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In a spatial join, we are given a constant number 𝑘 ≥ 2 of sets — denoted as 𝑅1, 𝑅2, ..., 𝑅𝑘 — containing

axis-parallel rectangles in a 2D space. The objective is to report all 𝑘-tuples (𝑟1, 𝑟2, ..., 𝑟𝑘 ) ∈ 𝑅1 × 𝑅2 × ... × 𝑅𝑘
where the rectangles 𝑟1, 𝑟2, ..., 𝑟𝑘 have a non-empty intersection, i.e., 𝑟1 ∩ 𝑟2 ∩ ... ∩ 𝑟𝑘 ≠ ∅. The problem holds

significant importance in spatial databases and has been extensively studied in the database community. In

this paper, we show how to settle the problem in 𝑂 (𝑛 log𝑛 + OUT) time — regardless of the constant 𝑘 —

where 𝑛 =
∑𝑘
𝑖=1 |𝑅𝑖 | and OUT is the result size (i.e., the total number of 𝑘-tuples reported). The runtime is

asymptotically optimal in the class of comparison-based algorithms, to which our solution belongs. Previously,

the state of the art was an algorithm with running time 𝑂 (𝑛 log2𝑘−1 𝑛 + OUT).
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1 Introduction
This paper studies the spatial join (SJ) problem formulated as follows. Let 𝑘 ≥ 2 be a constant

integer. In the 𝑘-SJ problem, the input comprises 𝑘 sets — denoted as 𝑅1, 𝑅2, ..., 𝑅𝑘 — of axis-parallel

rectangles
1
in R2

. The goal is to find all 𝑘-tuples (𝑟1, 𝑟2, ..., 𝑟𝑘 ) where
• 𝑟𝑖 ∈ 𝑅𝑖 for each 𝑖 ∈ [1, 𝑘]; and
• 𝑟1 ∩ 𝑟2 ∩ ... ∩ 𝑟𝑘 ≠ ∅, namely, the 𝑘 rectangles 𝑟1, 𝑟2, ..., 𝑟𝑘 have a non-empty intersection.

We represent the set of 𝑘-tuples described above as J (𝑅1, 𝑅2, ..., 𝑅𝑘 ), referred to as the join result.
Set 𝑛 =

∑𝑘
𝑖=1 |𝑅𝑖 |, i.e., the input size, and OUT = |J (𝑅1, 𝑅2, ..., 𝑅𝑘 ) |, i.e., the output size.

SJ is a fundamental operation in spatial databases (SDB), which manage geometric entities such

as land parcels, service areas, habitat zones, commercial districts, administrative boundaries, etc.

The operation plays a crucial role in implementing the filter-refinement mechanism, which is the

dominant approach for computing overlay information in an SDB. To explain this mechanism, first

note that a geometric entity is typically modeled as a polygon. Determining whether two entities

overlap amounts to deciding if two polygons intersect, which can be exceedingly expensive when

the polygons have complex boundaries. To mitigate the issue, an SDB stores, for each polygon 𝛾 , its

minimum bounding rectangle (MBR) defined as the smallest axis-parallel rectangle enclosing 𝛾 ; this

way, each set Γ of geometric entities spawns a set 𝑅 of MBRs. Consider 𝑘 sets of geometric entities

Γ1, Γ2, ..., Γ𝑘 , and the corresponding sets of MBRs 𝑅1, 𝑅2, ..., 𝑅𝑘 . To compute overlays from Γ1, Γ2, ..., Γ𝑘 ,
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A rectangle is axis-parallel if it has the form 𝑟 = [𝑥1, 𝑥2 ] × [𝑦1, 𝑦2 ].
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filter-refinement first executes (i) a “filter step”, which performs an SJ to obtain J (𝑅1, 𝑅2, ..., 𝑅𝑘 ),
and (ii) a “refinement step”, which, for each (𝑟1, 𝑟2, ..., 𝑟𝑘 ) ∈ J (𝑅1, 𝑅2, ..., 𝑅𝑘 ), examines if 𝛾1, 𝛾2, ..., 𝛾𝑘
indeed have a non-empty intersection, where 𝛾𝑖 (𝑖 ∈ [1, 𝑘]) is the entity in Γ𝑖 whose MBR is 𝑟𝑖 .

Math Conventions. For any integer 𝑥 ≥ 1, we use [𝑥] to represent the set {1, 2, ..., 𝑥}. Given
𝑘 ≥ 2 sets 𝑆1, 𝑆2, ..., 𝑆𝑘 (of arbitrary elements), we often treat a 𝑘-tuple (𝑒1, 𝑒2, .., 𝑒𝑘 ) in the Cartesian

product 𝑆1×𝑆2× ...×𝑆𝑘 as a 𝑘-dimensional vector 𝒕 with 𝒕 [𝑖] = 𝑒𝑖 for each 𝑖 ∈ [𝑘]. Unless otherwise
stated, every mention of the word “rectangle” henceforth will refer to an axis-parallel rectangle in

R2
. All logarithms have base 2 by default.

1.1 Previous Results
SJs have been extensively studied in the database-system community, leading to the development

of numerous methods that, although lacking strong theoretical guarantees, exhibit good empirical

performance in real-world applications. We refer interested readers to [3, 4, 7, 8, 10–15, 18, 19] as

entry points into the literature.

From the perspective of theory, SJs are best understood when 𝑘 = 2, i.e., the pairwise scenario,
where it is folklore that the problem can be solved by a comparison-based algorithm in 𝑂 (𝑛 log𝑛 +
OUT) time (e.g., by planesweep [5]). However, the problem becomes much more challenging for

𝑘 ≥ 3, known as the multiway scenario. All the solutions developed before 2022 (see [7, 13, 14, 18]

and the references therein) suffer from a worst-case time complexity of 𝑂 (𝑛𝑘 ), offering essentially

no improvement over the naive method that enumerates the entire cartesian product 𝑅1×𝑅2× ...×𝑅𝑘 .
Year 2022 witnessed two independent works [9, 21] that, although not tackling 𝑘-SJ directly,

imply provably fast 𝑘-SJ algorithms. Specifically, in [21], Tao and Yi studied several variants of

“interval intersection joins” under updates. Most relevant to our context is the variant where the

input includes, for each 𝑖 ∈ [𝑘], a set I𝑖 of 1D intervals in R, and the join result comprises all

𝑘-tuples (𝐼1, 𝐼2, ..., 𝐼𝑘 ) ∈ I1 ×I2 × ...×I𝑘 with

⋂𝑘
𝑖=1 𝐼𝑖 ≠ ∅. The objective is to design a data structure,

which, given the insertion (resp., deletion) of an interval in one of the 𝑘 sets, can identify all the

newly-appearing (resp., disappearing) 𝑘-tuples in the join result in 𝑂 ((1 + Δ) · polylog𝑛) time,

where 𝑛 =
∑𝑘

𝑖=1 |I𝑖 | and Δ is the number of such 𝑘-tuples. Tao and Yi [21] presented a structure of

𝑂 (𝑛 polylog𝑛) space achieving the purpose. Combining their structure with planesweep, one can

obtain an algorithm for solving the 𝑘-SJ problem in 𝑂 ((𝑛 + OUT) · polylog𝑛) time.

In [9], Khamis et al. investigated a type of joins that extends the conventional equi-join in

two ways. First, each attribute value in a relation is an interval (rather than a real value); second,

each equality predicate in an equi-join is replaced with a “non-empty intersection” predicate on

the attributes involved. The 𝑘-SJ problem can be converted to a join under the framework of [9]

as defined next. For each 𝑖 ∈ [𝑘], define 𝑅𝑖 as a relation over two attributes 𝑋 and 𝑌 . For each

tuple 𝒕 ∈ 𝑅𝑖 , its values 𝒕 (𝑋 ) and 𝒕 (𝑌 ) on the two attributes are both intervals (effectively defining

a rectangle). The objective is to output all 𝑘-tuples (𝒕1, 𝒕2, ..., 𝒕𝑘 ) ∈ 𝑅1 × 𝑅2 × ... × 𝑅𝑘 satisfying⋂𝑘
𝑖=1 𝒕𝑖 (𝑋 ) ≠ ∅ and

⋂𝑘
𝑖=1 𝒕𝑖 (𝑌 ) ≠ ∅. It is clear that there is one-one correspondence between the

result of this join and that of k-SJ. Khamis et al. [9] developed an algorithm that can process the

join in 𝑂 (𝑛 log2𝑘−1 𝑛 + OUT) time.

Ω(𝑛 log𝑛) is a lower bound on the runtime of any comparison-based 𝑘-SJ algorithms even for

𝑘 = 2. This can be established via a reduction from the element distinctness problem; see [6].

1.2 Our Results
In this paper, we solve the 𝑘-SJ problem with a comparison-based algorithm that runs in𝑂 (𝑛 log𝑛 +
OUT) time regardless of the constant 𝑘 . The time complexity is asymptotically optimal in the class

of comparison-based algorithms.
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𝒌 method runtime remark
2 folklore 𝑂 (𝑛 log𝑛 + OUT) optimal

≥ 3 before 2022 𝑂 (𝑛𝑘 )
≥ 3 [21] 𝑂 ((𝑛 + OUT) · polylog𝑛)
≥ 3 [9] 𝑂 (𝑛 log2𝑘−1 𝑛 + OUT)
≥ 3 ours 𝑂 (𝑛 log𝑛 + OUT) optimal

Table 1. Result comparison on 𝑘-SJ problem for a constant 𝑘

Our primary technical contribution is the revelation of a new property on the problem’s mathe-

matical structure. Fix any 𝑘 ≥ 3 and an arbitrary algorithm A for the (𝑘 − 1)-SJ problem. Define

function 𝐹𝑘−1 (𝑛,OUT) to return the worst-case running time ofA on any instance of the (𝑘 − 1)-SJ
problem having input size at most 𝑛 and output size at most OUT. We will establish:

Theorem 1.1. Equipped with the algorithmA as described above, the 𝑘-SJ problem with 𝑘 ≥ 3 can
be solved in time

𝑂 (𝑘3) ·
(
𝐹𝑘−1 (𝑛,OUT) + 𝑛 log𝑛 + 𝑘 · OUT

)
(1)

where 𝑛 (resp., OUT) is the input (resp., output) size of the problem. Furthermore, if A is comparison-
based, the obtained 𝑘-SJ algorithm is also comparison-based.

The theorem implies a recursive nature of 𝑘-SJ. Indeed, we will see that an 𝑘-SJ instance with

input size 𝑛 and output size OUT can be converted to 𝑂 (𝑘3) instances of the (𝑘 − 1)-SJ problem —

all having input size at most 𝑛 and output size at most OUT — plus an additional cost of 𝑂 (𝑘3) ·
(𝑛 log𝑛 + 𝑘 · OUT). For 2-SJ, we can set A to the “folklore algorithm” mentioned in Section 1.1,

which ensures 𝐹2 (𝑛,OUT) = 𝑂 (𝑛 log𝑛 + OUT). Combining this with (1) gives a recurrence that

relates the time complexity of 𝑘-SJ to that of (𝑘 − 1)-SJ. Solving the recurrence yields:

Theorem 1.2. For 𝑘 ≥ 3, we can settle 𝑘-SJ with a comparison-based algorithm in

𝑂 (𝑐𝑘 · (𝑘!)3 · (𝑛 log𝑛 + 𝑘 · OUT))
time, where 𝑐 > 1 is a positive constant.

When 𝑘 = 𝑂 (1), the time complexity becomes 𝑂 (𝑛 log𝑛 +OUT), as promised; the space con-

sumption of our algorithm is 𝑂 (𝑛 + OUT). Now that Theorem 1.2 offers a satisfactory 𝑘-SJ result

for 𝑘 = 𝑂 (1) in 2D space, it is natural to wonder whether the constraint on dimensionality 2 is

necessary. Interestingly, the answer is “yes” as far as 𝑘 ≥ 3 is concerned, subject to the absence of

breakthroughs on a classical problem in graph theory. Specifically, if the 3D version of the 3-SJ

problem (which we will formally define in Appendix E) could be solved in𝑂 ((𝑛 +OUT) · polylog𝑛)
time, we would be able to detect the presence of a triangle (i.e., 3-clique) in a graph of𝑚 edges

in 𝑂 (𝑚 polylog𝑚) time, which would make a remarkable breakthrough because the state of the

art needs 𝑂 (𝑚1.41) time [2]. This reduction can be inferred from an argument in [9] used to prove

a more generic result. We simplify the argument for 3D 3-SJ and present the full reduction in

Appendix E.

2 Preliminaries in Geometry
This section will first introduce some definitions and notations to be frequently used in our

presentation and then formulate several computational geometry problems, whose solutions will

serve as building bricks for our 𝑘-SJ algorithm.

Terminology. A horizontal segment is a segment of the form [𝑥1, 𝑥2] × 𝑦, and a vertical segment

is a segment of the form 𝑥 × [𝑦1, 𝑦2]. We say that a horizontal segment ℎ1 is lower (resp., higher)
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Fig. 1. For 4-tuple 𝒕 = {𝑟1, 𝑟2, 𝑟3, 𝑟4}, 𝐵𝒕 is the rectangle in gray, left-guard(𝒕) = 𝑟3 and bot-guard(𝒕) = 𝑟2.

than another horizontal segment ℎ2 if the y-coordinate of ℎ1 is smaller (resp., larger) than that of

ℎ2. Similarly, a vertical segment 𝑣1 is to the left (resp., right) of another vertical segment 𝑣2 if the

x-coordinate of 𝑣1 is smaller (resp., larger) than that of 𝑣2.

Given a horizontal segment ℎ = [𝑥1, 𝑥2] × 𝑦, we say that a rectangle 𝑟 is a left-end covering
rectangle of ℎ if 𝑟 contains the left endpoint of ℎ (i.e., (𝑥1, 𝑦) ∈ 𝑟 ). A horizontal/vertical segment

𝑠 crosses a rectangle 𝑟 if 𝑠 ∩ 𝑟 ≠ ∅ but 𝑟 covers neither of the two endpoints of 𝑠 . A rectangle 𝑟

contains a horizontal/vertical segment 𝑠 if 𝑟 covers both endpoints of 𝑠 .

Let 𝑆 be a set of segments where either all segments are horizontal or all are vertical. Given a

rectangle 𝑟 , we define

cross𝑆 (𝑟 ) = {𝑠 ∈ 𝑆 | 𝑠 crosses 𝑟 }; (2)

namely, cross𝑆 (𝑟 ) is the set of segments in 𝑆 crossing 𝑟 . Let 𝑅 be a set of rectangles. Given a

horizontal segment ℎ, we define

contain𝑅 (ℎ) = {𝑟 ∈ 𝑅 | 𝑟 contains ℎ}; (3)

namely, contain𝑅 (ℎ) is the set of rectangles in 𝑅 containing ℎ.

Given a rectangle 𝑟 = [𝑥1, 𝑥2] × [𝑦1, 𝑦2], we define left(𝑟 ) = 𝑥1, right(𝑟 ) = 𝑥2, bot(𝑟 ) = 𝑦1, and
top(𝑟 ) = 𝑦2. Consider a 𝑘-tuple 𝒕 = (𝑟1, 𝑟2, ..., 𝑟𝑘 ) where 𝑘 ≥ 2 and each 𝒕 [𝑖] = 𝑟𝑖 (𝑖 ≤ [𝑘]) is a
rectangle. We define

𝐵𝒕 =

𝑘⋂
𝑖=1

𝑟𝑖 ; (4)

namely, 𝐵𝒕 is the intersection of the rectangles in 𝒕 (note: 𝐵𝒕 is a rectangle itself). Also, if 𝐵𝒕 is not
empty, define:

• left-guard(𝒕) as the rectangle 𝑟𝑖 , 𝑖 ∈ [𝑘], satisfying left(𝑟𝑖 ) = left(𝐵𝒕 ). In case multiple values

in [𝑘] fulfill the condition, let 𝑖 be the smallest of such values.

• bot-guard(𝒕) as the rectangle 𝑟𝑖 , 𝑖 ∈ [𝑘], satisfying bot(𝑟𝑖 ) = bot(𝐵𝒕 ). In case multiple values

in [𝑘] fulfill the condition, let 𝑖 be the smallest of such values.

See Figure 1 for an illustration. It is worth mentioning that since a horizontal segment ℎ is a

degenerated rectangle, notations such as left(ℎ) and right(ℎ) are well-defined.
Problem A . The input involves a set 𝑃 of 2D points and set 𝑅 of rectangles. In the detection version
of Problem A , the goal is to output, for each point 𝑝 ∈ 𝑃 , whether it is covered by at least one

rectangle in 𝑅. Figure 2a gives an example where 𝑃 = {𝑝1, 𝑝2, 𝑝3} and 𝑅 = {𝑟1, 𝑟2}; the output is
“yes” for 𝑝2 and 𝑝3 and “no” for 𝑝1. The problem can be solved in𝑂 (𝑛 log𝑛) time where 𝑛 = |𝑃 | + |𝑅 |
as shown in Appendix A.

In the reporting version of ProblemA , the goal is to output, for each point 𝑝 ∈ 𝑃 , all the rectangles
𝑟 ∈ 𝑅 containing 𝑝 ; if no such 𝑟 exists, report nothing for 𝑝 . In Figure 1a, for instance, the output is

{(𝑝2 : 𝑟1, 𝑟2), (𝑝3 : 𝑟2)}. As shown in Appendix A, the problem can be solved in 𝑂 (𝑛 log𝑛 + OUT)
time, where OUT is the number of pairs (𝑝, 𝑟 ) ∈ 𝑃 × 𝑅 such that 𝑝 ∈ 𝑟 .
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Fig. 2. Five geometric building brick problems

Problem B. The input involves a set 𝐻 of horizontal segments and a set 𝑉 of vertical segments.

The goal is to report, for each segment ℎ ∈ 𝐻 , the leftmost point 𝑝 on ℎ such that 𝑝 is on some

vertical segment in𝑉 . If ℎ does not intersect with any segment in𝑉 , report nothing for ℎ. Figure 2b

gives an example where 𝐻 = {ℎ1, ℎ2, ℎ3} and 𝑉 = {𝑣1, 𝑣2}; the output is {(ℎ1, 𝑝1), (ℎ2, 𝑝2)}. The
problem can be solved in 𝑂 (𝑛 log𝑛) time where 𝑛 = |𝐻 | + |𝑉 |, as shown in Appendix A.

Problem C . The input involves a set𝐻 of horizontal segments and a set 𝑅 of rectangles. The goal is

to report, for each segment ℎ ∈ 𝐻 , the rightmost point 𝑝 on ℎ such that 𝑝 is covered by at least one

left-end covering rectangle of ℎ in 𝑅 — formally, for ℎ = [𝑥1, 𝑥2] × 𝑦, we aim to find the maximum

𝑥 ∈ [𝑥1, 𝑥2] such that at least one rectangle 𝑟 ∈ 𝑅 covers both the point (𝑥1, 𝑦) and the point (𝑥,𝑦).
If the point 𝑝 exists (i.e., ℎ has at least one left-end covering rectangle in 𝑅), we should output a

tuple (ℎ, 𝑝); otherwise, output nothing for ℎ. Figure 2c gives an example where 𝐻 = {ℎ1, ℎ2, ℎ3}
and 𝑅 includes the three rectangles shown; the output is {(ℎ1, 𝑝1), (ℎ2, 𝑝2)}. The problem can be

solved in in 𝑂 (𝑛 log𝑛) time where 𝑛 = |𝐻 | + |𝑅 |, as shown in Appendix A.

Problem D . The input involves a set 𝐻 of horizontal segments and a set 𝑅 of rectangles. In the

find-lowest version of the problem, the goal is to report, for each rectangle 𝑟 ∈ 𝑅, the lowest

segment in cross𝐻 (𝑟 ); see (2) for the definition of cross𝐻 (𝑟 ). If no segment in 𝐻 crosses 𝑟 , output

nothing for 𝑟 . Figure 2d gives an example where 𝐻 = {ℎ1, ℎ2, ℎ3} and 𝑅 = {𝑟1, 𝑟2}; the output is
{(𝑟1, ℎ3), (𝑟2, ℎ2)}. The problem can be solved in 𝑂 (𝑛 log𝑛) time where 𝑛 = |𝐻 | + |𝑅 |, as shown in

Appendix A.

In the find-all-sorted version of the problem, the goal is to report, for each rectangle 𝑟 ∈ 𝑅, the
entire cross𝐻 (𝑟 ) sorted by y-coordinate. Formally, if cross𝐻 (𝑟 ) = {ℎ1, ℎ2, ..., ℎ𝑧} for some 𝑧 ≥ 1,

we output (𝑟 : ℎ1, ℎ2, ..., ℎ𝑧), provided that 𝑦𝑖 ≥ 𝑦𝑖−1 for each 𝑖 ∈ [2, 𝑧] where 𝑦𝑖 (resp., 𝑦𝑖−1) is the
y-coordinate of ℎ𝑖 (resp., ℎ𝑖−1). In the example of Figure 2d, the output is {(𝑟1 : ℎ3, ℎ2), (𝑟2 : ℎ2, ℎ1)}.
In Appendix A, we explain how to solve the problem in 𝑂 (𝑛 log𝑛 + OUT) time where OUT is the

number of pairs (ℎ, 𝑟 ) ∈ 𝐻 × 𝑅 such that ℎ crosses 𝑟 .

Problem E . The input involves a set 𝐻 of horizontal segments and a set 𝑅 of rectangles. The goal

is to report, for each segment ℎ ∈ 𝐻 , the set contain𝑅 (ℎ) — defined in (3) — where the rectangles

are sorted by their right boundaries; if contain𝑅 (ℎ) is empty, output nothing for ℎ. Formally, if

𝑟1, 𝑟2, ..., 𝑟𝑧 for some 𝑧 ≥ 1 are all the rectangles in contain𝑅 (ℎ), we output (ℎ : 𝑟1, 𝑟2, ..., 𝑟𝑧), provided
that right(𝑟𝑖 ) ≥ right(𝑟𝑖−1) for each 𝑖 ∈ [2, 𝑧]. Figure 2e gives an example where 𝐻 = {ℎ1, ℎ2, ℎ3}
and 𝑅 = {𝑟1, 𝑟2, 𝑟3}; the output is {(ℎ1 : 𝑟2, 𝑟1), (ℎ2 : 𝑟3, 𝑟2)}. In Appendix A, we explain how to

solve the problem in 𝑂 (𝑛 log𝑛 + OUT) time where 𝑛 = |𝐻 | + |𝑅 | and OUT is the number of pairs

(ℎ, 𝑟 ) ∈ 𝐻 × 𝑅 such that 𝑟 contains ℎ.

3 The Core: H-V Multiway Spatial Joins
Recall that the input of 𝑘-SJ comprises 𝑘 sets of rectangles: 𝑅1, 𝑅2, ..., 𝑅𝑘 . We now formulate a special

version of 𝑘-SJ, named the H-V 𝑘-SJ problem. The special nature is reflected in the introduction of

three constraints: (i) 𝑘 ≥ 3, (ii) 𝑅𝑘−1 should be a set of horizontal segments, and (iii) 𝑅𝑘 should be
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Fig. 3. Classifying H-V 𝑘-SJ result tuples (𝑘 = 4)

a set of vertical segments. For better clarity, we will represent the input sets as 𝑅1, 𝑅2, ..., 𝑅𝑘−2, 𝐻
(= 𝑅𝑘−1), and 𝑉 (= 𝑅𝑘 ). The goal is to output the join result J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ), including every
𝑘-tuple (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) ∈ 𝑅1 × ... × 𝑅𝑘−2 × 𝐻 ×𝑉 such that ℎ ∩ 𝑣 ∩⋂𝑘−2

𝑖=1 𝑟𝑖 is not empty.

Our objective is to prove that H-V 𝑘-SJ can be efficiently reduced to (𝑘−1)-SJ (note: it is (𝑘−1)-SJ
here, rather than H-V (𝑘 − 1)-SJ). To ensure the soundness of our notation system, let us formulate

the “1-SJ” as the trivial problem where the input is a set 𝑅 of 𝑛 rectangles, and the goal is simply to

enumerate each rectangle of 𝑅; the problem can obviously be “solved” in 𝑂 (𝑛) time. We assume

the existence of an algorithm A that can settle 𝜅-SJ for all 𝜅 ∈ [1, 𝑘 − 1]. Denote by 𝐹𝜅 (𝑛,OUT)
the worst-case runtime ofA on any instance of 𝜅-SJ that has input size 𝑛 and output size OUT. We

consider that 𝐹𝜅 (𝑛,OUT) ≤ 𝐹𝜅+1 (𝑛,OUT) for any 𝜅 ≥ 1, that is, its overhead on 𝜅-SJ should not be

larger than that on (𝜅 + 1)-SJ.
We will establish:

Lemma 3.1. Equipped with the algorithmA described above, the H-V 𝑘-SJ problem can be solved in

𝑂 (𝑘) ·
(
𝐹𝑘−1 (𝑛,OUT) + 𝑛 log𝑛 + 𝑘 · OUT

)
time where 𝑛 (resp., OUT) is the input (resp., output) size of the problem. Furthermore, if A is
comparison-based, the H-V 𝑘-SJ algorithm obtained is also comparison-based.

The part of the paper from this point till the end of Section 5 will be devoted to proving the

above lemma. This is the most challenging step in solving the general 𝑘-SJ problem optimally, as

will be discussed in Section 6, where we will prove Theorems 1.1 and 1.2 based on Lemma 3.1.

Consider any 𝑘-tuple (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) in the join result J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ). We classify the

tuple into one of the two types below:

• Type 1: ℎ crosses all of 𝑟1, ..., 𝑟𝑘−2 and, at the same time, 𝑣 crosses all of 𝑟1, ..., 𝑟𝑘−2;
• Type 2: either ℎ or 𝑣 fails to cross at least one rectangle in {𝑟1, 𝑟2, ..., 𝑟𝑘−2}. Equivalently, at
least a rectangle 𝑟𝑖 (for some 𝑖 ∈ [𝑘 − 2]) covers an endpoint of either ℎ or 𝑣 or both.

Figure 3 illustrates a result tuple of each type, assuming 𝑘 = 4. In Section 4 (resp., 5), we will explain

how to produce the result tuples of Type 1 (resp., 2) in the time complexity claimed in Lemma 3.1.

Remark. In [20], Rahul et al. studied the problem of storing a set 𝐻 of horizontal segments and

a set 𝑉 of vertical segments in a data structure such that, given a query rectangle 𝑟 , all the pairs

(ℎ, 𝑣) ∈ 𝐻 ×𝑉 satisfying ℎ∩𝑣∩𝑟 ≠ ∅ can be reported efficiently. They gave a structure of𝑂 (𝑛 log𝑛)
space that can be built in 𝑂 (𝑛 log𝑛) time and can be used to answer a query in 𝑂 (log𝑛 + 𝐾) time,

where 𝑛 = |𝐻 | + |𝑉 | and 𝐾 is the number of pairs reported. Their structure can be utilized to solve

H-V 3-SJ in 𝑂 (𝑛 log𝑛 + OUT) time. Oh and Ahn [17] developed a structure for solving a problem

more general than that of [20]; however, in the specific scenario of [20], the structure of [17] offers

the same guarantees as [20]. We are unaware of a way to extend these solutions to handle H-V 𝑘-SJ

of 𝑘 > 3. Our method for proving Lemma 3.1 is based on drastically different ideas even for 𝑘 = 3.
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4 H-V 𝑘-SJ: Result Tuples of Type 1
As before, let 𝑅1, ..., 𝑅𝑘−2, 𝐻 , and 𝑉 be the input sets of the H-V 𝑘-SJ problem. Denote by J1 the set
of type-1 result tuples defined in Section 3. In this section, we aim to compute a set J ∗ satisfying

J1 ⊆ J ∗ ⊆ J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ) (5)

where J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ), let us recall, is the join result of the (whole) H-V 𝑘-SJ. Remember

that the output size OUT is defined as |J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ) |. From J ∗, we will report only those

𝑘-tuples belonging to J1 and ignore the rest.

Example 4.1. To illustrate our algorithm, we will utilize the running example in Figure 4a, where

𝑘 = 4, and 𝑅1 = {𝛼} (the solid rectangle), 𝑅2 = {𝛽1, 𝛽2} (the dashed rectangles), 𝐻 = {ℎ1, ℎ2,
..., ℎ6}, and 𝑉 = {𝑣1, 𝑣2, ..., 𝑣5}. The set J1 contains the following tuples: (𝛼, 𝛽2, ℎ2, 𝑣3), (𝛼, 𝛽2, ℎ2, 𝑣5),
(𝛼, 𝛽2, ℎ5, 𝑣3), and (𝛼, 𝛽2, ℎ5, 𝑣5). □

Sets 𝑹′
1, 𝑹

′
2, ..., 𝑹

′
𝒌−2. Fix any 𝑖 ∈ [𝑘 − 2]. For each rectangle 𝑟 ∈ 𝑅𝑖 , we compute four segments:

• ℎ⊥ (resp., ℎ⊤): the lowest (resp., highest) segment in 𝐻 that crosses 𝑟 ;

• 𝑣⊢ (resp., 𝑣⊣): the leftmost (resp., rightmost) segment in 𝑉 that crosses 𝑟 .

Define 𝑟 ′ = [𝑥⊢, 𝑥⊣] × [𝑦⊥, 𝑦⊤], where 𝑥⊢ (resp., 𝑥⊣) is the x-coordinate of 𝑣⊢ (resp., 𝑣⊣), and 𝑦⊥ (resp.,

𝑦⊤) is the y-coordinate of ℎ⊥ (resp., ℎ⊤). We say that 𝑟 ′ is the trimmed rectangle of 𝑟 , and conversely,
𝑟 is the full rectangle of 𝑟 ′. Note that 𝑟 ′ exists if and only if 𝑟 is crossed by at least one horizontal

segment in 𝐻 and by at least one vertical segment in 𝑉 .

Construct

𝑅′𝑖 = {𝑟 ′ | 𝑟 ∈ 𝑅𝑖 and its trimmed rectangle 𝑟 ′ exists}. (6)

Computing the “segment ℎ⊥” for each 𝑟 ∈ 𝑅𝑖 is an instance of Problem D (the find-lowest version,

with 𝐻 and 𝑅𝑖 as the input). By symmetry, so is computing the ℎ⊤, 𝑣⊢, and 𝑣⊣ segments for each

𝑟 ∈ 𝑅𝑖 . It thus follows from Section 2 that 𝑅′
1
, 𝑅′

2
, ..., 𝑅′

𝑘−2 can be produced in 𝑂 (𝑘𝑛 log𝑛) total time.

We now solve a (𝑘 − 2)-SJ problem on the input {𝑅′
1
, 𝑅′

2
, ..., 𝑅′

𝑘−2} using the algorithmA supplied

(see Lemma 3.1). This (𝑘 − 2)-SJ clearly has an input size at most 𝑛, and let us represent its result as

J (𝑅′
1
, 𝑅′

2
, ..., 𝑅′

𝑘−2). We prove in Appendix B:

Lemma 4.1. |J (𝑅′
1
, 𝑅′

2
, ..., 𝑅′

𝑘−2) | ≤ OUT.

As a corollary of Lemma 4.1, the (𝑘 − 2)-SJ can be settled in 𝐹𝑘−2 (𝑛,OUT) time.

Example 4.2. Figure 4b shows the rectangles in 𝑅′
1
= {𝛼 ′} and 𝑅′

2
= {𝛽 ′

1
, 𝛽 ′

2
}. For instance, 𝛼 ′, which

is trimmed from rectangle 𝛼 , is decided by ℎ⊥ = ℎ2, ℎ⊤ = ℎ6, 𝑣⊢ = 𝑣3, and 𝑣⊣ = 𝑣5. The (𝑘 − 2)-SJ on
𝑅′
1
and 𝑅′

2
returns J (𝑅′

1
, 𝑅′

2
) = {(𝛼 ′, 𝛽 ′

1
), (𝛼 ′, 𝛽 ′

2
)}. □

Generating J∗. Take any (𝑘 −2)-tuple 𝒕 = (𝑟 ′
1
, 𝑟 ′

2
, ..., 𝑟 ′

𝑘−2) ∈ J (𝑅
′
1
, 𝑅′

2
, ..., 𝑅′

𝑘−2). The reader should
recall from Section 2 that

• 𝐵𝒕 is
⋂𝑘−2

𝑖=1 𝒕 [𝑖] = ⋂𝑘−2
𝑖=1 𝑟

′
𝑖 ;

• left-guard(𝒕) is the 𝑟 ′𝑖 (1 ≤ 𝑖 ≤ 𝑘 − 2) with left(𝑟 ′𝑖 ) = left(𝐵𝒕 );
• bot-guard(𝒕) is the 𝑟 ′𝑖 (1 ≤ 𝑖 ≤ 𝑘 − 2) with bot(𝑟 ′𝑖 ) = bot(𝐵𝒕 ).

We now introduce:

d-cross𝐻 (𝒕) = {ℎ ∈ 𝐻 | ℎ crosses both 𝐵𝒕 and bot-guard(𝒕)} (7)

d-cross𝑉 (𝒕) = {𝑣 ∈ 𝑉 | 𝑣 crosses both 𝐵𝒕 and left-guard(𝒕)}.
The prefix “d-” stands for “double”. These sets have important properties as stated in the next

lemma, whose proof can be found in Appendix B:
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Fig. 4. Finding H-V 𝑘-SJ result tuples of type 1 (𝑘 = 4)

Lemma 4.2. All the following statements are true:
(1) Consider any (𝑘 − 2)-tuple 𝒕 ∈ J (𝑅′

1
, 𝑅′

2
, ..., 𝑅′

𝑘−2). Let 𝑟𝑖 (𝑖 ∈ [𝑘 − 2]) be the full rectangle of
𝒕 [𝑖]. Then, for any ℎ ∈ d-cross𝐻 (𝒕) and any 𝑣 ∈ d-cross𝑉 (𝒕), the 𝑘-tuple (𝑟1, 𝑟2, ..., 𝑟𝑘−2, ℎ, 𝑣)
must belong to J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ).

(2) Consider any 𝑘-tuple (𝑟1, 𝑟2, ..., 𝑟𝑘−2, ℎ, 𝑣) ∈ J1. Let 𝑟 ′𝑖 (𝑖 ∈ [𝑘 − 2]) be the trimmed rectangle of
𝑟𝑖 , and set 𝒕 = (𝑟 ′1, 𝑟 ′2, ..., 𝑟 ′𝑘−2). Then, we must have
• 𝒕 ∈ J (𝑅′

1
, 𝑅′

2
, ..., 𝑅′

𝑘−2);
• ℎ ∈ d-cross𝐻 (𝒕) and 𝑣 ∈ d-cross𝑉 (𝒕).

(3)

∑
𝒕 |d-cross𝐻 (𝒕) | ≤ OUT and

∑
𝒕 |d-cross𝑉 (𝒕) | ≤ OUT, where the two summations are over all

𝒕 ∈ J (𝑅′
1
, 𝑅′

2
, ..., 𝑅′

𝑘−2).

Example 4.3. Let us examine, in turn, the two 2-tuples 𝒕1 = (𝛼 ′, 𝛽 ′1) and 𝒕2 = (𝛼 ′, 𝛽 ′2) in J (𝑅′1, 𝑅′2).
For 𝒕1, 𝐵𝒕1 is the rectangle ABCD in Figure 4c, and left-guard(𝒕1) = bot-guard(𝒕1) = 𝛼 ′. Accordingly,
d-cross𝐻 (𝒕1) = {ℎ2} and d-cross𝑉 (𝒕1) = {𝑣3}. For 𝒕2, 𝐵𝒕2 is the rectangle AEFG, and left-guard(𝒕2) =
bot-guard(𝒕2) = 𝛼 ′. Accordingly, d-cross𝐻 (𝒕2) = {ℎ2, ℎ4, ℎ5} and d-cross𝑉 (𝒕2) = {𝑣3, 𝑣5}. □

Equipped with Lemma 4.2, we generate our target J ∗ as follows:
algorithm generate-J ∗
1. J ∗ = ∅
2. for each (𝑘 − 2)-tuple 𝒕 ∈ J (𝑅′

1
, ..., 𝑅′

𝑘−2) do
3. 𝑟𝑖 ← the full rectangle of 𝒕 [𝑖], for each 𝑖 ∈ [𝑘 − 2]
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4. for each (ℎ, 𝑣) ∈ d-cross𝐻 (𝒕) × d-cross𝑉 (𝒕) do
5. add (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) to J ∗

By statements (1) and (2) of Lemma 4.2, the setJ ∗ thus computed indeed satisfies (5). Furthermore,

if we are given d-cross𝐻 (𝒕) and d-cross𝑉 (𝒕) for each 𝒕 , the above algorithm runs in 𝑂 (1 + 𝑘 ·
|J (𝑅′

1
, ..., 𝑅′

𝑘−2) | + 𝑘 · |J
∗ |) = 𝑂 (1 + 𝑘 · OUT) time, where the derivation used (5) and Lemma 4.1.

The rest of the section will focus on how to prepare the sets d-cross𝐻 (𝒕) of all 𝒕 ∈ J (𝑅′1, ..., 𝑅′𝑘−2)
in 𝑂 (𝑘𝑛 log𝑛 + 𝑘 · OUT) time. An analogous method can be used to compute the sets d-cross𝑉 (𝒕)
of all 𝒕 within the same time complexity.

Example 4.4. In our running example, the J ∗ computed includes 7 tuples: (𝛼, 𝛽1, ℎ2, 𝑣3), and {𝛼} ×
{𝛽2} × {ℎ2, ℎ4, ℎ5} × {𝑣3, 𝑣5}. All these 7 tuples belong to J (𝑅1, 𝑅2, 𝐻,𝑉 ) and include the 4 tuples

in J1 (see Example 4.1). □

Sets 𝑹∗
1, 𝑹

∗
2, ..., 𝑹

∗
𝒌−2. Fix any 𝑖 ∈ [𝑘 − 2]. Define for each 𝑟

′ ∈ 𝑅′𝑖 :

maxtop(𝑟 ′) = max

𝒕∈J(𝑅′
1
,...,𝑅′

𝑘−2 ) :bot-guard(𝒕 )=𝑟 ′
top(𝐵𝒕 ) . (8)

We set maxtop(𝑟 ′) to −∞ if no 𝒕 ∈ J (𝑅′
1
, ..., 𝑅′

𝑘−2) has 𝑟
′
as the bot-guard(𝒕). When maxtop(𝑟 ′) ≠

−∞, assuming 𝑟 ′ = [𝑥1, 𝑥2] × [𝑦1, 𝑦2], we introduce a rectangle
𝑟 ∗ = [𝑥1, 𝑥2] × [𝑦1,maxtop(𝑟 ′)] . (9)

and call it the top-sliced rectangle of 𝑟 ′.
Example 4.5. Recall from Example 4.3 that rectangle 𝛼 ′ is both bot-guard(𝒕1) and bot-guard(𝒕2).
Thus, maxtop(𝛼 ′) = max{top(𝐵𝒕1 ), top(𝐵𝒕2 )} = max{6, 9.5} = 9.5. The top-sliced rectangle of 𝛼 ′ is
the rectangle 𝛼∗ in Figure 4d. Rectangles 𝛽 ′

1
and 𝛽 ′

2
do not have top-sliced rectangles. □

Next, we construct from 𝑅′𝑖 a new set of rectangles:

𝑅∗𝑖 = {𝑟 ∗ | 𝑟 ′ ∈ 𝑅′𝑖 and its top-sliced rectangle 𝑟 ∗ exists}. (10)

In Appendix B, we show how to compute 𝑅∗
1
, ..., 𝑅∗

𝑘−2 altogether in 𝑂 (𝑛 + 𝑘 · OUT) total time.

Our interest lies specifically in the sets cross𝐻 (𝑟 ∗) of the rectangles 𝑟 ∗ in 𝑅∗𝑖 , where cross𝐻 (𝑟 ∗) —
defined in (2) — is the set of segments in𝐻 crossing 𝑟 ∗. The following lemma, proven in Appendix B,

presents some useful properties of these sets.

Lemma 4.3. Both statements below are true:
(1)

∑𝑘−2
𝑖=1

∑
𝑟 ∗∈𝑅∗

𝑖
|cross𝐻 (𝑟 ∗) | ≤ OUT.

(2) Consider any tuple 𝒕 ∈ J (𝑅′
1
, ..., 𝑅′

𝑘−2). Let 𝑟
′ = bot-guard(𝒕) and 𝑟 ∗ be the top-sliced rectangle

of 𝑟 ′. Then, we have d-cross𝐻 (𝒕) ⊆ cross𝐻 (𝑟 ∗). Furthermore, if the (horizontal) segments of
cross𝐻 (𝑟 ∗) are sorted in ascending order of their y-coordinates, then d-cross𝐻 (𝒕) includes a
prefix of the sorted order.

Example 4.6. It is clear from Figure 4d that cross𝐻 (𝛼∗) contains ℎ2, ℎ4, and ℎ5, sorted in ascending

order of their y-coordinates. Recall that bot-guard(𝒕1) = bot-guard(𝒕2) = 𝛼 ′. Both d-cross𝐻 (𝒕1) =
{ℎ2} and d-cross𝐻 (𝒕2) = {ℎ2, ℎ4, ℎ5} are indeed prefixes of the sorted cross𝐻 (𝛼∗), as stated in

Lemma 4.3. □

Finding the cross𝐻 (𝑟 ∗) sets of all 𝑟 ∗ ∈ 𝑅∗𝑖 is an instance of the find-all-sorted version of Problem

D (with 𝐻 and 𝑅∗𝑖 as the input). Statement (1) of Lemma 4.3, as well as the discussion in Section 2,

assures us that the total time to do so for all 𝑅∗
1
, ..., 𝑅∗

𝑘−2 is bounded by𝑂 (𝑘𝑛 log𝑛 +OUT). Note that,
for each cross𝐻 (𝑟 ∗) computed, the (horizontal) segments therein have been sorted in ascending

order of y-coordinate.
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Fig. 5. Finding H-V 𝑘-SJ result tuples of type 2 (𝑘 = 4)

Computing the “d-cross” Sets. We are ready to compute d-cross𝐻 (𝒕), defined in (7), for any

𝒕 ∈ J (𝑅′
1
, ..., 𝑅′

𝑘−2), thanks to Statement (2) of Lemma 4.3. First, compute 𝐵𝒕 , obtain the rectangle

𝑟 ′ = bot-guard(𝒕), and fetch the (already computed) top-sliced rectangle 𝑟 ∗ of 𝑟 ′; these steps require
𝑂 (𝑘) time. Then, scan the segments in cross𝐻 (𝑟 ∗) in ascending order of their y-coordinates. For

each segment ℎ scanned, check whether ℎ belongs to d-cross𝐻 (𝒕), namely, whether ℎ crosses 𝐵𝒕
(the reader can verify that ℎ must cross bot-guard(𝒕)); this can be done in constant time. Abort the

scan as soon as ℎ ∉ d-cross𝐻 (𝒕). This way, we produce d-cross𝐻 (𝒕) in 𝑂 (𝑘 + |d-cross𝐻 (𝒕) |) time.

Doing so for all 𝒕 ∈ J (𝑅′
1
, ..., 𝑅′

𝑘−2) takes 𝑂 (𝑘 · |J | +
∑

𝒕 |d-cross𝐻 (𝑡) |) = 𝑂 (𝑘 · OUT) time, where

the derivation used Lemma 4.1 and statement (3) of Lemma 4.2.

We conclude that J1 — the set of type-1 result tuples — can be computed in 𝐹𝑘−2 (𝑛,OUT) +
𝑂 (𝑘𝑛 log𝑛 + 𝑘 · OUT) time.

5 H-V 𝑘-SJ: Result Tuples of Type 2
Still, denote by 𝑅1, ..., 𝑅𝑘−2, 𝐻 , and𝑉 the input sets of the H-V 𝑘-SJ problem. This section will explain

how to find the result tuples of Type 2 as defined in Section 3.

As mentioned before, for a result tuple (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) of this type, a rectangle 𝑟𝑖 , for some

𝑖 ∈ [𝑘 − 2], covers an endpoint of ℎ or 𝑣 or both. As (i) there are 𝑘 − 2 choices for 𝑖 and (ii) ℎ and 𝑣

together have four endpoints, we can divide Type 2 further into 4(𝑘 − 2) “sub-types”: in subtype 1

(resp., 2), 𝑟1 covers the left (resp., right) endpoint of ℎ, in subtype 3 (resp., 4), 𝑟1 covers the bottom

(resp., top) endpoint of 𝑣 , in subtype 5 (resp., 6), 𝑟2 covers the left (resp., right) endpoint of ℎ, etc. It
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is possible for the result tuple to belong to multiple sub-types simultaneously. Next, we will focus

on producing the result tuples of a particular sub-type:

J2 = {(𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) ∈ J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ) | 𝑟𝑘−2 covers the left endpoint of ℎ}. (11)

The other sub-types can be found analogously.

A remark is in order about duplicate removal. By finding each sub-type separately, we may

see the same result tuple multiple times (precisely, up to 4(𝑘 − 2) times) in the whole algorithm.

However, this does not mean that the tuple needs to be reported multiple times. Whenever a type-2

result tuple is found, we can immediately decide in 𝑂 (𝑘) time all the sub-types it belongs to. To

avoid outputting the tuple more than once, we can enforce a policy to designate a specific sub-type

for outputting. One such policy is the following: among all sub-types that the tuple belongs to,

identify the one with the smallest sub-type number 𝑡 (an integer from 1 to 4(𝑘 − 2)); report the
tuple only when we are computing the particular sub-type 𝑡 .

Example 5.1. To illustrate our algorithm, we will utilize the running example in Figure 5a, where

𝑘 = 4, and 𝑅1 = {𝛼}, 𝑅2 = {𝛽1, 𝛽2, 𝛽3}, 𝐻 = {ℎ1, ℎ2, ℎ3}, and 𝑉 = {𝑣1, 𝑣2}. The set J2 contains the
following tuples: (𝛼, 𝛽1, ℎ2, 𝑣1), (𝛼, 𝛽1, ℎ3, 𝑣1), (𝛼, 𝛽2, ℎ3, 𝑣1), (𝛼, 𝛽3, ℎ3, 𝑣1), and (𝛼, 𝛽3, ℎ3, 𝑣2). □

Set 𝑯 ′. Take any horizontal segment ℎ = [𝑥1, 𝑥2] × 𝑦 ∈ 𝐻 . Recall from Section 2 that a left-end

covering rectangle of ℎ is a rectangle covering the left endpoint of ℎ. Let 𝑝 be the rightmost point

on ℎ such that at least one left-end covering rectangle of ℎ in 𝑅𝑘−2 covers 𝑝 . This 𝑝 exists if and

only if ℎ has at least one left-end covering rectangle in 𝑅𝑘−2. If 𝑝 exists and has coordinates (𝑥,𝑦),
we refer to the segment ℎ′ = [𝑥1, 𝑥] × 𝑦 as the trimmed segment of ℎ; conversely, we call ℎ the full
segment of ℎ′.

Construct

𝐻 ′ = {ℎ′ | ℎ ∈ 𝐻 and its trimmed segment ℎ′ exists}. (12)

The construction is an instance of Problem C (with 𝐻 and 𝑅𝑘−2 as the input) and finishes in

𝑂 (𝑛 log𝑛) time based on the discussion in Section 2.

Now, solve a (𝑘 − 1)-SJ problem on the input {𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 } using the algorithm A sup-

plied (by Lemma 3.1). Let J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) represent the result of this (𝑘 − 1)-SJ, whose
input size is at most 𝑛. Given the lemma below (which is proved in Appendix C), we assert that

J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) can be computed in 𝐹𝑘−1 (𝑛,OUT) time.

Lemma 5.1. |J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) | ≤ OUT.

Example 5.2. Segmentℎ1 has no left-covering rectangle in𝑅2 (see Figure 5a) and thus has no trimmed

segment. Segment ℎ2 has one left-covering rectangle in 𝑅2, which is 𝛽1. As the entire ℎ2 is covered

by 𝛽1, it is equivalent to its trimmed segment ℎ′
2
; see Figure 5b. Segment ℎ3 has two left-covering

rectangles in 𝑅2, which are 𝛽2 and 𝛽3. The right endpoint of its trimmed segment ℎ′
3
, as shown in

Figure 5b, is decided by the right edge of 𝛽3. Therefore, 𝐻
′ = {ℎ′

2
, ℎ′

3
}. It is clear from Figure 5b that

J (𝑅1, 𝐻 ′,𝑉 ) has 3 tuples: 𝒕1 = (𝛼,ℎ′2, 𝑣1), 𝒕2 = (𝛼,ℎ′3, 𝑣1), and 𝒕3 = (𝛼,ℎ′3, 𝑣2). □

Generating J2. Take any (𝑘 − 1)-tuple 𝒕 = (𝑟1, ..., 𝑟𝑘−3, ℎ′, 𝑣) ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ). Note that 𝐵𝒕
— defined in (4) — is the point ℎ′ ∩ 𝑣 (the intersection of ℎ′ and 𝑣). Suppose that ℎ′ = [𝑥1, 𝑥2] × 𝑦
and 𝐵𝒕 = (𝑥,𝑦); we define the effective horizontal segment of 𝒕 as the horizontal segment [𝑥1, 𝑥] ×𝑦.
This allows us to define

contain𝑅𝑘−2 (𝒕) = {𝑟 ∈ 𝑅𝑘−2 | 𝑟 contains the effective horizontal segment of 𝒕} (13)

The above should not be confused with (3), where the “contain” function takes a segment as the

parameter, rather than a tuple.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 210. Publication date: November 2024.



210:12 Ru Wang and Yufei Tao

Example 5.3. Consider the tuples 𝒕1, 𝒕2, and 𝒕3 of J (𝑅1, 𝐻 ′,𝑉 ) given in Example 5.2. For 𝒕1 =

(𝛼,ℎ′
2
, 𝑣1), its effective horizontal segment is DC (see Figure 5b). For 𝒕2 = (𝛼,ℎ′

3
, 𝑣1), its effective

horizontal segment is EB. For 𝒕3 = (𝛼,ℎ′3, 𝑣2) ∈ J (𝑅1, 𝐻 ′,𝑉 ), its effective horizontal segment is EA.
Accordingly, as can be seen from Figure 5c, contain𝑅𝑘−2 (𝒕1) = contain𝑅2

(𝒕1) = {𝛽1}, contain𝑅2
(𝒕2) =

{𝛽1, 𝛽2, 𝛽3}, and contain𝑅2
(𝒕3) = {𝛽3}. □

We prove the next lemma in Appendix C (the reader may want to be reminded that, for each

𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ), 𝒕 [𝑘 − 2] is a horizontal segment and 𝒕 [𝑘 − 1] is a vertical segment).

Lemma 5.2. All the following statements are true:
(1) Consider any (𝑘 − 1)-tuple 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ). Denote by ℎ the full segment of 𝒕 [𝑘 − 2].

Then, for any 𝑟 ∈ contain𝑅𝑘−2 (𝒕), the 𝑘-tuple (𝒕 [1], ..., 𝒕 [𝑘 − 3], 𝑟 , ℎ, 𝒕 [𝑘 − 1]) belongs to J2.
(2) Consider any 𝑘-tuple (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) ∈ J2. Let ℎ′ be the trimmed segment of ℎ and set 𝒕 =
(𝑟1, ..., 𝑟𝑘−3, ℎ′, 𝑣). Then, 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) and 𝑟𝑘−2 ∈ contain𝑅𝑘−2 (𝒕).

(3)

∑
𝒕 |contain𝑅𝑘−2 (𝒕) | ≤ OUT, where the summation is over all 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ).

Equipped with Lemma 5.2, we generate our target J2 as follows:
algorithm generate-J2
1. J2 = ∅
2. for each (𝑘 − 2)-tuple 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) do
3. ℎ ← the full segment of 𝒕 [𝑘 − 2]
4. for each 𝑟 ∈ contain𝑅𝑘−2 (𝒕) do
5. add (𝒕 [1], ..., 𝒕 [𝑘 − 3], 𝑟 , ℎ, 𝒕 [𝑘 − 1]) to J2
The correctness of the algorithm follows from statements (1) and (2) of Lemma 5.2. Furthermore,

if we are given contain𝑅𝑘−2 (𝒕) for each 𝒕 , statement (3) of Lemma 5.2 assures us that the algorithm

runs in 𝑂 (1 + 𝑘 · |J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) | + 𝑘
∑

𝒕 |contain𝑅𝑘−2 (𝒕) |) = 𝑂 (1 + 𝑘 · OUT) time, where the

derivation used Lemma 5.1 and statement (3) of Lemma 5.2.

Example 5.4. For 𝒕1 = (𝛼,ℎ′
2
, 𝑣1), the full segment of ℎ′

2
is ℎ2. As 𝛽1 is the only rectangle in

contain𝑅2
(𝒕1), Line 5 of the algorithm adds tuple (𝛼, 𝛽1, ℎ2, 𝑣1) to J2. For 𝒕2 = (𝛼,ℎ′

3
, 𝑣1), the full

segment of ℎ′
3
is ℎ3. As contain𝑅2

(𝒕2) = {𝛽1, 𝛽2, 𝛽3}, Line 5 adds (𝛼, 𝛽1, ℎ3, 𝑣1), (𝛼, 𝛽2, ℎ3, 𝑣1), and
(𝛼, 𝛽3, ℎ3, 𝑣1) to J2. Finally, the processing of 𝒕3 = (𝛼,ℎ′3, 𝑣2) adds (𝛼, 𝛽3, ℎ3, 𝑣2) to J2. □

Set 𝑯 ∗. For each segment ℎ′ ∈ 𝐻 ′, define
minleft(ℎ′) = min

𝒕 ∈ J(𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) :
𝒕 [𝑘 − 2] = ℎ′

𝑥-coordinate of 𝒕 [𝑘 − 1] . (14)

We set minleft(ℎ′) to∞ if no 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) hasℎ′ in its field 𝒕 [𝑘−2]. Whenminleft(ℎ′) ≠
∞, assuming ℎ′ = [𝑥1, 𝑥2] × 𝑦, we introduce a horizontal segment

ℎ∗ = [𝑥1,minleft(ℎ′)] × 𝑦.
and call it the minimal segment of ℎ′.
Example 5.5. As mentioned, J (𝑅1, 𝐻 ′,𝑉 ) has 3 tuples 𝒕1, 𝒕2, and 𝒕3. Both 𝒕2 = (𝛼,ℎ′

3
, 𝑣1) and

𝒕3 = (𝛼,ℎ′
3
, 𝑣2) have ℎ′3 as the horizontal segment. Therefore, minleft(ℎ′

3
) equals 5, which is the

smaller between the x-coordinate of 𝑣1 and that of 𝑣2. The minimal segment ℎ∗
3
of ℎ′

3
is shown in

Figure 5(c). On the other hand, it is easy to verify that minleft(ℎ′
2
) is the x-coordinate of 𝑣1. The

minimal segment ℎ∗
2
of ℎ′

2
is also shown in Figure 5(c). □

Next, we construct a new set of horizontal segments:

𝐻 ∗ = {ℎ∗ | ℎ′ ∈ 𝐻 ′ and its minimal segment ℎ∗ exists}. (15)
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This can be done in 𝑂 (𝑛 + 𝑘 · OUT) time, as shown in Appendix C.

We are interested in the sets contain𝑅𝑘−2 (ℎ∗) of the segments ℎ∗ in 𝐻 ∗, where contain𝑅𝑘−2 (ℎ∗) —
defined in (3) — is the set of rectangles in 𝑅𝑘−2 containingℎ

∗
. These sets have some useful properties:

Lemma 5.3. Both statements below are true:
(1)

∑
ℎ∗∈𝐻 ∗ |contain𝑅𝑘−2 (ℎ∗) | ≤ OUT.

(2) Consider any tuple 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ). Set ℎ′ = 𝒕 [𝑘 − 2] and let ℎ∗ be the minimal
segment of ℎ′. Then,

contain𝑅𝑘−2 (𝒕) ⊆ contain𝑅𝑘−2 (ℎ∗).
Furthermore, if the rectangles 𝑟 in contain𝑅𝑘−2 (ℎ∗) are sorted in descending order of right(𝑟 ),
then contain𝑅𝑘−2 (𝒕) includes a prefix of the sorted order.

The proof can be found in Appendix C.

Example 5.6. It is clear from Figure 5(d) that contain𝑅2
(ℎ∗

3
) has rectangles 𝛽3, 𝛽2, 𝛽1, sorted in de-

scending order of their right boundaries’ x-coordinates. Consider 𝒕2 = (𝛼,ℎ′3, 𝑣1) and 𝒕3 = (𝛼,ℎ′3, 𝑣2).
Segment ℎ∗

3
is the minimal segment of ℎ′

3
. As stated in Lemma 5.3, both contain𝑅2

(𝒕2) = {𝛽1, 𝛽2, 𝛽3}
and contain𝑅2

(𝒕3) = {𝛽1} are prefixes of the sorted order of contain𝑅2
(ℎ∗

3
). Regarding ℎ∗

2
, it is the

minimal segment ofℎ′
2
, and contain𝑅2

(ℎ∗
2
) contains only 𝛽1. For 𝒕1 = (𝛼,ℎ′2, 𝑣1), contain𝑅2

(𝒕1) = {𝛽1}
is a (trivial) prefix of contain𝑅2

(ℎ∗
2
), as is also consistent with the lemma. □

Finding the contain𝑅𝑘−2 (ℎ∗) sets of all ℎ∗ ∈ 𝐻 ∗ is an instance of Problem E (with 𝐻 ∗ and 𝑅𝑘−2 as
the input). The cost is𝑂 (𝑛 log𝑛 +OUT) according statement (1) of Lemma 4.3 and the discussion in

Section 2. Note that, for each contain𝑅𝑘−2 (ℎ∗) computed, the rectangles 𝑟 therein have been sorted

in descending order of right(𝑟 ).
Computing the “contain𝑹𝒌−2 (𝒕)” Sets. Statement (2) of Lemma 5.3 allows us to produce contain𝑅𝑘−2 (𝒕)
— defined in (13) — for each 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) as follows. First, fetch the (already computed)

minimal segment ℎ∗ of 𝒕 [𝑘 − 2] in 𝑂 (1) time. Then, scan the rectangles 𝑟 of contain𝑅𝑘−2 (ℎ∗) in
descending order of right(𝑟 ). For each 𝑟 scanned, check whether 𝑟 ∈ contain𝑅𝑘−2 (𝒕), or equivalently,
whether 𝑟 covers 𝐵𝒕 (recall that 𝐵𝒕 is a point); the cost of this inspection is 𝑂 (1). Abort the scan as

soon as 𝑟 ∉ contain𝑅𝑘−2 (𝒕). This way, contain𝑅𝑘−2 (𝑡) can be decided in𝑂 (𝑘 + |contain𝑅𝑘−2 (𝒕) |) time.

Doing so for all 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) takes𝑂 (𝑘 · |J | +
∑

𝒕 |contain𝑅𝑘−2 (𝒕) |) = 𝑂 (𝑘 ·OUT) time,

where the derivation used Lemma 5.1 and statement (3) of Lemma 5.2.

We conclude that J2 — see (11) — can be computed in 𝐹𝑘−1 (𝑛,OUT) +𝑂 (𝑛 log𝑛 + 𝑘 ·OUT) time.

Remember that, to generate the entire type-2 result, we need to repeat the algorithm 4(𝑘 − 2) times

(one for each sub-type). The total running time is therefore𝑂 (𝑘) · (𝐹𝑘−1 (𝑛,OUT) +𝑛 log𝑛+𝑘 ·OUT),
as claimed in Lemma 3.1.

6 Settling 𝑘-SJ
This section will tackle the 𝑘-SJ problem in its general form, where the input comprises 𝑘 ≥ 3 sets

of rectangles 𝑅1, 𝑅2, ..., 𝑅𝑘 . The join result J (𝑅1, 𝑅2, ..., 𝑅𝑘 ) is the set of 𝑘-tuples 𝒕 = (𝑟1, 𝑟2, ..., 𝑟𝑘 ) ∈
𝑅1 × 𝑅2 × ... × 𝑅𝑘 satisfying the condition that 𝐵𝒕 — which is

⋂𝑘
𝑖=1 𝑟𝑖 ≠ ∅ (see (4)) — is non-empty.

Consider any result tuple 𝒕 = (𝑟1, 𝑟2, ..., 𝑟𝑘 ) ∈ J (𝑅1, 𝑅2, ..., 𝑅𝑘 ), and let 𝑝 be the top-left corner of

𝐵𝒕 . Depending on how 𝑝 is determined, we classify 𝒕 into one of the two categories below:

• Cat. 1: 𝑝 is the top-left corner of 𝑟𝑖 for some 𝑖 ∈ [𝑘].
• Cat. 2: 𝑝 is not a corner of any of 𝑟1, ..., 𝑟𝑘 . This means 𝑝 must be the intersection point

between the top edge of some rectangle 𝑟𝑖 and the left edge of another rectangle 𝑟 𝑗 , where

𝑖, 𝑗 ∈ [𝑘] and 𝑖 ≠ 𝑗 .

Figure 6 illustrates a tuple of each category, assuming 𝑘 = 4.
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Fig. 6. Classifying 𝑘-SJ result tuples (𝑘 = 4)

The rest of this section serves as a proof of Theorem 1.1. Theorem 1.2 is a corollary of Theorem 1.1,

as proved in Appendix D. As stated in Theorem 1.1, we are given an algorithm A that can solve

any (𝑘 − 1)-SJ problem in 𝐹𝑘−1 (𝑛,OUT) time, where 𝑛 and OUT are the input and output sizes,

respectively. Equipped with A, we will show how to find the result tuples of each category within

the time complexity of (1).

Category 1. Given an 𝑖 ∈ [𝑘], we denote by J cat1

𝑖 the set of 𝑘-tuples 𝒕 = (𝑟1, ..., 𝑟𝑘 ) ∈ J (𝑅1, ..., 𝑅𝑘 )
such that the top-left corner of 𝐵𝒕 is the top-left corner of 𝒕 [𝑖] = 𝑟𝑖 . We will show how to compute

J cat1

𝑖 for 𝑖 = 𝑘 ; the set J cat1

𝑖 of every other 𝑖 can be produced in the same manner.

For every 𝒕 = (𝑟1, 𝑟2, ..., 𝑟𝑘 ) ∈ J cat1

𝑘
, the top-left corner of 𝑟𝑘 must be covered by all of 𝑟1, ..., 𝑟𝑘−1.

This observation motivates us to find J cat1

𝑘
as follows. First, collect the set 𝑃 of top-left corners of

all the rectangles in 𝑅𝑘 . Remove from 𝑃 every point 𝑝 with the property that, there exists at least

one 𝑗 ∈ [𝑘 − 1] such that 𝑝 is covered by no rectangle in 𝑅 𝑗 . This requires solving 𝑘 − 1 instances of
the detection version of Problem A (in each instance, the input includes 𝑃 together with a different

𝑅 𝑗 , 𝑗 ∈ [𝑘 − 1]); the cost is 𝑂 (𝑘𝑛 log𝑛) by the discussion in Section 2.

Let 𝑃 ′ be the set of remaining points in 𝑃 after the aforementioned removal. Next, for each

𝑗 ∈ [𝑘 − 1], solve the reporting version of Problem A by feeding 𝑃 ′ and 𝑅 𝑗 as the input. This

produces the set contain𝑅 𝑗
(𝑝) for each point 𝑝 ∈ 𝑃 ′, where contain𝑅 𝑗

(𝑝) is defined in (3) (treating

𝑝 as a degenerated “horizontal segment”) and includes all rectangles of 𝑅 𝑗 covering 𝑝 . By the

discussion in Section 2, the total cost of this step is bounded by

𝑂

(
𝑘𝑛 log𝑛 +

∑︁
𝑝∈𝑃 ′

∑︁
𝑗∈[𝑘−1]

|contain𝑅 𝑗
(𝑝) |

)
. (16)

We are ready to generate J cat1

𝑘
. Take any point 𝑝 ∈ 𝑃 ′, and let 𝑟 ∈ 𝑅𝑘 be the rectangle with 𝑝 as

the top-left corner. For every (𝑘 − 1)-tuple

(𝑟1, ..., 𝑟𝑘−1) ∈ contain𝑅1
(𝑝) × ... × contain𝑅𝑘−1 (𝑝)

we add (𝑟1, ..., 𝑟𝑘−1, 𝑟 ) to J cat1

𝑘
. Performing the above for all 𝑝 ∈ 𝑃 ′ generates the whole J cat1

𝑘
in

𝑂 (1 + 𝑘 · |J cat1

𝑘
|) time. The way 𝑃 ′ is computed ensures that contain𝑅 𝑗

(𝑝) ≠ ∅ for each 𝑗 ∈ [𝑘 − 1].
Hence,

∑
𝑗∈[𝑘−1] |contain𝑅 𝑗

(𝑝) | ≤ ∏
𝑗∈[𝑘−1] |contain𝑅 𝑗

(𝑝) |, which implies that (16) is bounded by

𝑂 (𝑘𝑛 log𝑛 + 𝑘 · |J cat1

𝑘
|) = 𝑂 (𝑘𝑛 log𝑛 + 𝑘 · OUT) .

Therefore, the total time of computing all of J cat1

1
, ...,J cat1

𝑘
is 𝑂 (𝑘) · (𝑘𝑛 log𝑛 + 𝑘 · OUT). A

category-1 result tuple 𝒕 may be seen more than once (this happens if the top-left corner of 𝐵𝒕 is

the top-left corner of more than one rectangle in 𝒕). Duplicate removal can be implemented at no

extra cost asymptotically, following the ideas explained in Section 5.

Category 2. Given 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , we denote by J cat2

𝑖, 𝑗 the set of 𝑘-tuples 𝒕 = (𝑟1, ..., 𝑟𝑘 ) ∈
J (𝑅1, ..., 𝑅𝑘 ) such that the top-left corner of 𝐵𝒕 is the intersection between the top edge of 𝑟𝑖 and

the left edge of 𝑟 𝑗 . The Category 2 of result tuples is the union of the J cat2

𝑖, 𝑗 of all possible 𝑖, 𝑗 .
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The computation of J cat2

𝑖, 𝑗 is an instance of the H-V 𝑘-SJ problem. Specifically, collect the top-

edges of all rectangles of 𝑅𝑖 into a set 𝐻 , and collect the left-edges of all the rectangles of 𝑅 𝑗 into a

set 𝑉 . This yields an H-V 𝑘-SJ instance whose input comprises all the 𝑅𝑧 with 𝑧 ∈ [𝑘] \ {𝑖, 𝑗}, 𝐻 ,
and 𝑉 . Each result tuple consists of a rectangle 𝑟𝑧 ∈ 𝑅𝑧 , for 𝑧 ∈ [𝑘] \ {𝑖, 𝑗}, a horizontal segment

ℎ ∈ 𝐻 , and a vertical segment 𝑣 ∈ 𝑉 such that ℎ ∩ 𝑣 ∩ ⋂
𝑧∈[𝑘 ]\{𝑖, 𝑗 } 𝑟𝑧 ≠ ∅. There is one-one

correspondence between the output of the H-V 𝑘-SJ and J cat2

𝑖, 𝑗 . Thus, by Lemma 3.1, the H-V 𝑘-SJ

can be solved in𝑂 (𝑘) · (𝐹𝑘−1 (𝑛, |J cat2

𝑖, 𝑗 |) +𝑛 log𝑛+𝑘 · |J cat2

𝑖, 𝑗 |) time. Converting the output into J cat2

𝑖, 𝑗

takes another 𝑂 (𝑘 · |J cat2

𝑖, 𝑗 |) time. Applying |J cat2

𝑖, 𝑗 | ≤ OUT, we know that J cat2

𝑖, 𝑗 can be produced

in 𝑂 (𝑘) · (𝐹𝑘−1 (𝑛,OUT) + 𝑛 log𝑛 + 𝑘 · OUT) time

Performing the above for all 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 leads to a total time complexity of 𝑂 (𝑘3) ·
(𝐹𝑘−1 (𝑛,OUT) + 𝑛 log𝑛 + 𝑘 · OUT). A category-2 result tuple 𝒕 may be seen more than once (this

can happen if, for example, more than one rectangle in 𝒕 has the same top-edge). Again, duplicate

removal can be achieved at no extra cost asymptotically.

We now complete the proof of Theorem 1.1.

Appendix
A Building Brick Algorithms

Terminology. Each point (𝑥,𝑦) is said to define a y-coordinate 𝑦, a horizontal segment [𝑥1, 𝑥2] ×𝑦
is said to define a y-coordinate 𝑦, and each rectangle 𝑟 = [𝑥1, 𝑥2] × [𝑦1, 𝑦2] is said to define two
y-coordinates 𝑦1 and 𝑦2. These definitions permit us to conveniently specify a set of y-coordinates

using expressions like “the set of four y-coordinates defined by point 𝑝 , horizontal segment ℎ, and

rectangle 𝑟”.

Fundamental Data Structures. The interval tree [5] stores a set 𝑆 of intervals in R using 𝑂 ( |𝑆 |)
space such that, given any real value 𝑞, the intervals of 𝑆 containing 𝑞 can be found in𝑂 (log |𝑆 | +𝐾)
time, where 𝐾 is the number of intervals reported. It can also be used to detect whether 𝑆 has at

least one interval containing 𝑞 in 𝑂 (log |𝑆 |) time. The structure supports insertions and deletions

on 𝑆 in 𝑂 (log |𝑆 |) time.

Now, let us assume that each interval of 𝑆 is associated with a real-valued weight. Given a real

value 𝑞, a stabbing max query returns the maximum weight of all the intervals in 𝑆 covering 𝑞 (if no

such intervals exist, the query returns −∞). We can store 𝑆 in a structure of [1] using 𝑂 ( |𝑆 |) space
that can answer such a query in𝑂 (log |𝑆 |) time. The structure supports insertions and deletions on

𝑆 in 𝑂 (log |𝑆 |) amortized time.

The priority search tree (PST) [16] stores a set 𝑃 of points using 𝑂 ( |𝑃 |) space such that, given a

3-sided rectangle 𝑞 = [𝑥1, 𝑥2] × [𝑦,∞), the points of 𝑆 covered by 𝑞 can be found in 𝑂 (log |𝑃 | + 𝐾)
time, where 𝐾 is the number of points reported. The structure supports insertions and deletions on

𝑆 in 𝑂 (log |𝑆 |) time.

The PST can be deployed to answer queries on intervals. Let 𝑆 be a set of intervals in R. Given
an interval 𝑞 = [𝑧1, 𝑧2], a containment query reports all the intervals of 𝑆 that are contained by

𝑞. We can store 𝑆 in a PST of 𝑂 ( |𝑆 |) space that solves such a query in 𝑂 (log |𝑆 | + 𝐾) time, where

𝐾 is the number of intervals reported. To see why, observe that an interval [𝑥,𝑦] is contained
by another [𝑧1, 𝑧2] if and only if the point (𝑥,𝑦) falls in the 3-sided rectangle [𝑧1,∞) × (−∞, 𝑧2].
Thus, we create from 𝑆 a point set 𝑃 = {(𝑥,𝑦) | [𝑥,𝑦] ∈ 𝑆} and store 𝑃 in a PST. Given an interval

𝑞 = [𝑧1, 𝑧2], we can answer the containment query by using the PST to find all the points in 𝑃

covered by [𝑧1,∞) × (−∞, 𝑧2] and, for each such point (𝑥,𝑦), report [𝑥,𝑦].
Another closely related query is the reverse-containment query, which, given an interval 𝑞 =

[𝑧1, 𝑧2], finds all the intervals of 𝑆 that contain 𝑞 (rather than “being contained by 𝑞”). Again, we
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can store 𝑆 in a PST of 𝑂 ( |𝑆 |) space that answers such a query in 𝑂 (log |𝑆 | + 𝐾) time, where 𝐾 is

the number of intervals reported. In general, an interval [𝑥,𝑦] contains another [𝑧1, 𝑧2] if and only

if the point (𝑥,𝑦) falls in the 3-sided rectangle (−∞, 𝑧1] × [𝑧2,∞). Thus, we create from 𝑆 a point

set 𝑃 = {(𝑥,𝑦) | [𝑥,𝑦] ∈ 𝑆} and store 𝑃 in a PST. Given an interval 𝑞 = [𝑧1, 𝑧2], we use the PST to

find all the points in 𝑃 covered by (−∞, 𝑧1] × [𝑧2,∞) and, for each such point (𝑥,𝑦), report [𝑥,𝑦].
Algorithm for Problem A . Consider first the detection version. Sort the set of y-coordinates

defined by the points of 𝑃 and the rectangles of 𝑅. Next, sweep (conceptually) a horizontal line ℓ

from 𝑦 = −∞ to 𝑦 = ∞. At all times, maintain the set 𝑅ℓ of rectangles in 𝑅 that intersect with ℓ . Let

𝑆ℓ be the set of x-ranges of the rectangles in 𝑅ℓ ; we store 𝑆ℓ in an interval tree T . Specifically, when
ℓ hits the bottom (resp., top) edge of a rectangle 𝑟 = [𝑥1, 𝑥2] × [𝑦1, 𝑦2] of 𝑅, we insert (resp., delete)
[𝑥1, 𝑥2] into (resp., from) T , which can be done in 𝑂 (log𝑛) time. When ℓ hits a point 𝑝 = (𝑥,𝑦) of
𝑃 , search T to determine if any interval in 𝑆ℓ contains the value 𝑥 . If so, point 𝑝 is covered by at

least one rectangle in 𝑅; otherwise, it is not. The overall running time is 𝑂 (𝑛 log𝑛).
The algorithm for the reporting version of Problem A is similar. The only difference is that,

when ℓ hits a point 𝑝 = (𝑥,𝑦) of 𝑃 , we use T to report all the intervals in 𝑆ℓ that contain 𝑥 ; the

cost is 𝑂 (𝑛 log𝑛 + 𝐾𝑝 ), where 𝐾𝑝 is the number of such intervals. Every interval corresponds to a

rectangle in 𝑅 that contains 𝑝 . The total running time is 𝑂 (𝑛 log𝑛 +∑𝑝 𝐾𝑝 ) = 𝑂 (𝑛 log𝑛 + OUT).
Algorithm for Problem B. Sort the set of y-coordinates defined by all the segments of 𝐻 and 𝑉 .

Next, sweep a horizontal line ℓ from 𝑦 = −∞ to 𝑦 = ∞. At all times, maintain the set𝑉ℓ of segments

in 𝑉 that intersect with ℓ . Let 𝑆ℓ be the set of x-coordinates of the segments in 𝑉ℓ ; we store 𝑆ℓ in a

binary search tree (BST) T . Specifically, when ℓ hits the lower (resp., upper) endpoint of a vertical
segment 𝑣 = 𝑥 × [𝑦1, 𝑦2] of 𝑉 , we insert (resp., delete) the value 𝑥 into (resp., from) T , which can

be done in 𝑂 (log𝑛) amortized time. When ℓ hits a horizontal segment ℎ = [𝑥1, 𝑥2] ×𝑦 of 𝐻 , search

T to determine the successor 𝑥 ′ of 𝑥1 in 𝑆ℓ . If 𝑥 ′ ≤ 𝑥2, then we output a pair (ℎ, 𝑝), where 𝑝 is the

point (𝑥 ′, 𝑦); otherwise, output nothing for ℎ. The overall running time is 𝑂 (𝑛 log𝑛).
Algorithm for Problem C . Sort the set of y-coordinates defined by all the segments in 𝐻 and all

the rectangles in 𝑅. Next, sweep a horizontal line ℓ from𝑦 = −∞ to𝑦 = ∞. At all times, maintain the

set 𝑅ℓ of rectangles in 𝑅 that intersect with ℓ . Let 𝑆ℓ be the set of x-ranges of the rectangles in 𝑅ℓ ; we

store 𝑆ℓ in a stabbing-max structure T of [1]. Specifically, when ℓ hits the bottom (resp., top) edge

of a rectangle 𝑟 = [𝑥1, 𝑥2] × [𝑦1, 𝑦2] of 𝑅, we insert (resp., delete) [𝑥1, 𝑥2] with weight 𝑥2 into (resp.,

from) T , which can be done in 𝑂 (log𝑛) time. When ℓ hits a horizontal segment ℎ = [𝑥1, 𝑥2] × 𝑦 of

𝑃 , search T to determine the maximum weight𝑤 of all the intervals in 𝑆ℓ containing the value 𝑥1.

If𝑤 ≠ −∞, we output (ℎ, 𝑝) where the point 𝑝 is defined in a way depending on𝑤 : if𝑤 ≤ 𝑥2, then
𝑝 = (𝑤,𝑦); otherwise 𝑝 = (𝑥2, 𝑦). The overall running time is 𝑂 (𝑛 log𝑛).
Algorithm for Problem D . Consider first the find-lowest version. Sort the set of y-coordinates
defined by all the horizontal segments and rectangles. In the outset, all rectangles of 𝑅 are marked

as inactive. During our algorithm, the status of each rectangle will turn from inactive to active at

some point, turn from active back to inactive at a later point, and then stay that way forever.

Sweep a horizontal line ℓ from 𝑦 = −∞ to 𝑦 = ∞. At all times, we maintain the set 𝑅ℓ of active
rectangles in 𝑅 that intersect with ℓ . Let 𝑆ℓ be the set of x-ranges of the rectangles in 𝑅ℓ ; we store

𝑆ℓ in a PST T . Specifically, when ℓ hits the top edge of a rectangle 𝑟 = [𝑥1, 𝑥2] × [𝑦1, 𝑦2] of 𝑅, we
insert [𝑥1, 𝑥2] into T and mark 𝑟 as active, which can be done in 𝑂 (log𝑛) time. The rectangle 𝑟

will be referred to as the host of [𝑥1, 𝑥2] and is stored together with [𝑥1, 𝑥2] in T .
When ℓ hits a horizontal segment ℎ = [𝑧1, 𝑧2] × 𝑦 of 𝑃 , perform a containment query on T

to find all the intervals in 𝑆ℓ that are contained by [𝑧1, 𝑧2]; if 𝐾ℎ is the number of such intervals,

this retrieval takes 𝑂 (log𝑛 + 𝐾ℎ) time. For each retrieved interval [𝑥1, 𝑥2], we also obtain its host

rectangle 𝑟 (stored along with [𝑥1, 𝑥2] in T ). As can be verified shortly, ℎ is the lowest segment in
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𝐻 that crosses 𝑟 ; we therefore output (𝑟, ℎ). After that, 𝑟 is marked as inactive, and accordingly,

its x-range [𝑥1, 𝑥2] is deleted from T in 𝑂 (log𝑛) time. As 𝑟 will remain inactive in the rest of the

execution, its x-range will not be retrieved again by another containment query in the future. This

implies that ℎ is indeed the lowest segment in 𝐻 crossing 𝑟 .

When ℓ hits the bottom edge of a rectangle 𝑟 = [𝑥1, 𝑥2] × [𝑦1, 𝑦2] of 𝑅, we check whether 𝑟 is

active. If so, delete [𝑥1, 𝑥2] from T and mark 𝑟 as inactive; otherwise, do nothing.

Overall, each rectangle of 𝑅 necessitates one insertion and one deletion in T . All these insertions
and deletions take 𝑂 (𝑛 log𝑛) time in total. Each segment ℎ of 𝐻 performs a containment query on

T , which has a cost of 𝑂 (log𝑛 + 𝐾ℎ). All these queries demand a total cost of 𝑂 (𝑛 log𝑛 +∑ℎ 𝐾ℎ).
Recall that the x-range of a rectangle in 𝑅 can be retrieved by at most one containment query.

Hence,

∑
ℎ 𝐾ℎ ≤ |𝑅 | ≤ 𝑛 and the runtime of our algorithm is 𝑂 (𝑛 log𝑛).

Next, we consider the find-all-sorted version of Problem D . For each 𝑟 ∈ 𝑅, we keep a linked

list, which at the end of our algorithm will store the horizontal segments of cross𝐻 (𝑟 ) in ascending

order of their y-coordinates. In the outset, all linked lists are empty. Unlike the detection version,

we will not need to keep the active status for the rectangles.

Again, sweep a horizontal line ℓ from 𝑦 = −∞ to 𝑦 = ∞. At all times, we maintain the set 𝑅ℓ of

rectangles in 𝑅 that intersect with ℓ . Let 𝑆ℓ be the set of x-ranges of the rectangles in 𝑅ℓ ; we store 𝑆ℓ
in a PST T . Specifically, when ℓ hits the bottom (resp., top) edge of a rectangle 𝑟 = [𝑥1, 𝑥2] × [𝑦1, 𝑦2]
of 𝑅, we insert (resp., delete) [𝑥1, 𝑥2] into (resp., from) T , which can be done in𝑂 (log𝑛) time. Again,

the rectangle 𝑟 — the host of [𝑥1, 𝑥2] — is stored together with [𝑥1, 𝑥2] in T .
When ℓ hits a horizontal segment ℎ = [𝑧1, 𝑧2] × 𝑦 of 𝑃 , perform a containment query on T to

find all the intervals in 𝑆ℓ that are contained by [𝑧1, 𝑧2]; the query cost is 𝑂 (log𝑛 + 𝐾ℎ), where 𝐾ℎ
is the number of intervals reported. For each retrieved interval [𝑥1, 𝑥2], we also obtain its host

rectangle 𝑟 . It is clear that ℎ is a segment crossing 𝑟 and is thus appended to the linked list of 𝑟 .

Note that ℎ is higher than all the segments already in that linked list.

Overall, each rectangle of 𝑅 necessitates one insertion and one deletion in T . All these insertions
and deletions take 𝑂 (𝑛 log𝑛) time in total. Each segment ℎ of 𝐻 performs a containment query on

T , which has a cost of 𝑂 (log𝑛 + 𝐾ℎ). All these queries demand a total cost of 𝑂 (𝑛 log𝑛 +∑ℎ 𝐾ℎ).
However, unlike the detection version, the sum

∑
ℎ 𝐾ℎ here is equal to the total size of cross𝐻 (𝑟 )

for all the 𝑟 ∈ 𝑅. The total size is equivalent to OUT.

Algorithm for Problem E . Sort all the rectangles 𝑟 ∈ 𝑅 in ascending order of right(𝑟 ) (namely,

the x-coordinate of the right edge of 𝑟 ). To each 𝑟 ∈ 𝑅, we assign an ID 𝑖 ∈ [|𝑅 |] if 𝑟 is at the 𝑖-th
position of the sorted list.

Next, we aim to produce, for each pair (ℎ, 𝑟 ) ∈ 𝐻 × 𝑟 such that ℎ crosses 𝑟 , a pair (ℎ, 𝜆) where 𝜆
is the ID of 𝑟 . These pairs may be output in an arbitrary order. Sort the set of y-coordinates defined

by all the horizontal segments and rectangles. Sweep a horizontal line ℓ from 𝑦 = −∞ to 𝑦 = ∞.
At all times, we maintain the set 𝑅ℓ of rectangles in 𝑅 that intersect with ℓ . Let 𝑆ℓ be the set of

x-ranges of the rectangles in 𝑅ℓ ; we store 𝑆ℓ in a PST T . Specifically, when ℓ hits the bottom (resp.,

top) edge of a rectangle 𝑟 = [𝑥1, 𝑥2] × [𝑦1, 𝑦2] of 𝑅, we insert (resp., delete) [𝑥1, 𝑥2] into (resp., from)

T , which can be done in 𝑂 (log𝑛) time. We call the rectangle 𝑟 the host of [𝑥1, 𝑥2] and store its

ID together with [𝑥1, 𝑥2] in T . When ℓ hits a horizontal segment ℎ = [𝑧1, 𝑧2] × 𝑦 of 𝐻 , perform a

reverse-containment query on T to find all the intervals in 𝑆ℓ that contain [𝑧1, 𝑧2]; the query cost

is 𝑂 (log𝑛 + 𝐾ℎ), where 𝐾ℎ is the number of intervals reported. For each retrieved interval [𝑥1, 𝑥2],
we also obtain the ID 𝜆 of its host rectangle 𝑟 , and output the pair (ℎ, 𝜆).

Each rectangle of 𝑅 necessitates one insertion and one deletion in T . All these insertions and
deletions take 𝑂 (𝑛 log𝑛) time in total. Each segment ℎ of 𝐻 performs a reverse-containment query

on T , which has a cost of𝑂 (log𝑛 +𝐾ℎ). All these queries demand a total cost of𝑂 (𝑛 log𝑛 +∑ℎ 𝐾ℎ).
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The sum

∑
ℎ 𝐾ℎ here is equal to the total size of contain𝑅 (ℎ) for all the ℎ ∈ 𝐻 . The total size is

equivalent to OUT. The cost so far is therefore 𝑂 (𝑛 log𝑛 + OUT).
Let 𝐿 be the list of (ℎ, 𝜆) pairs produced (the size of 𝐿 is OUT). We now proceed to sort 𝐿 in

ascending order of the 𝜆-field (which is a rectangle ID), breaking ties arbitrarily. Because the IDs are

integers created by the algorithm, we are permitted to sort 𝐿 using counting sort without violating
the comparison-based requirements. The counting sort finishes in 𝑂 ( |𝑅 | + |𝐿 |) = 𝑂 (𝑛 +OUT) time,

recalling that all the IDs are in [|𝑅 |].
Finally, we generate, for each ℎ, its set contain𝑅 (ℎ) (i.e., the set of rectangles covering ℎ), where

the rectangles 𝑟 are sorted by right(𝑟 ). To start with, initialize an empty linked list for every ℎ ∈ 𝐻 .

Inspect the pairs (ℎ, 𝜆) ∈ 𝐿 in ascending order of the ID-field 𝜆. For each pair (ℎ, 𝜆) examined,

identify the rectangle 𝑟 whose ID is 𝜆 and add 𝑟 to the linked list of ℎ. By the way the rectangle

IDs were generated, it is clear that right(𝑟 ) is larger than or equal to the x-coordinates of the right

edges of the rectangles already in the linked list. The whole scan over 𝐿 finishes in 𝑂 (1 + OUT)
time, and produces the correct output for Problem E .

B Supplementary Proofs for Section 4
We start by presenting two properties underneath the procedures designed in Section 4. These

properties will enable us to construct simpler proofs later.

Proposition B.1. Consider any rectangle 𝑟 taken from 𝑅1, 𝑅2, ..., or 𝑅𝑘−2. Let 𝑟 ′ be the trimmed
rectangle of 𝑟 defined in Section 4.

• If a horizontal segment ℎ ∈ 𝐻 crosses 𝑟 , then ℎ must also cross 𝑟 ′.
• If a vertical segment 𝑣 ∈ 𝑉 crosses 𝑟 , then 𝑣 must also cross 𝑟 ′.

Proof. We will prove only the first bullet due to symmetry. Let us represent ℎ as [𝑥1, 𝑥2] ×𝑦. The
fact of ℎ crossing 𝑟 indicates that [𝑥1, 𝑥2] contains the x-range of 𝑟 . Since the x-range of 𝑟 contains
that of 𝑟 ′, we know that [𝑥1, 𝑥2] must also contain the x-range of 𝑟 ′. To prove that ℎ crosses 𝑟 ′,
we still need to show 𝑦 ∈ [bot(𝑟 ′), top(𝑟 ′)]. Recall that bot(𝑟 ′) is the y-coordinate of the lowest
segment in 𝐻 crossing 𝑟 . This implies 𝑦 ≥ bot(𝑟 ′) because ℎ itself is a segment in 𝐻 crossing 𝑟 .

Analogously, it also holds that 𝑦 ≤ top(𝑟 ′). We can now conclude that ℎ crosses 𝑟 ′. □

Proposition B.2. Consider the sets 𝑅′
1
, 𝑅′

2
, ..., 𝑅′

𝑘−2 defined in (6). Let 𝒕 be any (𝑘 − 2)-tuple in
J (𝑅′

1
, 𝑅′

2
, ..., 𝑅′

𝑘−2). Then, neither d-cross𝐻 (𝒕) nor d-cross𝑉 (𝒕) can be empty.

Proof. Due to symmetry, we will give the proof only for d-cross𝐻 (𝒕) ≠ ∅. Set 𝑟 ′ = bot-guard(𝒕),
and let 𝑟 be the full rectangle of 𝑟 ′. Define ℎ as the lowest segment crossing 𝑟 (note that ℎ definitely

exists because otherwise 𝑟 has no trimmed rectangle, contradicting the definition of 𝑟 ′). We will

show that ℎ ∈ d-cross𝐻 (𝒕), which indicates d-cross𝐻 (𝒕) ≠ ∅. For this purpose, we should explain

why ℎ crosses both 𝐵𝒕 and 𝑟
′
. However, by Proposition B.1, ℎ crossing 𝑟 directly implies ℎ crossing

𝑟 ′. It remains to prove that ℎ crosses 𝐵𝒕 .

By the definitions of 𝑟 ′ and ℎ, the bottom edge of 𝑟 ′ must be contained in ℎ (note that ℎ is one of

the segments used to trim 𝑟 into 𝑟 ′). Because 𝑟 ′ = bot-guard(𝒕), the bottom edge of 𝐵𝒕 is contained

in the bottom edge of 𝑟 ′ and thus also contained in ℎ. This means that ℎ ∩ 𝐵𝒕 ≠ ∅. On the other

hand, the x-range of ℎ must cover that of 𝑟 ′ (because ℎ crosses 𝑟 ′), which in turn must cover that of

𝐵𝒕 (because 𝑟
′
covers 𝐵𝒕 ). Thus, the x-range of ℎ covers that of 𝐵𝒕 . This together with ℎ ∩ 𝐵𝒕 ≠ ∅

tells us that ℎ must cross 𝐵𝒕 . □

We now proceed to elaborate the proofs postponed from Section 4. The order of the subsequent

proofs will not strictly follow the sequence in which they are referenced in Section 4. In particular,
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we will prove Lemma 4.2 before Lemma 4.1, because the claims of the former lemma can be used to

produce a succinct argument for the latter.

Proof of Lemma 4.2. We will prove each statement in turn.

Proof of Statement (1). Take any (𝑘 − 2)-tuple 𝒕 ∈ J (𝑅′
1
, 𝑅′

2
, ..., 𝑅′

𝑘−2). Let 𝑟𝑖 (𝑖 ∈ [𝑘 − 2]) be the full
rectangle of 𝒕 [𝑖]. Fix any ℎ ∈ d-cross𝐻 (𝒕) and any 𝑣 ∈ d-cross𝑉 (𝒕). The segments ℎ and 𝑣 both

cross 𝐵𝒕 , as can be seen directly from the definitions of d-cross𝐻 (𝒕) and d-cross𝑉 (𝒕). Thus, ℎ ∩ 𝑣
is a point in 𝐵𝒕 =

⋂𝑘−2
𝑖=1 𝒕 [𝑖]. As 𝑟𝑖 (𝑖 ∈ [𝑘 − 2]) is the full rectangle of 𝒕 [𝑖], we know that

⋂𝑘−2
𝑖=1 𝑟𝑖

covers 𝐵𝒕 =
⋂𝑘−2

𝑖=1 𝒕 [𝑖]. Hence, point ℎ ∩ 𝑣 falls in ⋂𝑘−2
𝑖=1 𝑟𝑖 , indicating that ℎ ∩ 𝑣 ∩⋂𝑘−2

𝑖=1 𝑟𝑖 ≠ ∅. It
follows that (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) is a result tuple in J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ).
Proof of Statement (2). Take any 𝑘-tuple (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) ∈ J1. By definition of J1, segments ℎ and

𝑣 cross each of the rectangles 𝑟1, ..., 𝑟𝑘−2. By Proposition B.1, segments ℎ and 𝑣 must also cross each

of the trimmed rectangles 𝑟 ′
1
, ..., 𝑟 ′

𝑘−2. Hence, 𝐵𝒕 =
⋂𝑘−2

𝑖=1 𝑟
′
𝑖 is non-empty as it contains the point

ℎ ∩ 𝑣 , which proves the first claim 𝒕 = (𝑟 ′
1
, ..., 𝑟 ′

𝑘−2) ∈ J (𝑅
′
1
, ..., 𝑅′

𝑘−2).
Next, we prove the second claim, i.e., ℎ ∈ d-cross𝐻 (𝒕) and 𝑣 ∈ d-cross𝑉 (𝒕). It suffices to show

only the former due to symmetry. For that purpose, we need to argue that ℎ crosses bot-guard(𝒕)
and 𝐵𝒕 . The first part, ℎ crossing bot-guard(𝒕), is done because as mentioned ℎ crosses each of

𝑟 ′
1
, ..., 𝑟 ′

𝑘−2, and bot-guard(𝒕) is merely one of those rectangles. To prove that ℎ crosses 𝐵𝒕 , first note

that ℎ ∩ 𝐵𝒕 ≠ ∅ because as explained before 𝐵𝒕 contains ℎ ∩ 𝑣 . On the other hand, as bot-guard(𝒕)
covers 𝐵𝒕 , the fact of ℎ crossing bot-guard(𝒕) indicates that the x-range of ℎ contains that of 𝐵𝒕 .

Combining this with ℎ ∩ 𝐵𝒕 ≠ ∅ shows that ℎ crosses 𝐵𝒕 .

Proof of Statement (3). We will prove∑︁
𝒕∈J(𝑅′

1
,...,𝑅′

𝑘−2 )
|d-cross𝐻 (𝒕) | · |d-cross𝑉 (𝒕) | ≤ OUT (17)

which implies statement (3) because, by Proposition B.2, |d-cross𝐻 (𝒕) | ≥ 1 and |d-cross𝑉 (𝒕) | ≥ 1

for any 𝒕 in the summation. Our proof resorts to the algorithm generate-J ∗ given in Section 4.

This algorithm adds to J ∗ as many tuples as calculated by the left hand side of (17). By statement

(1) of Lemma 4.2, the J ∗ produced must be a subset of J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ), whereas OUT =

|J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ) |. This establishes the inequality in (17).

Proof of Lemma 4.1.Our proof again resorts to the algorithm generate-J ∗ in Section 4. By Proposi-
tion B.2, both d-cross𝐻 (𝒕) and d-cross𝑉 (𝒕) are non-empty for any 𝒕 ∈ J (𝑅′

1
, ..., 𝑅′

𝑘−2). Therefore, in
processing this 𝒕 , the algorithm adds at least one new tuple toJ ∗. Hence, |J (𝑅′

1
, ..., 𝑅′

𝑘−2) | ≤ |J
∗ | ≤

|J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ) | = OUT, where the second inequality used Statement (1) of Lemma 4.2.

Computing 𝑹∗
1, 𝑹

∗
2, ..., 𝑹

∗
𝒌−2. We consider, w.l.o.g., that each rectangle in the input 𝑅1 ∪ ... ∪ 𝑅𝑘−2

is given a distinct integer ID in [𝑛]. This allows us to create an array of size 𝑛 and allocate an array

cell to each 𝑟 ∈ 𝑅1 ∪ ... ∪ 𝑅𝑘−2. The cell can be accessed by the ID of 𝑟 in constant time.

To compute 𝑅∗
1
, 𝑅∗

2
, ..., 𝑅∗

𝑘−2, we start by deriving maxtop(𝑟 ′) for each rectangle 𝑟 ′ in 𝑅′
1
∪ ...∪𝑅′

𝑘−2.
For this purpose, first initialize maxtop(𝑟 ′) = −∞ for each such 𝑟 ′. Recall that 𝑟 ′ is the trimmed

rectangle of some rectangle 𝑟 in 𝑅1 ∪ ... ∪ 𝑅𝑘−2. We store maxtop(𝑟 ′) in the array cell allocated to

𝑟 . Then, we scan J (𝑅′
1
, ..., 𝑅′

𝑘−2). For each tuple 𝒕 therein, use 𝑂 (𝑘) time to identify the rectangle

𝑟 ′ = bot-guard(𝒕), and then update in constant time maxtop(𝑟 ′) to the maximum between its

current value and top(𝑟 ′). The scan requires 𝑂 (𝑛 + 𝑘 · OUT) time.

Finally, for each 𝑖 ∈ [𝑘 − 2], we construct 𝑅∗𝑖 by collecting the top-sliced rectangle (see definition

in (9)) of every rectangle 𝑟 ′ ∈ 𝑅′𝑖 with maxtop(𝑟 ′) ≠ −∞. This step takes 𝑂 ( |𝑅′𝑖 |) time for each

𝑖 ∈ [𝑘 − 2], or 𝑂 (𝑛) total time for all 𝑖 .
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Proof of Lemma 4.3. We will prove each statement in turn.

Proof of Statement (1).We will map each 𝑟 ∗ of
⋃𝑘−2

𝑖=1 𝑅
∗
𝑖 to a unique tuple 𝒕 in J (𝑅′

1
, ..., 𝑅′

𝑘−2) satis-
fying cross𝐻 (𝑟 ∗) ⊆ d-cross𝐻 (𝒕). The mapping allows us to derive∑︁

𝑖∈[𝑘−2]

∑︁
𝑟 ∗∈𝑅∗

𝑖

|cross𝐻 (𝑟 ∗) | ≤
∑︁

𝒕∈J(𝑅′
1
,...,𝑅′

𝑘−2 )
|d-cross𝐻 (𝒕) | ≤ OUT

where the last step used statement (3) of Lemma 4.2.

The mapping is as follows. Consider an arbitrary 𝑟 ∗ ∈ ⋃𝑘−2
𝑖=1 𝑅

∗
𝑖 . Recall that 𝑟

∗
is the top-sliced of

some rectangle 𝑟 ′. Specifically, if 𝑟 ′ = [𝑥1, 𝑥2] × [𝑦1, 𝑦2], then 𝑟 ∗ = [𝑥1, 𝑥2] × [𝑦1,maxtop(𝑟 ′)]. By the
definition of maxtop(𝑟 ′) in (9), there exists a tuple 𝒕 ∈ J (𝑅′

1
, ..., 𝑅′

𝑘−2) satisfying bot-guard(𝒕) = 𝑟
′

and maxtop(𝑟 ′) = top(𝐵𝒕 ). We map 𝑟 ∗ to 𝒕 .
Next, we will prove

Claim 1: If a segment ℎ ∈ cross𝐻 (𝑟 ∗), then ℎ ∈ d-cross𝐻 (𝒕).
For this purpose, we need to show that ℎ crosses both bot-guard(𝒕) = 𝑟 ′ and 𝐵𝒕 .
• First, ℎ crosses 𝑟 ′ follows from the facts that (i) ℎ crosses 𝑟 ∗, (ii) 𝑟 ∗ ⊆ 𝑟 ′, and (iii) 𝑟 ∗ and 𝑟 ′

share the same x-range.

• Then, we explain why ℎ crosses 𝐵𝒕 . Because 𝐵𝒕 ⊆ 𝑟 ′ and ℎ crosses 𝑟 ′ (just proved), no
endpoint of ℎ can fall in 𝐵𝒕 . Let us take the y-coordinate 𝑦ℎ of ℎ. We will prove that the point

𝑝 = (left(𝐵𝒕 ), 𝑦ℎ) is on the segment ℎ and is also in 𝐵𝒕 , suggesting ℎ ∩ 𝐵𝒕 ≠ ∅. Once this is
done, we can assert that ℎ crosses 𝐵𝒕 (as no endpoint of ℎ falls in 𝐵𝒕 ).

– As bot-guard(𝒕) = 𝑟 ′, the bottom edge of 𝐵𝒕 is contained in 𝑟 ′. Thus, left(𝐵𝒕 ) ∈ [𝑥1, 𝑥2].
The fact of ℎ crossing 𝑟 ∗ tells us that left(ℎ) < 𝑥1 ≤ 𝑥2 < right(ℎ), which leads to

left(𝐵𝒕 ) ∈ [left(ℎ), right(ℎ)], suggesting that 𝑝 ∈ ℎ.
– As bot-guard(𝒕) = 𝑟 ′ and maxtop(𝑟 ′) = top(𝐵𝒕 ), the y-range of 𝐵𝒕 is [𝑦1,maxtop(𝑟 ′)].
Because ℎ ∩ 𝑟 ∗ ≠ ∅ (as ℎ crosses 𝑟 ∗) and [𝑦1,maxtop(𝑟 ′)] is also the y-range of 𝑟 ∗, we know
that 𝑦ℎ ∈ [𝑦1,maxtop(𝑟 ′)], suggesting that 𝑝 ∈ 𝐵𝒕 .

It remains to show that no two distinct rectangles 𝑟 ∗
1
, 𝑟 ∗

2
∈ ⋃𝑘−2

𝑖=1 𝑅
∗
𝑖 can be mapped to the same

tuple in J (𝑅′
1
, ..., 𝑅′

𝑘−2). Assume, on the contrary, that 𝑟 ∗
1
and 𝑟 ∗

2
are mapped to the same tuple

𝒕 ∈ J (𝑅′
1
, ..., 𝑅′

𝑘−2). Suppose that 𝑟
∗
1
(resp., 𝑟 ∗

2
) is the top-sliced rectangle of 𝑟 ′

1
(resp., 𝑟 ′

2
). Under

our mapping, it must be true that 𝑟 ′
1
= 𝑟 ′

2
= bot-guard(𝐵𝒕 ). However, the distinctness of 𝑟 ∗1 and 𝑟 ∗2

requires 𝑟 ′
1
≠ 𝑟 ′

2
, thus giving a contradiction.

Proof of Statement (2). Take any tuple 𝒕 ∈ J (𝑅′
1
, ..., 𝑅′

𝑘−2). Set 𝑟
′ = bot-guard(𝒕), and let 𝑟 ∗ be

the top-sliced rectangle of 𝑟 ′. If we represent 𝑟 ′ as [𝑥1, 𝑥2] × [𝑦1, 𝑦2], then 𝑟 ∗ can be written as

[𝑥1, 𝑥2] × [𝑦1,maxtop(𝑟 ′)].
We will first prove d-cross𝐻 (𝒕) ⊆ cross𝐻 (𝑟 ∗) or equivalently: if a segment ℎ ∈ d-cross𝐻 (𝒕),

then ℎ crosses 𝑟 ∗. To do so, we need to explain why left(ℎ) < 𝑥1 ≤ 𝑥2 < right(ℎ) and 𝑦ℎ ∈ [𝑦1,
maxtop(𝑟 ′)].
• The fact of ℎ ∈ d-cross𝐻 (𝒕) tells us that ℎ crosses bot-guard(𝒕), which is 𝑟 ′. As the x-range
of 𝑟 ′ is [𝑥1, 𝑥2], it must hold true that left(ℎ) < 𝑥1 ≤ 𝑥2 < right(ℎ).
• The fact of ℎ ∈ d-cross𝐻 (𝒕) also tells us that ℎ crosses 𝐵𝒕 . Hence, 𝑦ℎ ∈ [bot(𝐵𝒕 ), top(𝐵𝒕 )].
From 𝑟 ′ = bot-guard(𝒕), we get bot(𝐵𝒕 ) = bot(𝑟 ′) = 𝑦1. By the definition of maxtop(𝑟 ′) in
(8), we know top(𝐵𝒕 ) ≤ maxtop(𝑟 ′). It thus follows that 𝑦ℎ ∈ [𝑦1,maxtop(𝑟 ′)].

Next, assuming that the segments of cross𝐻 (𝑟 ∗) are sorted in ascending order of their y-coordinates,
we will prove that d-cross𝐻 (𝒕) includes a prefix of the sorted order. It suffices to establish the fol-

lowing equivalent claim:
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Claim 2: If a segment ℎ ∈ cross𝐻 (𝑟 ∗) has y-coordinate 𝑦ℎ ≤ top(𝐵𝒕 ), then ℎ
must be in d-cross𝐻 (𝒕).

To prove the above, we must explain why ℎ crosses both 𝑟 ′ and 𝐵𝒕 .

• We first show that ℎ crosses 𝑟 ′, or equivalently: left(ℎ) < 𝑥1 ≤ 𝑥2 < right(ℎ) and𝑦ℎ ∈ [𝑦1, 𝑦2].
These conditions hold true because (i) ℎ crosses 𝑟 ∗ = [𝑥1, 𝑥2] × [𝑦1,maxtop(𝑟 ′)], and (ii) the

definition of a top-sliced rectangle in (9) tells us maxtop(𝑟 ′) ≤ 𝑦2.
• Next we show that ℎ crosses 𝐵𝒕 , or equivalently: left(ℎ) < left(𝐵𝒕 ) ≤ right(𝐵𝒕 ) < right(ℎ)
and 𝑦ℎ ∈ [bot(𝐵𝒕 ), top(𝐵𝒕 )] = [𝑦1, top(𝐵𝒕 )].
– The fact of ℎ crossing 𝑟 ′ tells us left(ℎ) < 𝑥1 ≤ 𝑥2 < right(ℎ). As 𝑟 ′ = bot-guard(𝐵𝒕 ), the
x-range of 𝐵𝒕 must be contained in [𝑥1, 𝑥2]. Thus, left(ℎ) < left(𝐵𝒕 ) ≤ right(𝐵𝒕 ) < right(ℎ).

– The fact ofℎ crossing 𝑟 ∗ also tells us that𝑦ℎ ∈ [𝑦1,maxtop(𝑟 ′)]. Moreover, Claim 2 explicitly

gives us the condition 𝑦ℎ ≤ top(𝐵𝒕 ). It thus follows that 𝑦ℎ ∈ [𝑦1, top(𝐵𝒕 )].

C Supplementary Proofs for Section 5
We start by presenting two properties underneath the procedures designed in Section 5. These

properties will enable us to construct simpler proofs later.

Proposition C.1. Consider any 𝑘-tuple (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) ∈ J2. Define ℎ′ as the trimmed segment
of ℎ. It holds that ℎ ∩ 𝑣 = ℎ′ ∩ 𝑣 .

Proof. Set 𝑝 = ℎ ∩ 𝑣 . As ℎ′ is contained in ℎ, for proving 𝑝 = ℎ′ ∩ 𝑣 , it suffices to explain why 𝑝

is on ℎ′. Let us represent ℎ as [𝑥1, 𝑥2] ×𝑦. Accordingly, the segment ℎ′ can be written as [𝑥1, 𝑥 ′2] ×𝑦
for some 𝑥 ′

2
∈ [𝑥1, 𝑥2]. By the definition of a trimmed segment, (𝑥 ′

2
, 𝑦) is the rightmost point on

ℎ that falls in a left-end covering rectangle of ℎ in 𝑅𝑘−2. As (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) ∈ J2, we know that

𝑟𝑘−2 is a left-end covering rectangle of ℎ, and 𝑟𝑘−2 covers 𝑝 (which is a point on ℎ). Therefore, the

x-coordinate of 𝑝 cannot exceed 𝑥 ′
2
, allowing us to assert that 𝑝 is on ℎ′. □

Proposition C.2. For each tuple 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) (where 𝐻 ′ is defined in (12)), the set
contain𝑅𝑘−2 (𝒕) is non-empty.

Proof. Set ℎ′ = 𝒕 [𝑘 − 2]. By the definition of a trimmed segment, there exists a rectangle

𝑟𝑘−2 ∈ 𝑅𝑘−2 covering both endpoints of ℎ′. Thus, the effective horizontal segment of 𝒕 (defined in

Section 5) — which must be contained in ℎ′ — must also be covered by 𝑟𝑘−2. Hence, contain𝑅𝑘−2 (𝒕)
contains 𝑟𝑘−2 and thus cannot be empty. □

We now proceed to elaborate the proofs postponed from Section 5. The order of the proofs here

will not strictly follow the sequence in which they are referenced in Section 5. In particular, we

will prove Lemma 5.2 before Lemma 5.1, because the claims of the former lemma can be used to

construct a simple argument for the latter.

Proof of Lemma 5.2. We will prove each statement in turn.

Proof of Statement (1). Take any tuple 𝒕 = (𝑟1, ..., 𝑟𝑘−3, ℎ′, 𝑣) ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ). The pointℎ′∩𝑣
is covered by all of 𝑟1, ..., 𝑟𝑘−3. Let ℎ be the full segment of ℎ′. As ℎ contains ℎ′, we have ℎ∩𝑣 = ℎ′∩𝑣 .
Consider any rectangle 𝑟𝑘−2 ∈ contain𝑅𝑘−2 (𝒕). From the definition of contain𝑅𝑘−2 (𝒕), we know

that 𝑟𝑘−2 covers the effective horizontal segment of 𝒕 whose right endpoint is ℎ′∩𝑣 . This means that

ℎ ∩ 𝑣 falls in 𝑟𝑘−2. We now have ℎ ∩ 𝑣 ∩ ⋂𝑘−2
𝑖=1 𝑟𝑖 equals ℎ

′ ∩ 𝑣 and hence is non-empty, meaning

that (𝑟1, ..., 𝑟𝑘−3, 𝑟𝑘−2, ℎ, 𝑣) ∈ J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ).
To show (𝑟1, ..., 𝑟𝑘−3, 𝑟𝑘−2, ℎ, 𝑣) ∈ J2, we still need to explain why 𝑟𝑘−2 covers the left endpoint

of ℎ. This follows immediately from the fact that 𝑟𝑘−2 covers the effective horizontal segment of ℎ′

(which shares the same left endpoint as ℎ).
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Proof of Statement (2). Take any 𝑘-tuple (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) ∈ J2. Set 𝑝 = ℎ ∩ 𝑣 , and define ℎ′ as

the trimmed segment of ℎ. We first argue that the (𝑘 − 1)-tuple 𝒕 = (𝑟1, ..., 𝑟𝑘−3, ℎ′, 𝑣) belongs to
J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ), or equivalently, the point ℎ′ ∩ 𝑣 falls in all of 𝑟1, ..., 𝑟𝑘−3. By Proposition C.1,

ℎ′ ∩ 𝑣 is the same point as 𝑝 . From (𝑟1, ..., 𝑟𝑘−2, ℎ, 𝑣) ∈ J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ), we know that 𝑝 = ℎ ∩ 𝑣
falls in all of 𝑟1, ..., 𝑟𝑘−2. It thus follows that 𝑟1, ..., 𝑟𝑘−3 all cover ℎ

′ ∩ 𝑣 .
Next, we argue that 𝑟𝑘−2 ∈ contain𝑅𝑘−2 (𝒕). Let 𝑝′ be the left endpoint ofℎ. Becauseℎ′∩𝑣 = ℎ∩𝑣 = 𝑝 ,

the effective horizontal segment of 𝒕 is the segment 𝑝′𝑝 . To prove 𝑟𝑘−2 ∈ contain𝑅𝑘−2 (𝒕), we need
to explain why 𝑟𝑘−2 covers segment 𝑝′𝑝 . This is true because:

• 𝑟𝑘−2 covers 𝑝 , as we already know;

• 𝑟𝑘−2 covers 𝑝′, as it is a left-end covering rectangle of ℎ.

Proof of Statement (3).Our proof resorts to the algorithm generate-J2 (see Section 5). This algorithm
adds to J2 exactly ∑︁

𝒕∈J(𝑅1,...,𝑅3,𝐻
′,𝑉 )
|contain𝑅𝑘−2 (𝒕) |

tuples. By statement (2), the J2 produced must be a subset of J (𝑅1, ..., 𝑅𝑘−2, 𝐻,𝑉 ), whose size is
OUT. Therefore, the above expression is at most OUT, as claimed in statement (3).

Proof of Lemma 5.1. Again, we resort to the algorithm generate-J2 . For each tuple 𝒕 ∈ J (𝑅1, ...,
𝑅𝑘−3, 𝐻

′,𝑉 ), we know by Proposition C.2 that contain𝑅𝑘−2 (𝒕) ≠ ∅; thus, the algorithm adds at least

one tuple to J2. Therefore, |J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) | ≤ |J2 | ≤ OUT, where the derivation used the

definition of J2; see (11).
Computing 𝑯 ∗.We assume, w.l.o.g., that each segment in the input 𝐻 is given a distinct integer

ID in [|𝐻 |]. This allows us to create an array of size |𝐻 | < 𝑛 and allocate an array cell to each

ℎ ∈ 𝐻 . The cell can be accessed by the ID of ℎ in constant time.

To compute 𝐻 ∗, we start by deriving minleft(ℎ′) for each segment ℎ′ in 𝐻 ′. For this purpose, first
initialize minleft(ℎ′) = ∞ for each such ℎ′. Recall that ℎ′ is the trimmed segment of some segment

ℎ in 𝐻 . We store minleft(ℎ′) in the array cell allocated to ℎ. Then, we scan J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ).
For each tuple 𝒕 therein, update in constant time minleft(ℎ′) to the minimum between its current

value and the x-coordinate of 𝒕 [𝑘 − 1]. The scan requires 𝑂 (𝑛 + 𝑘 · OUT) time.

Finally, we construct 𝐻 ∗ by collecting the minimal segment (defined in (15)) of every segment

ℎ′ ∈ 𝐻 ′ with minleft(ℎ′) ≠ ∞. This step takes 𝑂 ( |𝐻 ′ |) = 𝑂 (𝑛) time.

Proof of Lemma 5.3. We will prove each statement in turn.

Proof of Statement (1).Wewill map each segmentℎ∗ ∈ 𝐻 ∗ to a unique tuple 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 )
satisfying contain𝑅𝑘−2 (ℎ∗) = contain𝑅𝑘−2 (𝒕). The mapping allows us to derive∑︁

ℎ∗∈𝐻 ∗
|contain𝑅𝑘−2 (ℎ∗) | ≤

∑︁
𝒕∈J(𝑅1,...,𝑅𝑘−3,𝐻 ′,𝑉 )

|contain𝑅𝑘−2 (𝒕) | ≤ OUT

where the last inequality used Statement (3) of Lemma 5.2.

The mapping is as follows. Consider any ℎ∗ ∈ 𝐻 ∗. Recall that ℎ∗ is the minimal segment of some

segment ℎ′ ∈ 𝐻 ′. Specifically, if ℎ′ = [𝑥1, 𝑥2] × 𝑦, then ℎ∗ = [𝑥1,minleft(ℎ′)] × 𝑦. By the definition

of minleft(ℎ′) in (15), there exists a tuple 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ) satisfying 𝒕 [𝑘 − 2] = ℎ′ and
minleft(ℎ′) = 𝑥-coordinate of the vertical segment 𝒕 [𝑘 − 1]. We map ℎ∗ to 𝒕 .

Next, we will prove

Claim 1: a rectangle 𝑟 ∈ contain𝑅𝑘−2 (ℎ∗) if and only if 𝑟 ∈ contain𝑅𝑘−2 (𝒕).
According to the definitions of contain𝑅𝑘−2 (ℎ∗) and contain𝑅𝑘−2 (𝒕) — see (3) and (13), respectively

— it suffices to show that ℎ∗ is the same as the effective horizontal segment of 𝒕 .
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Denote by 𝑥 the x-coordinate of 𝒕 [𝑘 − 1]. Then, the point ℎ′ ∩ 𝑣 can be written as (𝑥,𝑦),
where as mentioned 𝑦 is the y-coordinate of ℎ′. The effective horizontal segment of 𝒕 is there-
fore [𝑥1, 𝑥] × 𝑦. Recall that ℎ∗ = [𝑥1,minleft(ℎ′)] × 𝑦, where (by definition of 𝒕) minleft(ℎ′) =
𝑥-coordinate of 𝒕 [𝑘 − 1] = 𝑥 . Therefore, ℎ∗ is the same as the effective horizontal segment of 𝒕 ,
proving claim 1.

It remains to show that no two distinct ℎ∗
1
, ℎ∗

2
∈ 𝐻 ∗ can be mapped to the same tuple in

J (𝑅1, ..., 𝑅𝑘−3, 𝐻 ′,𝑉 ). Assume, on the contrary, thatℎ∗
1
andℎ∗

2
are bothmapped to 𝒕 ∈ J (𝑅1, ..., 𝑅𝑘−3,

𝐻 ′,𝑉 ). Suppose that ℎ∗
1
(resp., ℎ∗

2
) is the minimal segment of ℎ′

1
(resp., ℎ′

2
). Under our mapping, it

must hold that ℎ′
1
= ℎ′

2
= 𝒕 [𝑘 − 2]. However, the distinctness of ℎ∗

1
and ℎ∗

2
requires ℎ′

1
≠ ℎ′

2
, which

yields a contradiction.

Proof of Statement (2). Take any tuple 𝒕 ∈ J (𝑅′
1
, ..., 𝑅′

𝑘−3, 𝐻
′,𝑉 ). Set ℎ′ = 𝒕 [𝑘 − 2], and define ℎ∗

as the minimal segment of ℎ′. Let us write ℎ′ as [𝑥1, 𝑥2] × 𝑦; accordingly, ℎ∗ can be written as

[𝑥1,minleft(ℎ′)] × 𝑦. Additionally, let 𝑥 be the x-coordinate of the vertical segment 𝒕 [𝑘 − 1]. The
effective horizontal segment of 𝒕 can then be represented as [𝑥1, 𝑥] × 𝑦.
We will first prove contain𝑅𝑘−2 (𝒕) ⊆ contain𝑅𝑘−2 (ℎ∗), or equivalently, every rectangle 𝑟𝑘−2 ∈

contain𝑅𝑘−2 (𝒕) coversℎ∗. It suffices to show thatℎ∗ is contained in the effective horizontal segment of

𝒕 , or equivalently, minleft(ℎ′) ≤ 𝑥 . By the definition in (14), minleft(ℎ′) is theminimum x-coordinate

of 𝒕 ′ [𝑘 − 1] among all 𝒕 ′ ∈ J (𝑅′
1
, ..., 𝑅′

𝑘−3, 𝐻
′,𝑉 ) with 𝒕 ′ [𝑘 − 2] = ℎ′, Thus, minleft(ℎ′) ≤ 𝑥 holds

because 𝒕 is merely one such 𝒕 ′.
Next, assuming that the rectangles 𝑟 ∈ contain𝑅𝑘−2 (ℎ∗) have been sorted in descending order

of right(𝑟 ), we will prove that contain𝑅𝑘−2 (𝒕) includes a prefix of the sorted order. It suffices to

establish the following equivalent claim:

Claim 2: If a rectangle 𝑟 ∈ contain𝑅𝑘−2 (ℎ∗) satisfies the condition that

right(𝑟 ) ≥ 𝑥 (where 𝑥 is the x-coordinate of 𝒕 [𝑘 − 1]), then 𝑟 ∈ contain𝑅𝑘−2 (𝒕).
To prove the above, wemust explainwhy the rectangle 𝑟 in the claim contains the effective horizontal

segment of 𝒕 . Since 𝑟 ∈ contain𝑅𝑘−2 (ℎ∗), we know that 𝑟 covers the segment [𝑥1,minleft(ℎ′)] × 𝑦.
Hence, [𝑥1,minleft(ℎ′)] ⊆ [left(𝑟 ), right(𝑟 )] and 𝑦 ∈ [bot(𝑟 ), top(𝑟 )]. Using also the condition

right(𝑟 ) ≥ 𝑥 given in claim 2, we can derive [𝑥1, 𝑥] ⊆ [left(𝑟 ), right(𝑟 )]. Therefore, [𝑥1, 𝑥] × 𝑦, i.e.
the effective horizontal segment of 𝒕 , is contained in 𝑟 , establishing claim 2.

D Proof of Theorem 1.2
As mentioned in Section 1.1, 2-SJ can be solved in 𝐹2 (𝑛,OUT) = 𝑂 (𝑛 log𝑛 + OUT) time using a

comparison-based algorithm. By Theorem 1.1, in general, a comparison-based (𝑘 − 1)-SJ algo-
rithm with runtime 𝐹𝑘−1 (𝑛,OUT) spawns a comparison-based 𝑘-SJ algorithm whose running time

𝐹𝑘 (𝑛,OUT) obeys (1). Specifically, for 𝑘 ≥ 3, there is a constant 𝑐 ≥ 2 such that

𝐹𝑘 (𝑛,OUT)
≤ 𝑐 · 𝑘3 ·

(
𝐹𝑘−1 (𝑛,OUT) + 𝑛 log𝑛 + 𝑘 · OUT

)
= 𝑐2 · 𝑘3 (𝑘 − 1)3 · (𝐹𝑘−2 (𝑛,OUT) + 𝑛 log𝑛 + 𝑘 · OUT) + 𝑐 · 𝑘3 · (𝑛 log𝑛 + 𝑘 · OUT)
< 𝑐2 · 𝑘3 (𝑘 − 1)3 · 𝐹𝑘−2 (𝑛,OUT) + (𝑐 + 𝑐2) · 𝑘3 (𝑘 − 1)3 · (𝑛 log𝑛 + 𝑘 · OUT)
≤ 𝑐3 · 𝑘3 (𝑘 − 1)3 (𝑘 − 2)3 · 𝐹𝑘−3 (𝑛,OUT) + (𝑐 + 𝑐2 + 𝑐3) · 𝑘3 (𝑘 − 1)3 (𝑘 − 2)3 · (𝑛 log𝑛 + 𝑘 · OUT)

≤ ... ≤ 𝑐𝑘−2 · (𝑘!)3 · 𝐹2 (𝑛,OUT) +
( 𝑘−2∑︁
𝑖=1

𝑐𝑖
)
· (𝑘!)3 · (𝑛 log𝑛 + 𝑘 · OUT)

≤ 2𝑐𝑘−1 · (𝑘!)3 ·𝑂 (𝑛 log𝑛 + 𝑘 · OUT)

which completes the proof of Theorem 1.2.
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E Hardness of 3-SJ in 3D Space
An axis-parallel rectangle in 3D space has the form 𝑟 = [𝑥1, 𝑥2] × [𝑦1, 𝑦2] × [𝑧1, 𝑧2]. We will refer to

[𝑥1, 𝑥2] as the x-projection of 𝑟 , and define its y- and z-projections analogously.
In the 3D 3-SJ problem, the input comprises three sets of axis-parallel rectangles in R3

: 𝑅1, 𝑅2,

and 𝑅3. The goal is to report all 3-tuples (𝑟1, 𝑟2, 𝑟3) ∈ 𝑅1 × 𝑅2 × 𝑅3 such that 𝑟1 ∩ 𝑟2 ∩ 𝑟3 ≠ ∅. Denote
by J (𝑅1, 𝑅2, 𝑅3) the set of those 3-tuples. Define the input size as 𝑛 = |𝑅1 | + |𝑅2 | + |𝑅3 | and the

output size as OUT = |J (𝑅1, 𝑅2, 𝑅3) |.
In the triangle detection problem, we are given an undirected graph 𝐺 = (𝑉 , 𝐸) and need to

determine whether𝐺 has a triangle (a.k.a. 3-clique). Set𝑚 = |𝐸 |. We consider that𝐺 has no isolated

vertices (namely, vertices with degree 0), and therefore |𝑉 | ≤ 2𝑚.

The subsequent discussion will show that if the 3D 3-SJ problem can be solved in 𝑂 ((𝑛 +OUT) ·
polylog𝑛) time, then the triangle detection problem can be solved in 𝑂 (𝑚 polylog𝑚) time. This

would be truly surprising because as mentioned in Section 1.2 the state-of-the-art algorithm for

triangle detection runs in 𝑂 (𝑚1.41) time [2]. Thus, in the absence of such a breakthrough, no

𝑂 ((𝑛 + OUT) · polylog𝑛) time algorithms can exist for the 3D 3-SJ problem.

Given a graph 𝐺 = (𝑉 , 𝐸) for triangle detection, we will construct an instance of the 3D 3-SJ

problem with input size 3𝑚. W.l.o.g., let us assume that each vertex of 𝑉 is represented as a unique

integer in [|𝑉 |]. Initialize 𝑅1, 𝑅2, and 𝑅3 as 3 empty sets of rectangles. For each edge {𝑢, 𝑣} ∈ 𝐸
where 𝑢 < 𝑣 , we add

• a rectangle (−∞,∞) × [𝑢,𝑢] × [𝑣, 𝑣] to 𝑅1;
• a rectangle [𝑣, 𝑣] × (−∞,∞) × [𝑢,𝑢] to 𝑅2;
• a rectangle [𝑣, 𝑣] × [𝑢,𝑢] × (−∞,∞) to 𝑅3.

Note that every rectangle in 𝑅1 (resp., 𝑅2 and 𝑅3) has (−∞,∞) as the x- (resp., y- and z-) projection.

The construction has the property that 𝐺 has a triangle if and only if J (𝑅1, 𝑅2, 𝑅3) ≠ ∅. We can

prove this with the following argument.

• Suppose that 𝐺 has a triangle with vertices 𝑢, 𝑣 , and 𝑤 such that 𝑢 < 𝑣 < 𝑤 . Then, by our

construction, 𝑟1 = (−∞,∞) × [𝑢,𝑢] × [𝑣, 𝑣] ∈ 𝑅1, 𝑟2 = [𝑤,𝑤] × (−∞,∞) × [𝑣, 𝑣] ∈ 𝑅2, and
𝑟3 = [𝑤,𝑤] × [𝑢,𝑢] × (−∞,∞) ∈ 𝑟3. It is clear that (𝑟1, 𝑟2, 𝑟3) is a result tuple in J (𝑅1, 𝑅2, 𝑅3).
• Conversely, consider that J (𝑅1, 𝑅2, 𝑅3) is non-empty. Consider an arbitrary result tuple

(𝑟1, 𝑟2, 𝑟3) ∈ J (𝑅1, 𝑅2, 𝑅3). Assume, w.l.o.g., that 𝑟1 = (−∞,∞) × [𝑢,𝑢] × [𝑣, 𝑣], where 𝑢 < 𝑣 .

Because the z-projection of 𝑟2 must match that of 𝑟1, we assert that 𝑟2 must have the form

[𝑤,𝑤] × (−∞,∞) × [𝑣, 𝑣] for some 𝑤 > 𝑣 . Because the x-projection of 𝑟3 must match that

of 𝑟2 and the y-projection of 𝑟3 must match that of 𝑟1, it follows that 𝑟3 must have the form

[𝑤,𝑤] × [𝑢,𝑢] × (−∞,∞). This means that the edges {𝑢, 𝑣}, {𝑣,𝑤}, and {𝑢,𝑤} must all exist

in 𝐺 , and thus form a triangle.

Now, assume that there exists an algorithm A capable of solving the 3D 3-SJ problem in 𝑂 ((𝑛 +
OUT) · polylog𝑛) time. For OUT = 0, this algorithm must perform at most 𝑐 · 𝑛 polylog𝑛 steps

when the input size is 𝑛. We run A on the 3D 3-SJ instance 𝑅1, 𝑅2, 𝑅3 constructed earlier in a

cost-monitoring manner:

• IfA terminates within 𝑐 · (3𝑚) polylog(3𝑚) steps, we check whether it has output any result

tuple in J (𝑅1, 𝑅2, 𝑅3). If so, a triangle has been found in 𝐺 ; otherwise, we declare that 𝐺 has

no triangles.

• IfA has performed 1 + 𝑐 · (3𝑚) polylog(3𝑚) steps, we manually terminate the algorithm and

declare that J (𝑅1, 𝑅2, 𝑅3) ≠ ∅, meaning that 𝐺 must have at least one triangle.

The above strategy thus settles the triangle detection problem in 𝑂 (𝑚 polylog𝑚) time.
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