to derive

Z Z |crossg (r)| < Z |d-crossy (t)| < OUT

ie[k-2] r*eR; te J(R,-.R_,)

where the last step used statement (3) of Lemma 4.2.

The mapping is as follows. Consider an arbitrary r* € [<72 R}. Recall that r* is the top-sliced of
some rectangle r’. Specifically, if ¥’ = [x1, x2] X [y1, y2], then r* = [x1, x3] X [y, maxtop(r’)]. By the
definition of maxtop(r’) in (9), there exists a tuple t € J (R, ..., R, _,) satisfying bot-guard(t) = r’
and maxtop(r’) = top(B;). We map r* to ¢.

Next, we will prove

Claim 1: If a segment h € crossy (r*), then h € d-crossy(t).
For this purpose, we need to show that h crosses both bot-guard(¢) = r’ and By.

e First, h crosses r’ follows from the facts that (i) k crosses r*, (i) r* C r’, and (iii) 7* and r’
share the same x-range.

e Then, we explain why h crosses B;. Because By C r’ and h crosses r’ (just proved), no
endpoint of & can fall in B;. Let us take the y-coordinate y;, of h. We will prove that the point

p = (left(B;), yp) is on the segment h and is also in By, suggesting h N B # 0. Once this is

done, we can assert that h crosses By (as no endpoint of A falls in By).

— As bot-guard(t) = r’, the bottom edge of By is contained in r’. Thus, left(Bs) € [x1, x2].
The fact of h crossing r* tells us that left(h) < x; < x; < right(h), which leads to
left(B;) € [left(h), right(h)], suggesting that p € h.

— As bot-guard(¢) = r’ and maxtop(r’) = top(B;), the y-range of B; is [y;, maxtop(r’)].
Because hNr* # 0 (as h crosses r*) and [y;, maxtop(r’)] is also the y-range of r*, we know
that y;, € [y;, maxtop(r’)], suggesting that p € By.

It remains to show that no two distinct rectangles r{,r; € Uf:_lz R can be mapped to the same
tuple in I (R!, ...,R,’C_Z). Assume, on the contrary, that r and r; are mapped to the same tuple
t € J(R},...R_,). Suppose that r (resp., r;) is the top-sliced rectangle of r{ (resp., r;). Under
our mapping, it must be true that | = r; = bot-guard(B;). However, the distinctness of r{ and r;
requires r; # ry, thus giving a contradiction.

Proof of Statement (2). Take any tuple t € J(R],...R,_,). Set r’ = bot-guard(t), and let r* be
the top-sliced rectangle of r’. If we represent r’ as [x1,x2] X [y1, y2], then r* can be written as
[x1, x2] X [y1, maxtop(r’)].

We will first prove d-crossy(t) C crossy(r*) or equivalently: if a segment h € d-crossy(t),
then h crosses r*. To do so, we need to explain why left(h) < x; < x; < right(h) and y;, € [y,
maxtop(r’)].

o The fact of h € d-crossg (t) tells us that h crosses bot-guard(t), which is r’. As the x-range
of r’ is [x1, x2], it must hold true that left(h) < x; < x; < right(h).
e The fact of h € d-crossy(t) also tells us that h crosses B;. Hence, y;, € [bot(B;), top(B¢)].
From r’ = bot-guard(t), we get bot(B;) = bot(r’) = y;. By the definition of maxtop(r’) in
(8), we know top(B;) < maxtop(r’). It thus follows that y;, € [y;, maxtop(r’)].
Next, assuming that the segments of crossy (r*) are sorted in ascending order of their y-coordinates,
we will prove that d-crossy (¢) includes a prefix of the sorted order. It suffices to establish the fol-
lowing equivalent claim:

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:21

Claim 2: If a segment h € crossy(r*) has y-coordinate y;, < top(B;), then h
must be in d-crossg (¢).
To prove the above, we must explain why h crosses both r" and B;.

o We first show that h crosses r’, or equivalently: left(h) < x; < x; < right(h) and y;, € [y1,y2].
These conditions hold true because (i) k crosses r* = [x1, x2] X [y;, maxtop(r’)], and (ii) the
definition of a top-sliced rectangle in (9) tells us maxtop(r’) < ys.

o Next we show that h crosses B, or equivalently: left(h) < left(B;) < right(B;) < right(h)
and yp, € [bot(By), top(B)] = [y1, top(By)].

— The fact of h crossing r’ tells us left(h) < x; < x; < right(h). As r’ = bot-guard(B;), the
x-range of By must be contained in [x1, x;]. Thus, left(h) < left(B;) < right(B;) < right(h).

— The fact of h crossing r* also tells us that y;, € [y;, maxtop(r’)]. Moreover, Claim 2 explicitly
gives us the condition y;, < top(By). It thus follows that yj, € [y1, top(B)].

C Supplementary Proofs for Section 5

We start by presenting two properties underneath the procedures designed in Section 5. These
properties will enable us to construct simpler proofs later.

ProrosiTION C.1. Consider any k-tuple (r1, ..., rk—2, h,0) € Jp. Define b’ as the trimmed segment
of h. It holds that hNv =k No.

PRrROOF. Set p = hNo. As b’ is contained in h, for proving p = b’ N v, it suffices to explain why p
is on h’. Let us represent h as [x1, x2] X y. Accordingly, the segment A’ can be written as [x;, x7] X y
for some x;, € [x;, x2]. By the definition of a trimmed segment, (x,y) is the rightmost point on
h that falls in a left-end covering rectangle of h in Ri_5. As (11, ..., rk—2, h,v) € J2, we know that
rk—o is a left-end covering rectangle of h, and ry_, covers p (which is a point on k). Therefore, the
x-coordinate of p cannot exceed x;, allowing us to assert that p is on /’. O

ProrosiTiON C.2. For each tuplet € J(Ry,...,Rxk—3,H',V) (where H' is defined in (12)), the set
containg, ,(t) is non-empty.

Proor. Set ' = t[k — 2]. By the definition of a trimmed segment, there exists a rectangle
I'k—2 € Ri_, covering both endpoints of h’. Thus, the effective horizontal segment of ¢ (defined in
Section 5) — which must be contained in A" — must also be covered by r_,. Hence, containg, _, ()
contains r_, and thus cannot be empty. O

We now proceed to elaborate the proofs postponed from Section 5. The order of the proofs here
will not strictly follow the sequence in which they are referenced in Section 5. In particular, we
will prove Lemma 5.2 before Lemma 5.1, because the claims of the former lemma can be used to
construct a simple argument for the latter.

Proof of Lemma 5.2. We will prove each statement in turn.
Proof of Statement (1). Take any tuple t = (ry, ..., k-3, h’,0) € J(Ry, ..., Rk—3, H', V). The point A’ No
is covered by all of 4, ..., r¢_3. Let h be the full segment of A’. As h contains h’, we have hNo = A’ No.

Consider any rectangle ri_, € containg, ,(t). From the definition of containg, ,(¢), we know
that r¢_, covers the effective horizontal segment of ¢ whose right endpoint is A’ Nv. This means that
hNofalls in ry_,. We now have h N o N ﬂi-‘:’lz r; equals b’ N v and hence is non-empty, meaning
that (1, ..., 7k—3, "k—2, h,0) € J(Ry, ..., Re—2, H, V).

To show (rq, ..., Fk—3, Tk—2, h,0) € o, we still need to explain why ri_, covers the left endpoint
of h. This follows immediately from the fact that ry_, covers the effective horizontal segment of b’
(which shares the same left endpoint as h).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:22 Ru Wang and Yufei Tao

Proof of Statement (2). Take any k-tuple (rq, ..., k2, h,0v) € J>. Set p = h N v, and define A’ as
the trimmed segment of h. We first argue that the (k — 1)-tuple t = (ry, ..., rx—3, h’, v) belongs to
J(Ry, ..., Rk—3,H', V), or equivalently, the point A’ N v falls in all of ry, ..., rx_3. By Proposition C.1,
k" N o is the same point as p. From (ry, ..., rg—2, h,v) € T (Ry, ..., Rk—2, H, V), we know that p = hNo
falls in all of 7, ..., rg_o. It thus follows that rq, ..., r._3 all cover i’ No.

Next, we argue that r,_, € containg, ,(t).Let p’ be the left endpoint of h. Becauseh’Nv = hNo = p,
the effective horizontal segment of t is the segment p’p. To prove rr_, € containg, ,(t), we need
to explain why ry_, covers segment p’p. This is true because:

® rr_» covers p, as we already know;
® rr_p covers p’, as it is a left-end covering rectangle of h.

Proof of Statement (3). Our proof resorts to the algorithm generate- 7, (see Section 5). This algorithm
adds to J; exactly

|containg, ,(t)]
te J(Ry,...Rs,H',V)

tuples. By statement (2), the J, produced must be a subset of J (Ry, ..., Rk_2, H, V), whose size is
OUT. Therefore, the above expression is at most OUT, as claimed in statement (3).

Proof of Lemma 5.1. Again, we resort to the algorithm generate- 7 . For each tuple t € J(Ry, ...,
Ri_3, H', V), we know by Proposition C.2 that containg,_, (¢) # 0; thus, the algorithm adds at least
one tuple to J,. Therefore, | T (Ry, ..., Rk—3, H, V)| < | J| < OUT, where the derivation used the
definition of ; see (11).

Computing H*. We assume, w.l.o.g., that each segment in the input H is given a distinct integer
ID in [|H]|]. This allows us to create an array of size |H| < n and allocate an array cell to each
h € H. The cell can be accessed by the ID of h in constant time.

To compute H*, we start by deriving minleft(h") for each segment A’ in H’. For this purpose, first
initialize minleft(h”) = oo for each such h’. Recall that k' is the trimmed segment of some segment
h in H. We store minleft(h’) in the array cell allocated to h. Then, we scan J (Ry, ..., Rk—3, H', V).
For each tuple t therein, update in constant time minleft(h") to the minimum between its current
value and the x-coordinate of [k — 1]. The scan requires O(n + k - OUT) time.

Finally, we construct H* by collecting the minimal segment (defined in (15)) of every segment
k' € H' with minleft(h’) # oco. This step takes O(|H’|) = O(n) time.

Proof of Lemma 5.3. We will prove each statement in turn.

Proof of Statement (1). We will map each segment h* € H* to aunique tuplet € J (Ry, .., Rx_3, H', V)
satisfying containg,, (h*) = containg, ,(t). The mapping allows us to derive

> lcontaing, , (k)| < > |containg,_, ()| < OUT
h*eH* te T (Ry,...Rk_3,.H",V)

where the last inequality used Statement (3) of Lemma 5.2.

The mapping is as follows. Consider any h* € H*. Recall that h* is the minimal segment of some
segment b’ € H’. Specifically, if i’ = [x1, x3] X y, then h* = [x1, minleft(h’)] X y. By the definition
of minleft(A’) in (15), there exists a tuple t € J(Ry, ..., Rk—3, H', V) satisfying t[k — 2] = b’ and
minleft(h’) = x-coordinate of the vertical segment ¢[k — 1]. We map h* to t.

Next, we will prove

Claim 1: a rectangle r € containg,_, (h*) if and only if r € containg, , ().

According to the definitions of containg, ,(h*) and containg, _, (t) — see (3) and (13), respectively
— it suffices to show that h* is the same as the effective horizontal segment of .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:23

Denote by x the x-coordinate of [k — 1]. Then, the point A" N v can be written as (x,y),
where as mentioned y is the y-coordinate of h’. The effective horizontal segment of t is there-
fore [x1,x] X y. Recall that h* = [x;, minleft(h’)] X y, where (by definition of #) minleft(h’) =
x-coordinate of [k — 1] = x. Therefore, h* is the same as the effective horizontal segment of ¢,
proving claim 1.

It remains to show that no two distinct hj,h;, € H* can be mapped to the same tuple in
J(Ry, ..., Rk_3,H', V). Assume, on the contrary, that h} and h; are bothmappedtot € J (R, ..., Rk_3,
H’, V). Suppose that h] (resp., h}) is the minimal segment of k] (resp., h}). Under our mapping, it
must hold that h} = h;, = t[k — 2]. However, the distinctness of h] and h; requires h] # hj, which
yields a contradiction.

Proof of Statement (2). Take any tuple t € J(R;, ...,R,’c_3,H’, V). Set ' = t[k — 2], and define h*
as the minimal segment of h’. Let us write h” as [xy, x2] X y; accordingly, A* can be written as
[x1, minleft(h")] X y. Additionally, let x be the x-coordinate of the vertical segment t[k — 1]. The
effective horizontal segment of t can then be represented as [x;, x] X y.

We will first prove containg, ,(t) C containg, ,(h*), or equivalently, every rectangle rr_, €
containg, , (t) covers h*. It suffices to show that h* is contained in the effective horizontal segment of
t, or equivalently, minleft(h’) < x. By the definition in (14), minleft(h”) is the minimum x-coordinate
of t'[k — 1] among all t' € J (R}, ... R, _,,H',V) with #’[k — 2] = i/, Thus, minleft(h’) < x holds
because t is merely one such ¢’.

Next, assuming that the rectangles r € containg, ,(h*) have been sorted in descending order
of right(r), we will prove that containg, ,(t) includes a prefix of the sorted order. It suffices to
establish the following equivalent claim:

Claim 2: If a rectangle r € containg, ,(h*) satisfies the condition that

right(r) > x (where x is the x-coordinate of ¢ [k — 1]), then r € containg, ,(t).
To prove the above, we must explain why the rectangle r in the claim contains the effective horizontal
segment of t. Since r € containg, ,(h"), we know that r covers the segment [x;, minleft(h")] X y.
Hence, [x1, minleft(h’)] C [left(r), right(r)] and y € [bot(r), top(r)]. Using also the condition
right(r) > x given in claim 2, we can derive [x;,x] C [left(r), right(r)]. Therefore, [x1, x] X y, i.e.
the effective horizontal segment of t, is contained in r, establishing claim 2.

D Proof of Theorem 1.2

As mentioned in Section 1.1, 2-SJ can be solved in F,(n, OUT) = O(nlogn + OUT) time using a
comparison-based algorithm. By Theorem 1.1, in general, a comparison-based (k — 1)-SJ algo-
rithm with runtime Fi_;(n, OUT) spawns a comparison-based k-SJ algorithm whose running time
Fi(n,OUT) obeys (1). Specifically, for k > 3, there is a constant ¢ > 2 such that

F.(n,OUT)

< c k- (Fe-1(n, OUT) + nlogn + k - OUT)

= ¢ - k*(k—1)* - (Fr_y(n,OUT) + nlogn+k - OUT) + ¢ - k* - (nlogn + k - OUT)

< K (k=1 F_y(n,OUT) + (¢ +¢*) - k*(k = 1)* - (nlogn + k - OUT)

< kK (k-1)73(k-2)% F_3(n,0UT) + (c+c*+¢*) - K*(k—1)°(k - 2)* - (nlogn +k - OUT)
k-2

<. < (k1) Fy(n,OUT) + (Z ci) - (k!)? - (nlogn + k - OUT)

i=1

< 21 (k13- O(nlogn + k - OUT)

which completes the proof of Theorem 1.2.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

210:24 Ru Wang and Yufei Tao

E Hardness of 3-SJ in 3D Space

An axis-parallel rectangle in 3D space has the form r = [x1, x2] X [y1, y2] X [21, z2]. We will refer to
[x1, x2] as the x-projection of r, and define its y- and z-projections analogously.

In the 3D 3-SJ problem, the input comprises three sets of axis-parallel rectangles in R3: Ry, Ry,
and Rs. The goal is to report all 3-tuples (rq, 2, 73) € Ry X Ry X R3 such that r; N r; N r3 # (. Denote
by J (Ry, Ry, R3) the set of those 3-tuples. Define the input size as n = |Ry| + |Rz| + |Rs| and the
output size as OUT = | J (Ry, Ry, R3)|.

In the triangle detection problem, we are given an undirected graph G = (V, E) and need to
determine whether G has a triangle (a.k.a. 3-clique). Set m = |E|. We consider that G has no isolated
vertices (namely, vertices with degree 0), and therefore |V| < 2m.

The subsequent discussion will show that if the 3D 3-SJ problem can be solved in O((n + OUT) -
polylog n) time, then the triangle detection problem can be solved in O(m polylog m) time. This
would be truly surprising because as mentioned in Section 1.2 the state-of-the-art algorithm for
triangle detection runs in O(m!*!) time [2]. Thus, in the absence of such a breakthrough, no
O((n+ OUT) - polylog n) time algorithms can exist for the 3D 3-SJ problem.

Given a graph G = (V, E) for triangle detection, we will construct an instance of the 3D 3-S]
problem with input size 3m. W.Lo.g., let us assume that each vertex of V is represented as a unique
integer in [|V|]. Initialize Ry, Ry, and Rs as 3 empty sets of rectangles. For each edge {u,v} € E
where u < v, we add

e arectangle (—oo, c0) X [u, u] X [0,0] to Ry;
e arectangle [0,v] X (—00, c0) X [u, u] to Ry;
o arectangle [0,v] X [u, u] X (—00,) to Rs.

Note that every rectangle in R; (resp., R, and Rs) has (—co, 00) as the x- (resp., y- and z-) projection.
The construction has the property that G has a triangle if and only if J (R;, Rz, R3) # 0. We can
prove this with the following argument.

e Suppose that G has a triangle with vertices u, v, and w such that u < v < w. Then, by our
construction, r; = (=00, 00) X [u,u] X [v,0] € Ry, ry = [w, w] X (—00,00) X [0,0] € Ry, and
r3 = [w, w] X [u, u] X (=00, 00) € r3. It is clear that (ry, ry, r3) is a result tuple in J (Ry, Ry, R3).

o Conversely, consider that J (Ry, Ry, R3) is non-empty. Consider an arbitrary result tuple
(r1,72,r3) € J(R1, R, R3). Assume, w.l.o.g., that r; = (—00,00) X [u,u] X [v,v], where u < v.
Because the z-projection of , must match that of r;, we assert that r, must have the form
[w, w] X (—00,00) X [v,v] for some w > v. Because the x-projection of r3 must match that
of r, and the y-projection of r3 must match that of ry, it follows that r; must have the form
[w, w] X [u, u] X (—00, 00). This means that the edges {u, v}, {v, w}, and {u, w} must all exist
in G, and thus form a triangle.

Now, assume that there exists an algorithm A capable of solving the 3D 3-S] problem in O((n +
OUT) - polylog n) time. For OUT = 0, this algorithm must perform at most ¢ - n polylog n steps
when the input size is n. We run A on the 3D 3-SJ instance R;, Ry, R3 constructed earlier in a
cost-monitoring manner:

o If A terminates within ¢ - (3m) polylog(3m) steps, we check whether it has output any result
tuple in J (Ry, R, Rs). If so, a triangle has been found in G; otherwise, we declare that G has
no triangles.

o If A has performed 1+ ¢ - (3m) polylog(3m) steps, we manually terminate the algorithm and
declare that J (Ry, Ry, R3) # 0, meaning that G must have at least one triangle.

The above strategy thus settles the triangle detection problem in O(m polylog m) time.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

Optimal (Multiway) Spatial Joins 210:25

References

(1]
(2]
(3]

—
Ne)
—

[10]
[11]
[12]
[13]

[14]
[15]

[16]
[17

—

[18]
[19]

[20]

[21]

Pankaj K. Agarwal, Lars Arge, Haim Kaplan, Eyal Molad, Robert Endre Tarjan, and Ke Yi. An optimal dynamic data
structure for stabbing-semigroup queries. SIAM Journal of Computing, 41(1):104-127, 2012.

Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. Algorithmica, 17(3):209-223,
1997.

Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, Jan Vahrenhold, and Jeffrey Scott Vitter. A unified
approach for indexed and non-indexed spatial joins. In Proceedings of Extending Database Technology (EDBT), volume
1777 of Lecture Notes in Computer Science, pages 413-429, 2000.

Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of spatial joins using R-trees. In
Proceedings of ACM Management of Data (SIGMOD), pages 237-246, 1993.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algorithms and
Applications. Springer-Verlag, 3rd edition, 2008.

David P. Dobkin and Richard J. Lipton. On the complexity of computations under varying sets of primitives. Journal
of Computer and System Sciences (JCSS), 18(1):86-91, 1979.

Himanshu Gupta, Bhupesh Chawda, Sumit Negi, Tanveer A. Faruquie, L. Venkata Subramaniam, and Mukesh K.
Mohania. Processing multi-way spatial joins on map-reduce. In Proceedings of Extending Database Technology (EDBT),
pages 113-124, 2013.

Edwin H. Jacox and Hanan Samet. Spatial join techniques. ACM Transactions on Database Systems (TODS), 32(1):7,
2007.

Mahmoud Abo Khamis, George Chichirim, Antonia Kormpa, and Dan Olteanu. The complexity of boolean conjunctive
queries with intersection joins. In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages
53-65, 2022.

Nick Koudas and Kenneth C. Sevcik. Size separation spatial join. In Proceedings of ACM Management of Data (SIGMOD),
pages 324-335, 1997.

Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using seeded trees. In Proceedings of ACM Management of Data
(SIGMOD), pages 209-220, 1994.

Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. In Proceedings of ACM Management of Data (SIGMOD),
pages 247-258, 1996.

Nikos Mamoulis and Dimitris Papadias. Constraint-based algorithms for computing clique intersection joins. In Robert
Laurini, Kia Makki, and Niki Pissinou, editors, Proceedings of ACM Symposium on Advances in Geographic Information
Systems (GIS), pages 118-123, 1998.

Nikos Mamoulis and Dimitris Papadias. Multiway spatial joins. ACM Transactions on Database Systems (TODS),
26(4):424-475, 2001.

Nikos Mamoulis and Dimitris Papadias. Slot index spatial join. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 15(1):211-231, 2003.

Edward M. McCreight. Priority search trees. SIAM Journal of Computing, 14(2):257-276, 1985.

Eunjin Oh and Hee-Kap Ahn. Finding pairwise intersections of rectangles in a query rectangle. Comput. Geom., 85,
2019.

Dimitris Papadias, Nikos Mamoulis, and Yannis Theodoridis. Processing and optimization of multiway spatial joins
using R-trees. In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 44-55, 1999.
Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. In Proceedings of ACM Management of Data
(SIGMOD), pages 259-270, 1996.

Saladi Rahul, Ananda Swarup Das, Krishnan Sundara Rajan, and Kannan Srinathan. Range-aggregate queries involving
geometric aggregation operations. In Proceedings of International Conference on WALCOM: Algorithms and Computation,
volume 6552, pages 122-133, 2011.

Yufei Tao and Ke Yi. Intersection joins under updates. Journal of Computer and System Sciences (JCSS), 124:41-64, 2022.

Received May 2024; accepted August 2024

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.

	Abstract
	1 Introduction
	1.1 Previous Results
	1.2 Our Results

	2 Preliminaries in Geometry
	3 The Core: H-V Multiway Spatial Joins
	4 H-V k-SJ: Result Tuples of Type 1
	5 H-V k-SJ: Result Tuples of Type 2
	6 Settling k-SJ
	A Building Brick Algorithms
	B Supplementary Proofs for Section 4
	C Supplementary Proofs for Section 5
	D Proof of Theorem 1.2
	E Hardness of 3-SJ in 3D Space
	References

