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This paper studies communication-oblivious algorithms under the massively parallel computation (MPC) model.

The communication patterns of these algorithms follow a distribution dependent only on the definition of

the underlying problem, the problem size 𝑁 , and the number 𝑝 of machines, but not on the specific input

elements. Our objective is to understand when obliviousness necessitates — or does not necessitate — heavier

communication compared to the traditional MPC model that does not enforce such a requirement.

The first part of our investigation focuses on single-round algorithms. We prove that skew-free hashing,
a fundamental problem solvable with load 𝑂̃ (𝑁 /𝑝) (with high probability or w.h.p. for short) under the

traditional model, demands a load of nearly Ω(𝑁 ) under communication obliviousness. Intriguingly, we show

that hashing can still be applied in an oblivious manner to process any natural join in one round with a load

complexity matching that of the best traditional MPC algorithm. The second part of our investigation studies

compilation methods that convert a traditional MPC algorithm A into a communication-oblivious counterpart.

Given an A that operates within ℓ = poly(𝑝) rounds and entails a load at most 𝐿 = Ω(𝑝 log 𝑝) w.h.p., we
can produce w.h.p. a communication-oblivious version running in 2ℓ rounds with a load at most (1 + 𝛿)𝐿,
where 𝛿 > 0 can be an arbitrarily small constant. Additionally, we establish hardness results indicating that

the theoretical guarantees of our compilation can no longer be significantly improved.
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1 Introduction
In the digital era, cloud computing has emerged as a pivotal part of modern business infrastructure,

reshaping the way organizations store, access, and manage data. A growing number of sectors —

ranging from healthcare and finance to academia and entertainment — are harnessing the power

of cloud services to enhance operational efficiency, effectuate cost savings, and fuel innovation.

However, the migration of data from local systems to remote servers operated by third-party service

providers has ushered in new privacy concerns. The crux of these concerns is the fact that sensitive

data, once stored on these servers, is no longer fully under the user’s control. Instead, it falls within

the stewardship of service providers, thereby raising critical questions about data privacy.
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Two primary topics come to the forefront in the discourse on privacy control in cloud computing:

• Confidential computing: This aims to mitigate two forms of privacy leakage that may occur

on an individual server. First, rogue administrators could exploit their positions to inspect

sensitive data within the server. Second, even if encryption hinders direct data accesses,

administrators could still infer valuable information from the memory access patterns that

the computation generates.

• Oblivious communication: This aims to prevent another two forms of privacy leakage that

may occur during communication across different servers. First, malicious network managers

might scrutinize the data flowing through the gateways. Second, even if the network traffic

is encrypted, these managers could still deduce sensitive information from the statistics

extracted from the communication.

Robust solutions to confidential computing are already in place, including systems that employ

fully homomorphic encryption (e.g., IBM’s HE4Cloud) or hardware-based trusted execution envi-
ronments (nowadays offered by the leading cloud-computing platforms). When integrated with

oblivious RAM techniques [5, 11, 20, 21], these systems safeguard sensitive information throughout

the entire lifecycle of data at an individual server: whether stored in the disk, transiting through

the memory hierarchy, or in use by the CPU.

In this work, we will concentrate on oblivious communication, with the aim to understand

how much communication is needed to enforce this requirement. To pave the foundation of

our discussion, next we will formalize the concept of oblivious communication and the class of

algorithms to be studied.

1.1 Communication-Oblivious MPC
Let us first clarify some math conventions used in this paper. Given positive integers 𝑥 and 𝑦, let(
𝑥
𝑦

)
be the number of ways to choose 𝑦 elements from a set of size 𝑥 ; specially, if 𝑦 > 𝑥 , define

(
𝑥
𝑦

)
= 0. For an integer 𝑥 ≥ 1, the notation [𝑥] denotes the set {1, 2, ..., 𝑥}. We use double-curly braces

to represent multi-sets, e.g., {{1, 1, 1, 2, 2, 3}} is a multi-set with 6 elements. Sets 𝑆1, 𝑆2, ..., 𝑆𝑛 (𝑛 ≥ 2)

form a partition of set 𝑆 if 𝑆𝑖 ∩ 𝑆 𝑗 = ∅ for any distinct 𝑖, 𝑗 ∈ [𝑛] and ⋃𝑛
𝑖=1 𝑆𝑖 = 𝑆 . Every log(·) has

base 2. The notation poly(𝑛) denotes the class of functions polynomial in 𝑛.

The MPC Model. Our analysis will be under the massively parallel computation (MPC) model,

which has been extensively adopted in the database literature, as will be surveyed in Section 1.3.

In this model, 𝑝 share-nothing machines are connected via a high-speed network. Initially,

the input data is distributed across the 𝑝 machines. An algorithm then executes in rounds, each
consisting of two phases: in the first phase, every machine performs computation on its local

data, while in the second phase, the machines exchange messages via the network. Importantly,

if machine 𝑖 ∈ [𝑝] plans to send machine 𝑗 ∈ [𝑝] a message (in the second phase), machine 𝑖

must prepare the message in the first phase. This restriction prevents machine 𝑖 from, for example,

deciding what to send based on the messages received during the second phase. The load of a round
is the maximum number of words communicated (sent and received combined) by one machine in

that round. The algorithm’s performance is measured by two metrics: (i) the total number of rounds

executed, and (ii) the maximum load of all rounds, which is termed as the algorithm’s (overall) load.
Randomization is modeled by introducing a sequence of random bits, which is agreed upon by

all machines. Such an agreement can be reached before receiving the input and therefore does

not require communication during the algorithm’s execution. In the first phase of a round, each

machine can guide its local computation according to the random-bit sequence. When a random
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event is said to occur “with high probability” (w.h.p.), we require that the probability must be at

least 1 − 1/𝑝𝑐 where 𝑐 can be an arbitrarily large constant chosen before seeing the input data.

The size 𝑁 of the input data is commonly assumed to be significantly larger than 𝑝 , which

typically means 𝑁 ≥ 𝑝𝑐 where 𝑐 is a constant dependent on the problem studied.

Communication-Oblivious Algorithms. We will now formalize the notion of communication

obliviousness, building upon a similar formulation in [10].

We consider the existence of a countably infinite set called the input domain, whose concrete
definition depends on the problem we aim to study. The members of the input domain are referred

to as inputs. Every input I is associated with an integer size. While the meaning of input size

depends on the underlying problem, it should always be proportional to the number of words

needed to describe I. Denote by I (𝑁 ) the collection of all possible inputs with the same size 𝑁 .

Fix an input size 𝑁 ≥ 𝑝 (where 𝑝 is the number of machines in the MPC model) and an algorithm

A. We demand that every input of size𝑁 should be presented toA with exactly the same number of

words stored on each machine initially. For this purpose, we assume a function𝑊 (𝑁 ) (determined

by the underlying problem) mapping 𝑁 to a positive integer such that𝑊 (𝑁 ) = Θ(𝑁 /𝑝). For each
input I ∈ I (𝑁 ), we call Σ = (Σ1, Σ2, ..., Σ𝑝 ) a legal initial state of I if

• each Σ𝑖 (𝑖 ∈ [𝑝]) is a sequence of𝑊 (𝑁 ) words;
• the 𝑝 sequences Σ1, Σ2, ..., and Σ𝑝 collectively describe the input I with no ambiguity;

• placing (an encrypted version of) Σ𝑖 on machine 𝑖 for each 𝑖 ∈ [𝑝] is permitted by the

underlying problem.

Each input I can have multiple legal initial states, and the algorithm A must be designed to

work with all of them. Specifically, when the algorithm is executed on a legal initial state Σ =

(Σ1, Σ2, ..., Σ𝑝 ), machine 𝑖 ∈ [𝑝] sees Σ𝑖 in the first phase in the first round (of A). From there, the

algorithm then performs the necessary computation and communication to solve the problem with

strong performance guarantees.

Suppose that, when given a legal initial state Σ, an MPC algorithm A finishes in ℓ rounds where,

in the 𝑟 -th round (𝑟 ∈ [ℓ]), machine 𝑖 ∈ [𝑝] sends message M𝑟 [𝑖, 𝑗] to machine 𝑗 ∈ [𝑝] (for 𝑖 = 𝑗 ,

M𝑟 [𝑖, 𝑗] is an empty message). Define L𝑟 as the 𝑝 × 𝑝 matrix where L𝑟 [𝑖, 𝑗] equals the length of

M𝑟 [𝑖, 𝑗], measured in the number of words (L𝑟 [𝑖, 𝑗] is always 0 for 𝑖 = 𝑗 ). Every message M𝑟 [𝑖, 𝑗] is
encrypted such that an adversary, who observes the communication, can only use the sequence

𝜋 = (L1, L2, ..., Lℓ )

to infer about I. We refer to 𝜋 as the communication pattern of A when executed on Σ. For a
randomized algorithm A, the sequence 𝜋 may be a random variable.

The algorithm A is communication oblivious under the input size 𝑁 if its communication pattern

𝜋 follows exactly the same probabilistic distribution, regardless of the choice of I ∈ I (𝑁 ) and
the legal initial state of I. We say that A is a single-round algorithm if ℓ is never greater than 1,

regardless of the choice of I and Σ; otherwise, A is a multi-round algorithm.

1.2 Our Contributions
Our primary objective is to discern the inherent connections between the traditional MPC model

and its communication-oblivious counterpart. The core is to understand when obliviousness would

necessitate a provably higher load than the traditional, non-oblivious, MPC model. Next, we provide

an overview of our findings.
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Single-Round Hashing. Our first contribution is a hardness result proving that hashing — a build-

ing brick deployed by many MPC algorithms (in both theory and practice) — is significantly more

expensive under communication obliviousness as far as single-round algorithms are concerned.

To pinpoint the source of hardness, we introduce a problem named skew-free gathering. Fix
arbitrary integers 𝑁 and 𝑝 such that 𝑁 is a multiple of 𝑝 , and 𝑝 ≥ 𝑡 where 𝑡 is a constant integer at

least 2. The input collection I (𝑁 ) has only a single input I: this is a set of 𝑁 elements, each of

which — denoted as 𝑒 — is associated with an integer key(𝑒), referred to as the key of 𝑒 . The set of

keys fulfills two conditions:

• There is one special key that is possessed by 𝑡 · (𝑁 /𝑝) elements, called the special elements.
• Every other key is possessed by exactly one element.

A legal initial state (Σ1, ..., Σ𝑝 ) of I meets the following conditions:

• Σ1, ..., Σ𝑝 are word sequences with the same length, which is Θ(𝑁 /𝑝);
• each Σ𝑖 (𝑖 ∈ [𝑝]) describes a subset I𝑖 ⊆ I of size 𝑁 /𝑝;
• I1,I2, ...,I𝑝 form a partition of I;
• there are 𝑡 different machine ids 𝑗 ∈ [𝑝] such that I𝑗 contains nothing but 𝑁 /𝑝 special

elements (i.e., the 𝑡 · 𝑁 /𝑝 special elements are placed on 𝑡 distinct machines).

The goal of an algorithm is to move all the special elements to one (arbitrary) machine.

In the conventional MPC model, the problem can be solved trivially with load 𝑂 (𝑁 /𝑝): simply

ask the 𝑡 machines where the special elements are initially stored to send their data to a common

machine. In contrast, we prove that if a single-round communication-oblivious algorithm is required

to succeed with probability at least 2/3, its load must be at least Ω(𝑁 /𝑝1/𝑡 ) with a constant

probability. As 𝑡 increases, the load approaches Ω(𝑁 ) up to a factor sub-polynomial in 𝑝 . More

precisely, there does not exist any constant 𝜖 > 0 such that one can design an algorithm promising

a load of𝑂 (𝑁 /𝑝𝜖 ) with a constant probability for all constant 𝑡 . We also show that the lower bound

Ω(𝑁 /𝑝1/𝑡 ) can be matched by a deterministic algorithm.

Let us now turn to skew-free hashing, where each input in I (𝑁 ) is a set I of 𝑁 elements, each

with an integer key. It is guaranteed that every possible key is possessed by 𝑂 (𝑁 /𝑝) elements of I
(hence, skew “free”). Initially, each machine receives at most ⌈𝑁 /𝑝⌉ elements

1
. The goal is to move

all the elements of the same key to a common machine. In the traditional MPC model, the problem

can be settled (with hashing) in one round using load 𝑂̃ (𝑁 /𝑝) w.h.p. [8, 9], where 𝑂̃ (·) hides a
polylog𝑝 factor. As skew-free hashing generalizes skew-free gathering

2
, our lower bound on the

latter indicates that oblivious skew-free hashing demands a load of nearly Ω(𝑁 ), thus creating a
huge separation from the traditional model.

Single-Round Joins. The hardness of skew-free hashing under communication obliviousness is

alarming because the existing one-round join algorithms [3, 4, 7–9, 19] in the (conventional) MPC

model depend on a method named
3 Share [4, 9], which is closely relevant to hashing. Because the

community has nearly resolved the one-round communication complexity of (natural) joins [19], it

would be a huge pity if the topic had to be re-opened in the name of obliviousness.

Our second contribution is to show that, fortunately, joins’ single-round communication com-

plexities are not affected by obliviousness! To pave the way for a formal discussion, let us first

formalize the join problem. Fix an arbitrary integer 𝑁 ≥ 1. Let att be a sufficiently large finite set,

where each element is called an attribute. Consider a non-empty set X ⊆ att of attributes. A tuple

1
Rephrased in our framework, each Σ𝑖 describes a subset I𝑖 ⊆ I with | I𝑖 | ≤ ⌈𝑁 /𝑝 ⌉. Pad dummy words to Σ𝑖 (if necessary)
so that all Σ1, ..., Σ𝑝 have the same length, which is Θ(𝑁 /𝑝 ) . The 𝑝 subsets I1, ..., I𝑝 form a partition of I.
2
Skew-free gathering has the extra constraint that all the elements except for the special ones need to have distinct keys.

3
Also known as the hyper-cube method.
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over X is a function 𝒖 : X → [𝑁 ]. For any non-empty subset Y ⊆ X, we define the projection of 𝒖
ontoY, denoted as 𝒖 [Y], as the tuple 𝒗 overY that satisfies 𝒗 (𝑌 ) = 𝒖 (𝑌 ) for every attribute𝑌 ∈ Y.

A relation 𝑅 is a set of tuples over the same setZ of attributes; we refer toZ as the schema of 𝑅
and represent it as schema(𝑅). A join is a set Q of at least two relations such that

∑
𝑅∈Q |𝑅 | = 𝑁 ;

the integer 𝑁 will be referred as the join’s input size. Define schema(Q) = ⋃
𝑅∈Q schema(𝑅). The

result of Q is a relation over schema(Q), formalized as:

Join(Q) = {tuple 𝒖 over schema(Q) | ∀𝑅 ∈ Q : 𝒖 [schema(𝑅)] ∈ 𝑅}.
The schema graph of Q is the hypergraph G = (V, E) where

V = schema(Q) and E = {{schema(𝑅) | 𝑅 ∈ Q}}.
Note that E is a multi-set because some relations in Q may have the same schema. Focusing on

“data complexity”, we consider only joins whose schema graphs have constant sizes.

Next, we formalize join computation under communication obliviousness. Fix a hypergraph

G = (V, E) and an integer 𝑁 that is a multiple of 𝑝 and satisfies 𝑁 ≥ 𝑝3. Let us define the class of

(G, 𝑁 )-joins as the set of joins that have schema graph G and input size 𝑁 . The input collection

I (𝑁 ) comprises all the (G, 𝑁 )-joins. Consider now an arbitrary input I of I (𝑁 ), that is, I is a

(G, 𝑁 )-join Q. A legal initial state (Σ1, ..., Σ𝑝 ) of I meets the following conditions:

• Σ1, ..., Σ𝑝 are word sequences with the same length, which is 𝑂 (𝑁 /𝑝 + 𝑝2) = 𝑂 (𝑁 /𝑝);
• each Σ𝑖 (𝑖 ∈ [𝑝]) describes a set I𝑖 of 𝑁 /𝑝 tuples in the relations of Q, plus 𝑂 (𝑝2) so-called
“heavy values” (to be clarified in Section 3);

• I1,I2, ...,I𝑝 form a partition of all the tuples in the relations of Q.

The goal of an algorithm is to output each tuple of Join(Q) on at least one machine.

We show that any (G, 𝑁 )-join Q can be settled — communication obliviously — in a single round

with load 𝑂̃ (𝑁 /𝑝1/𝜓 ) w.h.p. where𝜓 ≥ 1 is the edge quasi-packing number [19] of G; see Appendix A

for the definition of 𝜓 . The load complexity asymptotically matches that of the state-of-the-art

single-round algorithm [19] under the traditional MPC model (that algorithm is not communication

oblivious). Both [19] and our algorithm assume that (i) 𝑁 ≥ 𝑝𝑐 where 𝑐 is a constant dependent

on G, and (ii) the machines are aware of “heavy” values (whose meanings in our context will be

elaborated in Section 3).

Like [19], our algorithm also applies hashing. However, the load 𝑂̃ (𝑁 /𝑝1/𝜓 ) is an intriguing

contrast to our near Ω(𝑁 ) lower bound on skew-free hashing. Our deployment of hashing cir-

cumvents the pitfall of skew-free gathering. Specifically, if a value is “too heavy” in the sense

that it is possessed by Ω(𝑁 /𝑝) tuples, our algorithm will always dissipate those tuples across

different machines, rather than gathering them on a single machine. This feature is not shared by

the algorithm of [19].

Round-Doubling Compilation and Token Passing.Our next contribution is a round compilation
method that translates a traditional MPC algorithm A into the communication-oblivious model

while preserving the number of rounds of A by a factor of 2 and its load by a factor of 1 + 𝛿 for an

arbitrarily small constant 𝛿 > 0. Specifically, if A performs at most ℓ = poly(𝑝) rounds and, w.h.p.,
incurs a load of at most 𝐿, our method yields an oblivious algorithm A′

that computes the same

information as A in 2ℓ rounds with a load (1 + 𝛿)𝐿. Our compilation succeeds w.h.p. as long as

𝐿 = Ω(𝑝 log𝑝), a condition satisfied by nearly all the existing MPC algorithms we are aware of.

We also study how much improvement can still be expected over our compilation method. First,

it is clear from our earlier discussion on skew-free gathering that the blow-up factor 2 in the round

number cannot be improved in general. Specifically, for skew-free gathering, it is easy to achieve load

𝑂 (𝑁 /𝑝) in one round in the traditional MPC model, but under communication obliviousness, every
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single-round algorithm must entail a load of nearly Ω(𝑁 ) with a constant probability. Given the

above, the primary remaining question is whether the condition 𝐿 = Ω(𝑝 log𝑝) can be significantly

relaxed. Our last contribution is to answer the question in the negative by establishing a hardness

result on the following token passing problem.

Fix arbitrary integers 𝑁 and 𝑝 such that 𝑝 ≥ 2 and 𝑁 = 𝑝 · ⌈𝑝1−𝜖⌉, where the constant 𝜖 satisfies

0 < 𝜖 < 1. Define 𝑆 to be a set of 𝑁 elements among which there are 𝑁 /𝑝 = ⌈𝑝1−𝜖⌉ special elements

called tokens. For the token passing problem, the input collection I (𝑁 ) consists of triples of the
form (𝑆, 𝑥,𝑦), where 𝑥 and 𝑦 are distinct integers in [𝑝]; in other words, I (𝑁 ) has 𝑝 (𝑝 − 1) inputs.
Each input I = (𝑆, 𝑥,𝑦) ∈ I (𝑁 ) has only one legal initial state (Σ1, ..., Σ𝑝 ) defined as follows:

• Σ1, ..., Σ𝑝 are word sequences with the same length, which is Θ(𝑁 /𝑝);
• each Σ𝑖 (𝑖 ∈ [𝑝]) describes the values of 𝑥 and 𝑦 and a subset 𝑆𝑖 ⊆ 𝑆 of size 𝑁 /𝑝;
• 𝑆1, 𝑆2, ..., 𝑆𝑝 form a partition of 𝑆 ;

• 𝑆𝑥 contains nothing but tokens (i.e., all the tokens are placed on machine 𝑥 );

• the content of the other subsets 𝑆𝑖 (𝑖 ∈ [𝑝] \ {𝑥}) does not matter, as long as the above

conditions are satisfied.

On the above input, the goal of an algorithm is to move all the tokens to machine 𝑦.4

In the traditional model, the problem can be trivially solved in one round with load 𝐿 = 𝑂 (𝑝1−𝜖 ):
simply ask machine 𝑥 to send all the tokens to machine 𝑦. On the other hand, we prove that, if a

two-round communication oblivious algorithm is required to succeed with probability at least 2/3,

its load must be Ω(𝑝1−𝜖/2) with a constant probability.

The polynomial gap between Ω(𝑝1−𝜖/2) and𝑂 (𝑝1−𝜖 ) indicates that the condition 𝐿 = Ω(𝑝 log𝑝)
of our round-doubling compilation is tight up to a factor sub-polynomial in 𝑝 . For example, suppose

that one could relax the condition to 𝐿 = Ω(𝑝0.99), while still preserving our round blow-up factor

2 and load blow-up factor 1+𝛿 w.h.p.. Then, for the token passing problem with 𝜖 = 0.01, we would

be able to compile the aforementioned trivial one-round algorithm into a communication-oblivious

counterpart that w.h.p. solves the problem in two rounds with a load of 𝑂 (𝑝0.99) w.h.p.. This,
however, contradicts our negative result, which states that the load needs to be Ω(𝑝0.995) with at

least a constant probability.

1.3 Previous Results and Relevance to Ours
Closely related to our work is a compilation method by Chan et al. [10]. Our compilation draws

inspiration from theirs but makes several improvements. First, the approach of [10] was designed

for the “SODA MPC” model [17], which resembles the model in Section 1.1 but does away the

notion of “load”. In that model, each machine is equipped with 𝑠 = Ω(𝑁 /𝑝) words of memory, and

the amount of communication is not a main concern as long as each machine receives no more

than 𝑠 words in each round from all other machines combined. The analysis of [10] was carried

out under the condition of 𝑠 = 𝑁 𝜖
for some constant 𝜖 > 0. When translated into our scenario, the

analysis fails to capture the regime where 𝐿 ≪ 𝑠 . Second, our compilation is substantially simpler,

restores the clarity for the approach underneath [10] in the scenario where 𝐿 = Ω(𝑝 log𝑝), and
explicitly determines the blow-up factors 1+𝛿 and 2 (for preserving the load and number of rounds,

respectively)
5
. Finally, our discussion (through the token passing problem) on the condition that 𝐿

needs to satisfy to enable round-doubling load-preserving compilation is new.

It should be further noted that the study in [10] does not address one-round MPC algorithms.

Through our round compilation method, one can see that a primary distinction between the

4
Unlike skew-free gathering where all the special elements can be moved to an arbitrary machine, here all the tokens must

be sent to machine 𝑦.
5
In [10], these factors were hidden in big-𝑂 .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 214. Publication date: November 2024.



Parallel Communication Obliviousness: One Round and Beyond 214:7

conventional MPC model and its oblivious counterpart lies in the realm of one-round algorithms.

Exploring fundamental problems that can characterize this difference represents an interesting

direction. Our work can be seen as a step in that direction.

Asmentioned, the existing single-round algorithms for join processing [3, 4, 7–9, 19] rely crucially

on the Share method [4, 9]. Given a join Q, Share assigns a hash function ℎ𝑋 (·) to each attribute

𝑋 ∈ schema(Q). For each tuple 𝒖 in a relation 𝑅 ∈ Q, the machine initially storing 𝒖 transmits it to

a set of machines determined by the hash values in {ℎ𝑋 (𝒖 (𝑋 )) | 𝑋 ∈ schema(𝑅)}. Beame et al. [9]

presented a sharp concentration bound on the load of Share when certain skew-free requirements

are satisfied. Their bound is useful to our analysis and will be reviewed in Section 3. Koutris et al.

[19] proved that any one-round MPC algorithm (oblivious or not) solving the join problem must

incur a load of Ω(𝑁 /𝑝1/𝜓 ) with a constant probability, if each machine is aware of only the tuples

in its local storage initially.

There is an extensive body of literature on multi-round MPC algorithms; see [1, 2, 6, 12–16, 18, 22,

25] and the references therein. None of those algorithms was designed to achieve communication

obliviousness, but all of them satisfy the condition 𝐿 = Ω(𝑝 log𝑝) and, therefore, can be made

oblivious by our compilation method.

2 Hardness of Skew-Free Gathering
This section will discuss the skew-free gathering problem defined in Section 1.2 and serves as a

proof of the paper’s first main result:

Theorem 2.1. For the skew-free gathering problem parameterized by 𝑡 , any communication-
oblivious one-round algorithm succeeding with probability at least 2/3 must entail a load of
Ω(𝑁 /𝑝1/𝑡 ) with at least a constant probability.

In Appendix B, we show that the above lower bound Ω(𝑁 /𝑝1/𝑡 ) can be matched deterministically.

We will focus on a subset Φ of legal initial states of the (sole) input I ∈ I (𝑁 ) built as follows.
First, choose a set 𝑍 of distinct integers 𝑧1, 𝑧2, ..., 𝑧𝑡 in [𝑝]; we will refer to 𝑍 as the seed machine
set. Second, divide the 𝑡 · 𝑁 /𝑝 special elements arbitrarily into 𝑡 groups of size 𝑁 /𝑝 , and place one

group on machine 𝑧 𝑗 for each 𝑗 ∈ [𝑡]. Third, divide the other 𝑁 · (1− 𝑡/𝑝) elements of I arbitrarily

into 𝑝 − 𝑡 groups of size 𝑁 /𝑝 , and place one group on machine 𝑖 for each 𝑖 ∈ [𝑝] \𝑍 . This defines a
legal initial state in Φ. As there are

(
𝑝
𝑡

)
ways to choose 𝑍 , the size of Φ is

(
𝑝
𝑡

)
.

We require a one-round algorithm A to be oblivious only on Φ, namely, its communication

pattern follows the same probabilistic distribution when it is executed on each initial state Σ ∈ Φ.
We will argue that the load of A must be Ω(𝑁 /𝑝1/𝑡 ) with at least a constant probability if A
succeeds on every Σ ∈ Φ with probability at least 2/3. This is sufficient for validating Theorem 2.1.

Conditional Expected Load. As A executes in one round, its communication pattern can be

fully characterized by a single 𝑝 × 𝑝 matrix L where L[𝑖, 𝑗] (𝑖, 𝑗 ∈ [𝑝]) is the length of the message

𝑀 [𝑖, 𝑗] that machine 𝑖 sends to machine 𝑗 . The load of A can now be calculated as

load (L) =
𝑝

max

𝑖=1

( 𝑝∑︁
𝑗=1

L[𝑖, 𝑗] + L[ 𝑗, 𝑖]
)
. (1)

When A is randomized, the M[𝑖, 𝑗] of all 𝑖, 𝑗 ∈ [𝑝] are random variables, and hence so are L and

load (L). Our objective is to prove that Pr[load (L) = Ω(𝑁 /𝑝1/𝑡 )] is at least a constant.
By communication obliviousness, the distribution of L is the same for all the initial states in Φ.

Define L as the set of 𝑝 × 𝑝 matrices Λ satisfying
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• Pr[L = Λ] > 0, namely, A exhibits the pattern L = Λ with a non-zero probability;

• max
𝑝

𝑖=1

∑𝑝

𝑗=1
Λ[𝑖, 𝑗] ≤ 𝑁 /𝑝1/𝑡 and max

𝑝

𝑖=1

∑𝑝

𝑗=1
Λ[ 𝑗, 𝑖] ≤ 𝑁 /𝑝1/𝑡 .

When L equals a matrix Λ as described above, every machine sends at most 𝑁 /𝑝1/𝑡 words and
receives at most 𝑁 /𝑝1/𝑡 words. The subsequent discussion will assume

Pr[L ∈ L] ≥ 1/2. (2)

Note that whenever L ∉ L, somemachine communicates at least𝑁 /𝑝1/𝑡 words and hence load (L) ≥
𝑁 /𝑝1/𝑡 . Thus, Pr[L ∉ L] ≥ 1/2 immediately gives Pr[load (L) ≥ 𝑁 /𝑝1/𝑡 ] ≥ 1/2, thereby verifying

the claim in Theorem 2.1.

We will aim to validate the following inequality:

E[load (L) | L ∈ L] ≥ 𝑐 · 𝑁 /𝑝1/𝑡 (3)

for some constant 0 < 𝑐 < 1. The inequality implies
6

Pr[load (L) ≥ (𝑐/2) · 𝑁 /𝑝1/𝑡 | L ∈ L] ≥ 𝑐/4. (4)

Combining (2) and (4) yields Pr[load (L) ≥ 𝑐
2
𝑁 /𝑝1/𝑡 ] ≥ 𝑐

4
· 1

2
= 𝑐/8, thus establishing Theorem 2.1.

Heavy Senders. Suppose that the algorithm A exhibits a pattern L = Λ ∈ L. Given a machine

𝑖 ∈ [𝑝], we call machine 𝑗 ∈ [𝑝] \ {𝑖} a heavy sender for machine 𝑖 under Λ if Λ[ 𝑗, 𝑖] ≥ 𝑁 /𝑝 , namely,

machine 𝑗 sends at least 𝑁 /𝑝 words to machine 𝑖 . Define

𝐻 (Λ, 𝑖) = number of heavy senders for machine 𝑖 under Λ. (5)

It is easy to see that

𝐻 (Λ, 𝑖) ≤ 𝑝1−1/𝑡 (6)

because otherwise machine 𝑖 would receive more than
𝑁
𝑝
𝑝1−1/𝑡 = 𝑁

𝑝1/𝑡 words, contradicting Λ ∈ L.

Our analysis will focus on heavy senders. We will argue that at least one machine 𝑖 ∈ [𝑝] satisfies∑︁
Λ∈L

Pr[L = Λ] · 𝐻 (Λ, 𝑖) = Ω(𝑝1−1/𝑡 ). (7)

As load (Λ) ≥ (𝑁 /𝑝) · 𝐻 (Λ, 𝑖), the above leads to∑︁
Λ∈L

Pr[L = Λ] · load (Λ) ≥ 𝑁

𝑝

∑︁
Λ∈L

Pr[L = Λ] · 𝐻 (Λ, 𝑖) = Ω
(𝑁
𝑝

· 𝑝1−1/𝑡
)
= Ω(𝑁 /𝑝1/𝑡 ). (8)

This will prove (3) because

E[load (L) | L ∈ L] =
1

Pr[L ∈ L]
∑︁
Λ∈L

Pr[L = Λ] · load (Λ)

which is at least (8).

Two Types of Legal Initial States. The rest of the section will focus on proving the correctness of

(7). Earlier we have identified a set Φ of

(
𝑝
𝑡

)
legal initial states, each characterized by a seed machine

set 𝑍 = {𝑧1, ..., 𝑧𝑡 }; for convenience, we will use 𝑍 to denote the corresponding legal initial state

when no ambiguity can arise. Now, fix any legal initial state 𝑍 . The algorithm A succeeds on 𝑍 if

and only if at least one of the following occurs:

• machines 𝑧1, 𝑧2, ..., 𝑧𝑡 all send their special elements to a machine 𝑘 ∈ [𝑝] \ 𝑍 ;
6
For every L ∈ L, it holds that load (L) ≤ 2

𝑁

𝑝1/𝑡
. If Pr[load (L) ≥ 𝑐

2

𝑁

𝑝1/𝑡
| L ∈ L] < 𝑐

4
, then Pr[load (L) < 𝑐

2

𝑁

𝑝1/𝑡
| L ∈

L] > 1 − 𝑐
4
. Hence, E[load (L) | L ∈ L] < 2𝑁

𝑝1/𝑡
𝑐
4
+ 𝑐

2

𝑁

𝑝1/𝑡
(1 − 𝑐

4
) < 𝑐𝑁 /𝑝1/𝑡 , contradicting (3).
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• there is some 𝑗 ∈ [𝑡] such that machine 𝑧 𝑗 receives all the special elements from every other

machine in 𝑍 .

Echoing the above, given any 𝑍 and any matrix Λ ∈ L, we define

• 𝑋 (𝑍,Λ) as an indicator variable, which equals 1 if there exists some 𝑘 ∈ [𝑝] \ 𝑍 such that

Λ[𝑧 𝑗 , 𝑘] ≥ 𝑁 /𝑝 for every 𝑗 ∈ [𝑡], or 0 otherwise;
• 𝑌 (𝑍,Λ) as an indicator variable, which equals 1 if there exists some 𝑗 ∈ [𝑡] such that

Λ[𝑧𝑘 , 𝑧 𝑗 ] ≥ 𝑁 /𝑝 for every 𝑘 ∈ [𝑡] \ { 𝑗}, or 0 otherwise.
When exhibiting a pattern L = 𝚲 ∈ L, the algorithm A succeeds on 𝑍 only if

𝑋 (𝑍,Λ) + 𝑌 (𝑍,Λ) ≥ 1.

We declare: ∑︁
Λ∈L

Pr[L = Λ] · (𝑋 (𝑍,Λ) + 𝑌 (𝑍,Λ)) ≥ 1/6. (9)

To see why, notice that if the above did not hold, then A would have probability less than 1/6
succeeding on 𝑍 when L ∈ L. Even if A always succeeds on 𝑍 when L ∉ L, the overall success

probability on 𝑍 would still be less than 1/6 + Pr[L ∉ L], which is less than 2/3 because of (2). This

violates the requirement that A must succeed with probability at least 2/3 on 𝑍 .

We will refer to a legal initiate state 𝑍 as

• an X-state if
∑

Λ∈L Pr[L = Λ] · 𝑋 (𝑍,Λ) ≥ 1/12, or
• a Y-state if

∑
Λ∈L Pr[L = Λ] · 𝑌 (𝑍,Λ) ≥ 1/12.

Note that 𝑍 must be classified as at least one of the two types because of (9). Thus, if X (resp.,

Y ) represents the set of all X- (resp., Y-) states, we have |X | + |Y | ≥ |Φ| =
(
𝑝
𝑡

)
. The next lemma

relates each type of states to heavy-sender machines.

Lemma 2.2. For any Λ ∈ L, it holds that∑︁
𝑍 ∈X

𝑋 (𝑍,Λ) ≤
∑︁
𝑖∈[𝑝 ]

(
𝐻 (Λ, 𝑖)

𝑡

)
(10)

∑︁
𝑍 ∈Y

𝑌 (𝑍,Λ) ≤
∑︁
𝑖∈[𝑝 ]

(
𝐻 (Λ, 𝑖)
𝑡 − 1

)
. (11)

The reader is reminded that

(
𝑥
𝑦

)
equals 0 if 𝑥 < 𝑦. We will prove the first inequality here and the

second one in Appendix C.

Proof of (10). Our proof adopts a counting argument. Initially, create an empty set 𝑆𝑖 for each

𝑖 ∈ [𝑝]. Process each 𝑍 = {𝑧1, ..., 𝑧𝑡 } ∈ X as follows. If 𝑋 (𝑍,Λ) = 0, do nothing. Otherwise, under

the communication pattern L = 𝚲, there is at least one machine 𝑘 ∈ [𝑝] \ 𝑍 that receives 𝑁 /𝑝
special elements from machine 𝑧 𝑗 for all 𝑗 ∈ [𝑡]. Thus, machines 𝑧1, 𝑧2, ..., 𝑧𝑡 are heavy senders for

machine 𝑘 under Λ. We add 𝑍 to 𝑆𝑘 . From the perspective of machine 𝑘 , the set 𝑍 represents a

possible way to choose 𝑡 machines from its 𝐻 (Λ, 𝑘) heavy senders (under Λ). Since all the seed
machine sets are different (hence, all the “𝑍 ” in X are different), all the members of 𝑆𝑘 are distinct.

After all the sets 𝑍 ∈ X have been processed, the left hand side of (10) is bounded by

∑
𝑖∈[𝑝 ] |𝑆𝑖 |.

On the other hand, for each machine 𝑖 ∈ [𝑝], the size |𝑆𝑖 | cannot exceed the total number of ways

of choosing 𝑡 machines from the 𝐻 (Λ, 𝑖) heavy senders for machine 𝑖 (under Λ). Inequality (10)

now follows. □
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The remainder of the argument proceeds differently depending on the number of 𝑋 -states.

At Least 1

2

(
𝑝
𝑡

)
X-States. Namely, |X | ≥ 1

2

(
𝑝
𝑡

)
, with which we apply the X-state definition to obtain∑︁

𝑍 ∈X

∑︁
Λ∈L

Pr[L = Λ] · 𝑋 (𝑍,Λ) ≥ 1

24

(
𝑝

𝑡

)
. (12)

We can now derive∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑖∈[𝑝 ]

𝐻 (Λ, 𝑖)𝑡 ≥
∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑖∈[𝑝 ]

(
𝐻 (Λ, 𝑖)

𝑡

)
(by (10)) ≥

∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑍 ∈X

𝑋 (𝑍,Λ)

=
∑︁
Λ∈L

∑︁
𝑍 ∈X

Pr[L = Λ] · 𝑋 (𝑍,Λ) ≥ 1

24

(
𝑝

𝑡

)
(13)

where the last step used (12). This gives:∑︁
Λ∈L

Pr[L = Λ]
∑︁
𝑖∈[𝑝 ]

𝐻 (Λ, 𝑖) =
∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑖∈[𝑝 ]

𝐻 (Λ, 𝑖)𝑡
𝐻 (Λ, 𝑖)𝑡−1

(by (6)) ≥
∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑖∈[𝑝 ]

𝐻 (Λ, 𝑖)𝑡

𝑝
(𝑡−1)2

𝑡

(by (13)) ≥ 1

24

(
𝑝

𝑡

)
/𝑝

(𝑡−1)2
𝑡 = Ω

( 𝑝𝑡

𝑝 (𝑡−1)2/𝑡

)
= Ω

(
𝑝2−1/𝑡

)
.

Therefore, at least one 𝑖 ∈ [𝑝] satisfies ∑Λ∈L Pr[L = Λ] · 𝐻 (Λ, 𝑖) = Ω(𝑝2−1/𝑡/𝑝) = Ω(𝑝1−1/𝑡 ), as
claimed in (7).

At most 1

2

(
𝑝
𝑡

)
X-States. Because |X | + |Y | ≥

(
𝑝
𝑡

)
, the fact |X | ≤

(
𝑝
𝑡

)
/2 indicates |Y | ≥

(
𝑝
𝑡

)
/2.

Following a derivation similar to the previous case, we can show that at least one 𝑖 ∈ [𝑝] satisfies
(7). With the details presented in Appendix C, we now conclude the proof of Theorem 2.1.

3 Single-Round Oblivious Joins
We now turn our attention to the join problem defined in Section 1.2. Let Q be the (G, 𝑁 )-join to

be computed. Given a value 𝑥 ∈ [𝑁 ], we call it
• heavy if at least 𝑁 /𝑝2 tuples of a relation have value 𝑥 under an attribute, or formally,

∃𝑅 ∈ Q, 𝑋 ∈ schema(𝑅) s.t. 𝑅 has at least 𝑁 /𝑝2 tuples 𝒖 with 𝒖 (𝑋 ) = 𝑥 ;

• or light, otherwise.

There can be𝑂 (𝑝2) heavy values in total. We assume that each machine knows all the heavy values.

Rephrased in our communication-obliviousness framework, in all legal initial states (Σ1, ..., Σ𝑝 ),
each Σ𝑖 (𝑖 ∈ [𝑝]) contains 𝑂 (𝑝2) words describing the heavy values (as mentioned in Section 1.2).

We will establish our second main result:

Theorem 3.1. Consider any constant-size hypergraph G = (V, E). Let 𝑁 be a multiple of 𝑝
satisfying 𝑁 ≥ 𝑝1+2𝛼+1/𝜓 where 𝛼 = max𝑒∈E |𝑒 | (called the arity of G) and 𝜓 is the edge quasi-
packing number of G (see Appendix A). There is a communication oblivious algorithm that, given
any (G, 𝑁 )-join Q, operates in a single round with load 𝑂̃ (𝑁 /𝑝1/𝜓 ) and computes Join(Q) w.h.p..
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Our result can be compared to an algorithm of [19], which has load 𝑂̃ (𝑁 /𝑝1/𝜓 ) w.h.p. but is not
communication oblivious. That algorithm also assumes that each machine knows all the heavy

values, although their frequency threshold of a heavy value is 𝑁 /𝑝 , rather than 𝑁 /𝑝2 in our context.

The rest of the section serves as a proof of Theorem 3.1. We will first review the Share method

[4, 9] in Section 3.1. After that, we will present our join algorithm in Sections 3.2 and 3.3.

3.1 The Share Method
Let𝑅∗

be a relationwith schema(𝑅∗) = {𝑋1, 𝑋2, ..., 𝑋𝑟 }, and𝑀 be an integer satisfying |𝑅∗ | ≤ 𝑀 ≤ 𝑁 .

Recall that, as defined in Section 1.2, each tuple 𝒖 ∈ 𝑅∗
is a function from schema(𝑅∗) to [𝑁 ]. For

any Y ⊆ schema(𝑅∗), define:
degY (𝑅∗) = max

tuple 𝒖 over Y

��{𝒗 ∈ 𝑅∗ | 𝒗 [Y] = 𝒖}
��

(14)

that is, the maximum number of tuples in 𝑅∗
having the same projection on Y. Suppose that we

assign to each attribute 𝑋𝑖 , 𝑖 ∈ [𝑟 ], a positive integer 𝑠𝑖 — called the share of 𝑋𝑖 — satisfying the

following skew-free condition:

for any non-empty Y ⊆ schema(𝑅∗), degY (𝑅∗) ≤ 𝑀∏
𝑖∈[𝑟 ]:𝑋𝑖 ∈Y 𝑠𝑖

. (15)

Fix any constant 𝛼 ≥ 𝑟 . For each 𝑖 ∈ [𝑟 ], choose independently a perfectly random hash function
ℎ𝑖 : [𝛼𝑁 ] → [𝑠𝑖 ], that is, ℎ𝑖 is uniformly sampled from the (𝑠𝑖 )𝛼𝑁 possible functions from [𝛼𝑁 ] to
[𝑠𝑖 ]. Given 𝒃 = (𝑏1, 𝑏2, ..., 𝑏𝑟 ) ∈ [𝑠1] × [𝑠2] × ... × [𝑠𝑟 ], define

bin 𝒃 = {𝒖 ∈ 𝑅∗ | ∀𝑖 ∈ [𝑟 ], ℎ𝑖 (𝒖 (𝑋𝑖 )) = 𝑏𝑖 }. (16)

Note that there are in total

∏𝑟
𝑖=1 𝑠𝑖 bins. The concentration bound below is due to Beame et al. [9]:

Lemma 3.2. For any constant 𝑐 > 0, it holds with probability at least 1 − (1/𝑝∗)𝑐 that the sizes of
all the bins are bounded by 𝑂 ((log𝑝∗/log log𝑝∗)𝑟 ·𝑀/𝑝∗), where 𝑝∗ = ∏𝑟

𝑖=1 𝑠𝑖 . The constant in the
big-𝑂 depends on 𝑐 .

Strictly speaking, Beame et al. [9] proved the lemma only for the case where𝑀 = |𝑅∗ |, which is

not enough for our purposes. Fortunately, it is not difficult to extend their result to any𝑀 ∈ [|𝑅∗ |, 𝑁 ],
as shown in Appendix D.

3.2 A Non-Oblivious Join Algorithm
This subsection will present an algorithm, which is not communication oblivious, to compute the

result of a (G, 𝑁 )-join Q with load 𝑂̃ (𝑁 /𝑝1/𝜓 ) w.h.p.. The reason for describing this non-oblivious

version is to allow the reader to draw a direct comparison with the solution of [19]. As will be

clear, a key new idea is to apply the concentration bound of Lemma 3.2 locally on each machine,

rather than globally on the entire join (as was done in [19]). This in turn requires us to decrease

the “heavy threshold” from 𝑁 /𝑝 to 𝑁 /𝑝2. Our algorithm ensures a new property (to be given in

Lemma 3.3), which makes it easy to make the algorithm communication oblivious, as we do in the

next subsection.

Given a relation 𝑅 ∈ Q and machine id 𝑖 ∈ [𝑝], let 𝑅 (𝑖 )
be the set of tuples of 𝑅 that are initially

stored on machine 𝑖 . Define 𝑅 (𝑖,heavy)
as the set of tuples 𝒖 ∈ 𝑅 (𝑖 )

using only heavy values (i.e.,

every attribute value of 𝒖 is heavy). We know |𝑅 (𝑖,heavy) | = 𝑂 (𝑝2𝛼 ) because 𝑅 (𝑖 )
has at most 𝛼

attributes (recall that 𝛼 is the arity of the hypergraph G), and there can be 𝑂 (𝑝2) heavy values.

Before proceeding, the reader should be familiarized with the content of Appendix A, in particular,

the notions of “residual graph” and “fractional vertex cover”. Next, let us take an arbitrary proper
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subsetZ ⊂ V and identify an optimal fractional vertex cover𝑤Z :V \ Z → [0, 1] of the residual
graph GZ = (VZ, EZ). Define

𝜏 (GZ) =
∑︁

𝑋 ∈V\Z
𝑤Z (𝑋 ). (17)

To each attribute 𝑋 ∈ V , we assign a positive integer 𝑠𝑋 (Z) — the share of 𝑋 for𝐺Z — as follows:

• if 𝑋 ∈ Z, then 𝑠𝑋 (Z) = 1;

• otherwise, 𝑠𝑋 (Z) =
⌊
𝑝𝑤Z (𝑋 )/𝜏 (GZ ) ⌋

.

For any non-empty subset Y ⊆ V , we show in Appendix D:∏
𝑋 ∈Y

𝑠𝑋 (Z) ≤ 𝑝. (18)

Furthermore, for any relation 𝑅 ∈ Q such that schema(𝑅) \ Z ≠ ∅, we show again in Appendix D:∏
𝑋 ∈schema(𝑅)

𝑠𝑋 (Z) = Ω
(
𝑝1/𝜏 (𝐺Z )

)
. (19)

Henceforth, set

𝑀 = 𝑁 /𝑝. (20)

For each 𝑖 ∈ [𝑝] and each relation 𝑅 ∈ Q satisfying schema(𝑅) \ Z ≠ ∅, we define 𝑅 (𝑖,Z)
as the set

of tuples 𝒖 ∈ 𝑅 (𝑖 )
such that

• 𝒖 (𝑋 ) is heavy for every attribute 𝑋 ∈ schema(𝑅) ∩ Z;

• 𝒖 (𝑋 ) is light for every attribute 𝑋 ∉ schema(𝑅) ∩ Z.

For any non-empty subset Y ⊆ schema(𝑅), let us observe

degY (𝑅 (𝑖,Z) ) ≤ 𝑀∏
𝑋 ∈Y 𝑠𝑋 (Z) . (21)

Indeed, ifY ⊆ Z, then

∏
𝑋 ∈Y 𝑠𝑋 (Z) = 1 in which case (21) holds because degY (𝑅 (𝑖,Z) ) ≤ |𝑅 (𝑖 ) | ≤

𝑁 /𝑝 = 𝑀 . Otherwise, identify an arbitrary attribute 𝑋 ∈ Y \ Z. Then, we can derive

degY (𝑅 (𝑖,Z) ) ≤ deg{𝑋 } (𝑅 (𝑖,Z) ) ≤ deg{𝑋 } (𝑅 (𝑖 ) ) ≤ 𝑁 /𝑝2

where the last inequality is due to the definition of light value. By (18), 𝑁 /𝑝2 ≤ 𝑀/∏𝑋 ∈Y 𝑠𝑋 (Z),
from which the correctness of (21) follows. We can therefore conclude that 𝑅 (𝑖,Z)

fulfills the

skew-free condition prescribed in (15).

We now elaborate on the join algorithm. Before receiving the (G, 𝑁 )-join Q, we perform some

preprocessing for each proper subsetZ ⊂ V . First, obtain 𝑠𝑋 (Z) — the share of 𝑋 for 𝐺Z — for

every attribute 𝑋 ∈ V as explained earlier. For each 𝑋 ∈ V , independently pick a perfectly random

hash function ℎZ,𝑋 : [𝛼𝑁 ] → [𝑠𝑋 (Z)] (recall that 𝛼 is the arity of G). Store a copy of all these

functions on every machine. The cartesian product of

>
𝑋 ∈V [𝑠𝑋 (Z)] has a size of ∏𝑋 ∈V 𝑠𝑋 (Z),

which is at most 𝑝 (see (18)). Each element in the cartesian product can be regarded as a tuple

𝒃Z , where 𝒃Z (𝑋 ) is an integer in [𝑠𝑋 (Z)] for each 𝑋 ∈ V . We assign a distinct machine to each

possible 𝒃Z lexicographically: machine 𝑖 ∈ [𝑝] is assigned to the 𝒃Z that ranks, in lexicographic

order, the 𝑖-th among all the elements of

>
𝑋 ∈V [𝑠𝑋 (Z)]. Note that some machines (precisely,

𝑝 −∏
𝑋 ∈V 𝑠𝑋 (Z) machines) are not assigned to any cartesian product elements.

After the (G, 𝑁 )-join Q has been given, each machine — say the one with id 𝑖 ∈ [𝑝] — carries

out the following steps in parallel:

• S1: Broadcast 𝑅 (𝑖,heavy)
.
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• S2: For each proper subset Z ⊂ V and every relation 𝑅 ∈ Q with schema(𝑅) \ Z ≠

∅, the machine examines every tuple 𝒖 ∈ 𝑅 (𝑖,Z)
. For each attribute 𝑋 ∈ schema(𝑅), the

machine computes the hash value ℎZ,𝑋 (𝒖 (𝑋 )). Then, it sends 𝒖 to every machine 𝒃Z ∈>
𝑋 ∈V [𝑠𝑋 (Z)] satisfying the condition that 𝒃Z (𝑋 ) = ℎZ,𝑋 (𝒖 (𝑋 )) for every𝑋 ∈ schema(𝑅).

The above steps require one round of communication. Then, every machine joins all the tuples

received. To prove correctness, consider any tuple 𝒖 ∈ Join(Q). If 𝒖 uses a heavy value on every

attribute, it is produced by all machines due to step S1. Otherwise, suppose that 𝒖 uses heavy values

only on those attributes in some Z ⊂ V . Then, due to step S2, it must be produced at the machine

corresponding to the element 𝒃Z ∈ >
𝑋 ∈V [𝑠𝑋 (Z)] where 𝒃Z (𝑋 ) = ℎZ,𝑋 (𝒖 (𝑋 )) for all 𝑋 ∈ V .

We will prove that the load incurred is 𝑂 (𝑝2𝛼+1) + 𝑂̃ (𝑁 /𝑝1/𝜓 ) w.h.p., which is 𝑂̃ (𝑁 /𝑝1/𝜓 ) for
𝑁 ≥ 𝑝1+2𝛼+1/𝜓 . Clearly, step S1 entails load 𝑂 (𝑝2𝛼+1). Next, we will show that, for any particular

Z ⊂ V , S2 generates a load of 𝑂̃ (𝑁 /𝑝1/𝜏 (GZ ) ) w.h.p., where 𝜏 (GZ) is given in (17). It will then

follow that the overall load of S2 is 𝑂̃ (𝑁 /𝑝1/𝜓 ) because𝜓 equals the maximum 𝜏 (GZ) of allZ ⊂ V
(see (26) in Appendix A) and V has a constant number of subsets.

The lemma below characterizes the behavior of step S2.

Lemma 3.3. Consider an arbitrary proper subsetZ ⊂ V and an arbitrary relation 𝑅 ∈ Q satisfying
schema(𝑅) \ Z ≠ ∅. The following statement holds w.h.p.: for all distinct machine ids 𝑖, 𝑗 ∈ [𝑝],
machine 𝑖 sends 𝑂̃ (𝑀/𝑝1/𝜏 (GZ ) ) tuples in 𝑅 (𝑖,Z) to machine 𝑗 in step S2.

Proof. As explained previously in (21), relation 𝑅 (𝑖,Z)
satisfies the skew-free condition (21)

with respect to the shares {𝑠𝑋 (Z) | 𝑋 ∈ V}. Set 𝑝∗ = ∏
𝑋 ∈schema(𝑅) 𝑠𝑋 (Z). As |𝑅 (𝑖,Z) | ≤ 𝑀 ≤ 𝑁 ,

Lemma 3.2 asserts that the following event occurs w.h.p.:

𝑂̃ (𝑀/𝑝∗) tuples 𝒖 ∈ 𝑅 (𝑖,Z)
are “hashed” to each element 𝒃 ∈ >

𝑋 ∈schema(𝑅) [𝑠𝑋 (Z)];
specifically, 𝒖 is hashed to 𝒃 if 𝒃 (𝑋 ) = ℎZ,𝑋 (𝒖 (𝑋 )) for all 𝑋 ∈ schema(𝑅).

Under the above event, 𝑂̃ (𝑀/𝑝∗) tuples 𝒖 ∈ 𝑅 (𝑖,Z)
are hashed to each element 𝒃Z ∈ >

𝑋 ∈V [𝑠𝑋 (Z)],
i.e., such a tuple 𝒖 satisfies 𝒃Z (𝑋 ) = ℎZ,𝑋 (𝒖 (𝑋 )) for all 𝑋 ∈ schema(𝑅). Hence, if the machine 𝑗

stated in the lemma is assigned to an element in

>
𝑋 ∈V [𝑠𝑋 (Z)], then machine 𝑖 sends 𝑂̃ (𝑀/𝑝∗)

tuples of 𝑅 (𝑖,Z)
to machine 𝑗 ; otherwise, machine 𝑖 sends no tuple of 𝑅 (𝑖,Z)

to machine 𝑗 .

The lemma now follows from 𝑝∗ = Ω(𝑝1/𝜏 (GZ ) ) (see (19)). □

As Q has 𝑂 (1) relations, Lemma 3.3 indicates that every machine sends and receives 𝑂̃ (𝑝 ·
𝑀/𝑝1/𝜏 (GZ ) ) = 𝑂̃ (𝑁 /𝑝1/𝜏 (GZ ) ) words in step S2 w.h.p. when processing the subset Z.

Remark. Lemma 3.3 is a feature of our algorithm that is not shared by the algorithm of [19], but is

crucial for turning the algorithm into an oblivious counterpart, as discussed next.

3.3 Making the Algorithm Oblivious
Our algorithm in Section 3.2 enjoys a simple communication pattern. It can be modified into a

communication-oblivious version by padding enough dummy words to make the length of each

message consistent with the “worst” case.

Let us start with step S1, where machine 𝑖 ∈ [𝑝] transmits the same message, which contains

𝑅 (𝑖,heavy)
for each 𝑅 ∈ Q, to every other machine. This message can have a maximum length of

lenheavy = 𝑂 (𝑝2𝛼 ) words. Whenever this message is shorter than lenheavy , expand it with dummy

words into length lenheavy .
In step S2, for each proper subsetZ ⊂ V , machine 𝑖 ∈ [𝑝] transmits a possibly different message

to each other machine 𝑗 ∈ [𝑝], whose length is bounded by an integer lenZ = 𝑂̃ (𝑀/𝑝1/𝜏 (GZ ) )
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w.h.p. (Lemma 3.3). Whenever this message is shorter than lenZ — including an empty message

— expand it with dummy words into length lenZ . However, it is possible for the message to be

actually longer than lenZ (this happens when the high-probability event in Lemma 3.3 does not

occur). In that scenario, machine 𝑖 (arbitrarily) trims the message at the length of lenZ and sends

the trimmed message to machine 𝑗 anyway; when this happens, we say that the algorithm errs.
In the above modified algorithm, every machine sends precisely lenheavy +

∑
Z⊂V lenZ words to

every other machine. It therefore exhibits a deterministic communication pattern for all (G, 𝑁 )-joins
— this is true regardless of whether the algorithm errs. The load is always 𝑝 · (lenheavy+

∑
Z⊂V lenZ),

which is 𝑂̃ (𝑁 /𝑝1/𝜓 ) as analyzed in the previous subsection. The algorithm computes the join result

correctly if it does not err (an adversary cannot tell whether the algorithm has erred because

everything is encrypted). Due to Lemma 3.3, by choosing constants appropriately, we can reduce

the probability that the algorithm errs to at most 1/𝑝𝑐 for an arbitrarily large constant 𝑐 . This

completes the proof of Theorem 3.1.

4 Two-Round Compilation
This section will focus on multi-round MPC algorithms in the communication-oblivious model.

Our first main contribution is a compilation method that establishes the following theorem:

Theorem 4.1. Fix an arbitrary constant 𝛿 satisfying 0 < 𝛿 < 1. Let A be an algorithm under the
traditional MPC model that operates within ℓ = poly(𝑝) rounds and entails a load at most 𝐿 w.h.p..
If 𝐿 = Ω(𝑝 log𝑝) where the hidden constant depends on 𝛿 , there is a communication-oblivious
algorithm that performs 2ℓ rounds, requires a load at most (1 + 𝛿)𝐿, and computes the same
information as A on every machine w.h.p..

As explained in Section 1.2, the round blow-up factor 2 in the above theorem is the best possible,

regardless of the constant 𝛿 . Our second main contribution in this section is to show that the

condition 𝐿 = Ω(𝑝 log𝑝) can no longer be relaxed significantly. This is achieved with the following

theorem that establishes the hardness of the token passing problem. The reason why this hardness

implies the near-tightness of the condition 𝐿 = Ω(𝑝 log𝑝) has been explained in Section 1.2.

Theorem 4.2. Fix any constant 𝜖 satisfying 0 < 𝜖 < 1. For the token-passing problem (defined in
Section 1.2) parameterized by 𝜖 , any communication-oblivious two-round algorithm succeeding
with probability at least 2/3 must demand a load of Ω(𝑝1−𝜖/2) with at least a constant probability.

We will present the algorithmic procedure of our compilation method in the rest of the section,

but defer its analysis to Appendix E. The proof of Theorem 4.2 is provided in Appendix F.

Message Routing. To prove Theorem 4.1, we will tackle a message routing problem defined as

follows. Suppose that, for each pair of 𝑖, 𝑗 ∈ [𝑝], machine 𝑖 needs to send a message M[𝑖, 𝑗] to
machine 𝑗 (if 𝑖 = 𝑗 , then M[𝑖, 𝑗] is an empty message). Denote by L[𝑖, 𝑗] the length of M[𝑖, 𝑗] in the

number of words. For each 𝑖 ∈ [𝑝], we have∑︁
𝑗∈[𝑝 ]

L[𝑖, 𝑗] + L[ 𝑗, 𝑖] ≤ 𝐿 (22)

namely, every machine sends and receives no more than 𝐿 words in total. We want to design a

communication-oblivious algorithm Aroute with all the requirements below:

• It runs in two rounds.
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• For distinct machines 𝑖, 𝑗 ∈ [𝑝], machine 𝑖 sends (precisely) 𝐿′ words to machine 𝑗 in each

round, where 𝐿′ ≤ (1 + 𝛿)𝐿/𝑝 .
• W.h.p., all the messages in M are successfully delivered at the end of the second round.

Equipped with Aroute , we can prove Theorem 4.1 as follows. Recall (from Section 1.1) that each

round of A runs in two phases where in the first phase each machine prepares the messages to

be sent out in the second phase. We treat the second phase as an instance of the message routing

problem and apply Aroute to deliver the messages. W.h.p., at the end of Aroute, every machine

acquires all the information that it would have obtained at the second phase of A, and can thus

perform the local computation as demanded byA. BecauseA always terminates within ℓ = poly(𝑝)
rounds, our compilation succeeds on all its rounds w.h.p..

Our Algorithm. Set 𝛿 ′ = ⌈16/𝛿⌉. We chop each message M[𝑖, 𝑗] into segments, each of which has

𝛿 ′ words — if the last segment is shorter than 𝛿 ′ words, expand it with dummy words to make its

length 𝛿 ′. The number of segments is ⌈L[𝑖, 𝑗]/𝛿 ′⌉. Each segment, referred to as a packet henceforth,
is augmented with three fields: (i) sender, i.e., the value 𝑖 (sender machine id), (ii) recipient, i.e., the
value 𝑗 (recipient machine id), and (iii) sequence number, i.e., the 𝑡-th packet of M[𝑖, 𝑗] has sequence
number 𝑡 . Packets may arrive at machine 𝑗 in an arbitrary order; the sender and sequence-number

fields allow the packets to be put back into the original sequence in M[𝑖, 𝑗]. Every packet is thus

𝛿 ′ + 3 words in length.

Denote by 𝑃𝑖 the set of packets obtained from M[𝑖, 1], M[𝑖, 2], ..., M[𝑖, 𝑝] combined. Let |𝑃𝑖 | be
the number of those packets. Then

|𝑃𝑖 | ≤
𝑝∑︁
𝑗=1

(
1 + L[𝑖, 𝑗]

𝛿 ′

)
≤ 𝑝 + 𝐿

𝛿 ′
. (23)

where the last inequality used (22). Set

𝜆 =

⌈(
1 + 𝐿

𝛿 ′𝑝

) (
1 + 𝛿

2

)⌉
. (24)

In the first round, each machine — say machine 𝑖 ∈ [𝑝] — in parallel carries out the steps below:

• To each packet in 𝑃𝑖 , assign a relay machine chosen from [𝑝] uniformly at random. Let 𝑃𝑖 ( 𝑗)
be the set of packets in 𝑃𝑖 assigned to the same relay machine 𝑗 ∈ [𝑝]. We use |𝑃𝑖 ( 𝑗) | to
represent the number of packets in 𝑃𝑖 ( 𝑗).

• For each 𝑗 ∈ [𝑝], if |𝑃𝑖 ( 𝑗) | < 𝜆, add enough dummy packets to 𝑃𝑖 ( 𝑗) to make the number

of packets therein exactly 𝜆. If |𝑃𝑖 ( 𝑗) | > 𝜆, discard (arbitrarily) some packets from 𝑃𝑖 ( 𝑗) to
shrink |𝑃𝑖 ( 𝑗) | to 𝜆; however, in this case, we say that the algorithm errs.

• For each 𝑗 ∈ [𝑝], send 𝑃𝑖 ( 𝑗) to machine 𝑗 (of course, for 𝑗 = 𝑖 , “sending” 𝑃𝑖 ( 𝑗) requires no
communication).

For each 𝑖 ∈ [𝑝], define
𝑃∗
𝑖 = ∪𝑗∈[𝑝 ]𝑃 𝑗 (𝑖)

namely, the set of all packets to be “relayed” by machine 𝑖 . These packets are transmitted to machine

𝑖 in the first round. Machine 𝑖 sorts the packets by recipient field. For each 𝑗 ∈ [𝑝], let 𝑃∗
𝑖 ( 𝑗) be

the set of packets in 𝑃∗
𝑖 whose recipient fields are 𝑗 . In the second round, machine 𝑖 , in parallel to

others, proceeds as follows:

• For each 𝑗 ∈ [𝑝], if |𝑃∗
𝑖 ( 𝑗) | < 𝜆, add dummy packets to 𝑃∗

𝑖 ( 𝑗) to increase |𝑃∗
𝑖 ( 𝑗) | to 𝜆. If

|𝑃∗
𝑖 ( 𝑗) | > 𝜆, discard (arbitrarily) some packets from 𝑃∗

𝑖 ( 𝑗) to shrink |𝑃∗
𝑖 ( 𝑗) | to 𝜆; in this case,

we say that the algorithm errs.
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• For each 𝑗 ∈ [𝑝], send 𝑃∗
𝑖 ( 𝑗) to machine 𝑗 .

This completes our 2-round algorithm for message routing.

In each round, for any distinct 𝑖, 𝑗 ∈ [𝑝], machine 𝑖 sends to machine 𝑗 precisely

𝐿′ = 𝜆 · (𝛿 ′ + 3) (25)

words. It is rudimentary to verify that 𝐿′ ≤ (1+𝛿)𝐿/𝑝 when 𝑝 is greater than a constant. Thus, our 2-

round algorithm has a deterministic communication pattern requiring a load of 𝐿′ (𝑝 −1) < (1+𝛿)𝐿.
If the algorithm does not err, every message M[𝑖, 𝑗] is successfully delivered. In Appendix E, we

prove that the algorithm errs with probability at most 1/𝑝𝑐 where 𝑐 can be an arbitrarily large

constant chosen before running the algorithm. This completes the proof of Theorem 4.1.
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Appendix
A Basic Concepts of Hypergraphs
Let G = (V, E) be a hypergraph with E being a multi-set where each element, called an edge, is a
non-empty subset ofV (the set of vertices). A fractional edge packing is a function𝑤 : E → [0, 1]
(mapping each edge 𝑒 ∈ E to a weight𝑤 (𝑒) between 0 and 1) such that, for any attribute 𝑋 ∈ V ,

we have

∑
𝑒∈E:𝑋 ∈𝑒 𝑤 (𝑒) ≤ 1 (i.e., the weight sum of all the edges containing 𝑋 is at most 1). The

total weight of𝑤 is

∑
𝑒∈E 𝑤 (𝑒), i.e., the weight sum of all the edges in E. The fractional edge packing

number of G, denoted as 𝜏 (G), is defined as the maximum total weight of all the fractional edge

packings of G.

Dual to fractional edge packing is the notion of fractional vertex cover, which is a function

𝑤 : V → [0, 1] (mapping each vertex 𝑋 ∈ V to a weight𝑤 (𝑋 ) between 0 and 1) such that, for any

edge 𝑒 ∈ E, we have ∑𝑋 ∈V:𝑋 ∈𝑒 𝑤 (𝑋 ) ≥ 1 (i.e., the weight sum of all the vertices in 𝑒 is at least 1).

The total weight of 𝑤 is

∑
𝑋 ∈V 𝑤 (𝑋 ), i.e., the weight sum of all the vertices in V . The fractional

vertex cover number of G is defined as the minimum total weight of all the fractional vertex covers

of G. It can be shown [23] that the fractional vertex cover number of G is always identical to the

fractional edge packing number 𝜏 (G).
Given a proper subset Z ⊂ V , we define GZ as the hypergraph obtained by “removing” the

attributes of Z from G. Specifically:

• The vertex set of GZ is V \Z.

• The edges of GZ are decided as follows: for each edge 𝑒 ∈ G, we add the edge 𝑒 \ Z to GZ if

𝑒 \ Z ≠ ∅.
We will refer to GZ as a residual graph of G. Specially, if Z = ∅, then GZ = G.

For each proper subset Z ⊂ V , the residual graph GZ has its own fractional edge packing

number 𝜏 (GZ). The maximum such number of all possible Z is the edge quasi-packing number
𝜓 (G) of G, or formally:

𝜓 (G) = max

Z⊂V
𝜏 (GZ). (26)

Due to the equivalence between fractional edge packing number and fractional vertex cover number,

the value𝜓 (G) can alternatively be defined as the maximum fractional vertex cover number of all

residual graphs 𝐺Z of G.

B A Skew-Free Gathering Algorithm
In this section, we present a deterministic communication-oblivious algorithm to solve the skew-

free gathering problem (parameterized by integer 𝑡 ) with load 𝑂 (𝑁 /𝑝1/𝑡 ), matching the lower

bound in Theorem 2.1.

Our algorithm is in essence an adaptation of the “hyper-cube algorithm” in [4]. Define ℎ = ⌊𝑝1/𝑡 ⌋,
and order the points in the 𝑡-dimensional space [ℎ]𝑡 lexicographically. For each 𝑖 ∈ [ℎ𝑡 ], assign
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machine 𝑖 to the 𝑖-th point in [ℎ]𝑡 under the lexicographic order. Note that somemachines (precisely,

𝑝 − ℎ𝑡 machines) are not assigned to any point.

Divide domain [𝑝] into ℎ disjoint intervals 𝐼1, 𝐼2, ..., 𝐼ℎ , ordered in ascending order of their starting

points, such that:

• each of 𝐼1, ..., 𝐼ℎ−1 covers ⌊𝑝/ℎ⌋ integers;
• 𝐼ℎ covers 𝑝 − (ℎ − 1) ⌊𝑝/ℎ⌋ integers.

For each interval 𝐼𝑐 with 𝑐 ∈ [ℎ], we use |𝐼𝑐 | to denote the number of integers covered by 𝐼𝑐 .

Consider any point (𝑐1, 𝑐2, ..., 𝑐𝑡 ) ∈ [ℎ]𝑡 . Remember that the point corresponds to a machine. We

associate the machine with a 𝑡-dimensional box 𝐼𝑐1 × 𝐼𝑐2 × ... × 𝐼𝑐𝑡 and will refer to 𝐼𝑐 𝑗 the machine’s

projection on dimension 𝑗 ∈ [𝑡].
Given a legal initial state of the skew-free gathering problem, each machine — say the one with

id 𝑖 ∈ [𝑝] — sends the 𝑁 /𝑝 elements in its local storage to every machine whose projection on at
least one dimension covers the value 𝑖 — there are at most 𝑡 · ℎ𝑡−1 such machines. This completes

the description of our algorithm.

To see the algorithm’s correctness, suppose that machines where the special elements are initially

placed have ids 𝑧1, 𝑧2, ..., 𝑧𝑡 ∈ [𝑝]. For each 𝑗 ∈ [𝑡], let 𝑐 𝑗 be the integer in [ℎ] such that the interval

𝐼𝑐 𝑗 covers 𝑧 𝑗 . Our algorithm ensures that the machine associated with the 𝑡-dimensional box

𝐼𝑐1 × 𝐼𝑐2 × ... × 𝐼𝑐𝑡 receives all the special elements from the machines 𝑧1, ..., 𝑧𝑡 . The algorithm’s

communication obliviousness can be verified from the fact that, for each 𝑖 ∈ [𝑝], machine 𝑖 sends

exactly 𝑁 /𝑝 elements to a set of machines that is determined in a way independent of how the

input elements are initially distributed.

It remains to analyze the algorithm’s load. In terms of sending, each machine delivers 𝑁 /𝑝
elements to at most 𝑡 · ℎ𝑡−1 = 𝑂 (ℎ𝑡−1) = 𝑂 (𝑝 (𝑡−1)/𝑡 ) machines and, thus, transmits 𝑂 ((𝑁 /𝑝) ·
𝑝 (𝑡−1)/𝑡 ) = 𝑂 (𝑁 /𝑝1/𝑡 ) words. In terms of receiving, the machine corresponding to the 𝑡-dimensional

box 𝐼𝑐1 × 𝐼𝑐2 × ... × 𝐼𝑐𝑡 receives at most (𝑁 /𝑝) ·∑𝑡
𝑗=1 |𝐼𝑐 𝑗 | elements. Among all the intervals 𝐼1, ..., 𝐼ℎ ,

the interval 𝐼ℎ is the longest and covers

𝑝 − (ℎ − 1)
⌊𝑝
ℎ

⌋
< 𝑝 − (ℎ − 1)

(𝑝
ℎ
− 1

)
<

𝑝

ℎ
+ ℎ = 𝑂 (𝑝1−1/𝑡 )

integers (recall that 𝑡 ≥ 2). Each machine, therefore, receives𝑂 ((𝑁 /𝑝) ·𝑝1−1/𝑡 ) = 𝑂 (𝑁 /𝑝1/𝑡 ) words.
This proves that our algorithm has a load of 𝑂 (𝑁 /𝑝1/𝑡 ).

C Completing the Proof of Thm. 2.1
Proof of Inequality (11). We adopt a counting argument similar to the one used to prove (10).

Initially, create an empty set 𝑆𝑖 for each 𝑖 ∈ [𝑝]. Then, process each 𝑍 = (𝑧1, ..., 𝑧𝑡 ) ∈ Y as follows.

If𝑌 (𝑍,Λ) = 0, do nothing. Otherwise, under the communication pattern L = Λ, at least one machine

𝑧𝑘 , for some 𝑘 ∈ [𝑡], receives 𝑁 /𝑝 special elements from each machine 𝑧 𝑗 with 𝑗 ∈ [𝑡] \ {𝑘}. This
means that all the machines in 𝑍 \ {𝑧𝑘 } are heavy senders for machine 𝑧𝑘 under Λ. We add 𝑍 to

𝑆𝑘 . From the perspective of machine 𝑧𝑘 , the set 𝑍 \ {𝑧𝑘 } represents a possible way to choose 𝑡 − 1

machines from the 𝐻 (Λ, 𝑧𝑘 ) heavy senders for machine 𝑧𝑘 (under Λ).
After all the sets 𝑍 ∈ Y have been processed, the left-hand side of (11) is bounded by

∑
𝑖∈[𝑝 ] |𝑆𝑖 |.

On the other hand, for each 𝑖 ∈ [𝑝], the size |𝑆𝑖 | cannot exceed the total number of ways of choosing

𝑡 − 1 machines from the 𝐻 (Λ, 𝑖) heavy senders for machine 𝑖 (under Λ). Inequality (11) now follows.

Proof of (7) When |Y | ≥ 1

2

(
𝑝
𝑡

)
. By the definition of the Y-state, the fact |Y | ≥ 1

2

(
𝑝
𝑡

)
yields∑︁

𝑍 ∈Y

∑︁
Λ∈L

Pr[L = Λ] · 𝑌 (𝑍,Λ) ≥ 1

24

(
𝑝

𝑡

)
. (27)
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Then, we can obtain∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑖∈[𝑝 ]

𝐻 (Λ, 𝑖)𝑡−1 ≥
∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑖∈[𝑝 ]

(
𝐻 (Λ, 𝑖)
𝑡 − 1

)
(by (11)) ≥

∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑍 ∈Y

𝑌 (𝑍,Λ)

=
∑︁
Λ∈L

∑︁
𝑍 ∈Y

Pr[L = Λ] · 𝑌 (𝑍,Λ)

(by (27)) ≥ 1

24

(
𝑝

𝑡

)
. (28)

This leads to: ∑︁
Λ∈L

Pr[L = Λ]
∑︁
𝑖∈[𝑝 ]

𝐻 (Λ, 𝑖) =
∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑖∈[𝑝 ]

𝐻 (Λ, 𝑖)𝑡−1
𝐻 (Λ, 𝑖)𝑡−2

(by (6)) ≥
∑︁
Λ∈L

Pr[L = Λ] ·
∑︁
𝑖∈[𝑝 ]

𝐻 (Λ, 𝑖)𝑡−1

𝑝
(𝑡−1) · (𝑡−2)

𝑡

(by (28)) ≥ 1

24

(
𝑝

𝑡

)
/𝑝

(𝑡−1) · (𝑡−2)
𝑡

= Ω
( 𝑝𝑡

𝑝
(𝑡−1) · (𝑡−2)

𝑡

)
= Ω

(
𝑝3−2/𝑡

)
.

Therefore, at least one 𝑖 ∈ [𝑝] satisfies ∑Λ∈L Pr[L = Λ] · 𝐻 (Λ, 𝑖) = Ω(𝑝3−2/𝑡/𝑝) = Ω(𝑝1−1/𝑡 ), as
claimed in (7).

D Completing the Proof of Thm. 3.1
Proof of Lemma 3.2. As mentioned, Beame et al. [9] has proved Lemma 3.2 for the case where

𝑀 = |𝑅∗ |. We will utilize their result as a black box to prove the lemma under |𝑅∗ | < 𝑀 ≤ 𝑁 .

The number of distinct values taken by the tuples in 𝑅∗
is at most |𝑅∗ | · |𝑠𝑐ℎ𝑒𝑚𝑎(𝑅∗) | ≤ 𝛼 |𝑅∗ |.

Hence, we can find in the domain [𝛼𝑁 ] a set 𝑆 of 𝛼𝑁 −𝛼 |𝑅∗ | values that are not taken by any tuple

of 𝑅∗
. From |𝑅∗ | < 𝑀 ≤ 𝑁 , we know

|𝑆 | = 𝛼𝑁 − 𝛼 |𝑅∗ | > 𝛼𝑁 − (𝛼 − 1)𝑁 − |𝑅∗ | = 𝑁 − |𝑅∗ | ≥ 𝑀 − |𝑅∗ |.
Identify (arbitrarily)𝑀 − |𝑅∗ | distinct values from 𝑆 and, for each such value 𝑥 , create a tuple 𝒖 over

schema(𝑅∗) with 𝒖 (𝑋 ) = 𝑥 for each 𝑋 ∈ schema(𝑅∗). Let 𝑅′
be the relation obtained by inserting

these𝑀 − |𝑅∗ | tuples into 𝑅∗
. Note that |𝑅′ | has precisely𝑀 tuples.

It is easy to verify that degY (𝑅∗) = degY (𝑅′) for every non-empty subsetY ⊆ schema(𝑅′). With

this, the skew-free condition (15) tells us that, for any non-empty subsetY ⊆ schema(𝑅′), we must

have:

degY (𝑅′) ≤ |𝑅′ |∏
𝑖∈[𝑟 ]:𝑋𝑖 ∈Y 𝑠𝑖

.

Recall that, for each 𝑖 ∈ [𝑟 ], we have chosen a perfectly random hash function ℎ𝑖 : [𝛼𝑁 ] → [𝑠𝑖 ].
Given 𝒃 = (𝑏1, 𝑏2, ..., 𝑏𝑟 ) ∈ [𝑠1] × [𝑠2] × ... × [𝑠𝑟 ], define

bin 𝒃′ = {𝒖 ∈ 𝑅′ | ∀𝑖 ∈ [𝑟 ], ℎ𝑖 (𝒖 (𝑋𝑖 )) = 𝑏𝑖 }. (29)

Clearly, bin 𝒃′ contains all the tuples in the bin 𝒃 defined in (16). By the result of [9], we know that

every bin 𝒃′ in (29) contains𝑂 ((log𝑝∗/log log𝑝∗)𝑟 · |𝑅′ |/𝑝∗) = 𝑂 ((log𝑝∗/log log𝑝∗)𝑟 ·𝑀/𝑝∗) tuples,
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where 𝑝∗ =
∏𝑟

𝑖=1 𝑠𝑖 . It thus follows that every bin 𝒃 in (16) must have a size𝑂 ((log𝑝∗/log log𝑝∗)𝑟 ·
𝑀/𝑝∗).
Proof of Equation (18). If Y ⊆ Z, then

∏
𝑋 ∈Y 𝑠𝑋 (Z) = 1 ≤ 𝑝 . Otherwise:∏

𝑋 ∈Y
𝑠𝑋 (Z) =

∏
𝑋 ∈Y\Z

𝑠𝑋 (Z) ≤
∏

𝑋 ∈Y\Z
𝑝𝑤Z (𝑋 )/𝜏 (GZ ) ≤ 𝑝

where the last step used the definition of 𝜏 (GZ) in (17).

Proof of Equation (19). Let 𝑒𝑅 (Z) = schema(𝑅) \ Z. Note that 𝑒𝑅 (Z) is an edge in the residual

graph GZ . We have ∏
𝑋 ∈schema(𝑅)

𝑠𝑋 (Z) =
∏

𝑋 ∈𝑒𝑅 (Z)
𝑠𝑋 (Z) ·

∏
𝑋 ∈Z

𝑠𝑋 (Z)

=
∏

𝑋 ∈𝑒𝑅 (Z)
𝑠𝑋 (Z)

=
∏

𝑋 ∈𝑒𝑅 (Z)

⌊
𝑝𝑤Z (𝑋 )/𝜏 (GZ ) ⌋

(as 𝑝𝑤Z (𝑋 )/𝜏 (GZ ) ≥ 1) ≥
∏

𝑋 ∈𝑒𝑅 (Z)

𝑝𝑤Z (𝑋 )/𝜏 (GZ )

2

(as |𝑒𝑅 (Z)| ≤ |schema(𝑅) | ≤ 𝛼) ≥ 1

2
𝛼

∏
𝑋 ∈𝑒𝑅 (Z)

𝑝𝑤Z (𝑋 )/𝜏 (GZ )

≥ 𝑝1/𝜏 (GZ )/2𝛼

where the last inequality used the fact that 𝑤Z is a fractional vertex cover of 𝐺Z (and, hence,∑
𝑋 ∈𝑒𝑅 (Z) 𝑤Z (𝑋 ) ≥ 1).

E Completing the Proof of Thm. 4.1
Chernoff Bounds. The following Chernoff bounds (proved in [24]) will be useful:

Lemma E.1. Let 𝑋1, 𝑋2, ..., 𝑋𝑓 be independent Bernoulli random variables that are identically dis-
tributed. Define 𝑋 =

∑
𝑖∈[ 𝑓 ] 𝑋𝑖 . For any 𝛾 ≥ 2, it holds that

Pr[𝑋 ≥ 𝛾 · E[𝑋 ]] ≤ exp(−𝛾 · E[𝑋 ]/6). (30)

For any 0 < 𝛾 < 1, it holds that

Pr[𝑋 ≥ (1 + 𝛾) E[𝑋 ]] ≤ exp(−𝛾2 · E[𝑋 ]/3). (31)

Fix an arbitrary real value 𝛾 satisfying 0 < 𝛾 < 1 and any positive real values 𝑝 ≥ 1 and 𝛽 . Let us

specialize the setup of random variables in the above lemma as follows:

• Pr[𝑋𝑖 = 1] = 1/𝑝 for each 𝑖 ∈ [𝑓 ];
• 𝑓 ≤ 𝐹 where 𝐹 ≥ 𝛽 · 𝑝 log𝑝 .

We claim:

Pr[𝑋 ≥ (1 + 𝛾)𝐹/𝑝] ≤ exp(−Ω(𝛾2𝛽 · log𝑝)) (32)

where the hidden constant in the big-Ω does not depend on 𝛾 , 𝑝 , or 𝛽 . Next, we will prove the claim

by distinguishing two cases.

Case 1: E[𝑋 ] ≥ 𝐹/(2𝑝).We have:

Pr[𝑋 ≥ (1 + 𝛾)𝐹/𝑝]
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(as E[𝑋 ] = 𝑓 /𝑝 ≤ 𝐹/𝑝) ≤ Pr[𝑋 ≥ (1 + 𝛾) E[𝑋 ]]
(by (31)) ≤ exp(−𝛾2 · E[𝑋 ]/3)

(as E[𝑋 ] ≥ 𝐹/(2𝑝)) ≤ exp(−𝛾2 · 𝐹/(6𝑝))
(as 𝐹 ≥ 𝛽 · 𝑝 log𝑝) ≤ exp(−(𝛾2𝛽/6) · log𝑝)

as claimed.

Case 2: E[𝑋 ] < 𝐹/(2𝑝). We can derive:

Pr [𝑋 ≥ (1 + 𝛾)𝐹/𝑝] = Pr
[
𝑋 ≥ (1 + 𝛾)

E[𝑋 ]/(𝐹/𝑝) · E[𝑋 ]
]

(by (30), noticing

(1 + 𝛾)
E[𝑋 ]/(𝐹/𝑝) ≥ 2) ≤ exp(−(1 + 𝛾) · 𝐹/(6𝑝))

(as 𝐹 ≥ 𝛽 · 𝑝 log𝑝 and 𝛾 > 0) ≤ exp(−(𝛽/6) · log𝑝)
(as 𝛾 < 1) ≤ exp(−Ω(𝛾2𝛽 · log𝑝))

as claimed.

Completing the Analysis of Our Message-Routing Algorithm. As discussed in Section 4, it

remains to prove that our algorithm errs with probability at most 1/𝑝𝑐 where 𝑐 can be an arbitrarily

large constant chosen before running the algorithm.

For the algorithm to err in the first round, |𝑃𝑖 ( 𝑗) | must exceed 𝜆 (see its value in (24)) for some

𝑖, 𝑗 ∈ [𝑝]. Set 𝑓 = |𝑃𝑖 | and 𝐹 = 𝑝 + 𝐿/𝛿 ′; we thus have 𝑓 ≤ 𝐹 by (23). For each 𝑘 ∈ [𝑓 ], introduce a
Bernoulli random variable 𝑋𝑘 that equals 1 if the 𝑘-th packet of 𝑃𝑖 is relayed to machine 𝑗 , and 0

otherwise. Thus, Pr[𝑋𝑘 = 1] = 1/𝑝 , and |𝑃𝑖 ( 𝑗) | =
∑

𝑘∈[ 𝑓 ] 𝑋𝑘 .

Suppose that 𝐿 ≥ 𝛽 · 𝑝 log𝑝 where 𝛽 is a constant to be decided later. Note that this means

𝐹 > 𝐿/𝛿 ′ ≥ (𝛽/𝛿 ′)𝑝 log𝑝 . We can derive:

Pr[|𝑃𝑖 ( 𝑗) | ≥ 𝜆] ≤ Pr
[
|𝑃𝑖 ( 𝑗) | ≥

(
1 + 𝐿

𝛿 ′𝑝

)
(1 + 𝛿/2)

]
(applying (24))

= Pr [|𝑃𝑖 ( 𝑗) | ≥ (1 + 𝛿/2) · 𝐹/𝑝]
(by (32)) ≤ exp(−Ω(𝛿2 · (𝛽/𝛿 ′) · log𝑝))

= exp(−Ω(𝛿3 · 𝛽 · log𝑝)) (33)

which can be made less than 1/𝑝𝑐0 for an arbitrarily large constant 𝑐0 by setting 𝛽 sufficiently large

(recall that 𝛿 is a constant).

How likely the algorithm errs in the second round is somewhat less obvious. For each 𝑗 ∈ [𝑝],
denote by 𝑃+

𝑗 the set of packets — produced from M[1, 𝑗], M[2, 𝑗], ..., M[𝑝, 𝑗] combined — destined

for machine 𝑗 (i.e., those packets have 𝑗 as the recipient). Because of (22), |𝑃+
𝑗 |, the number of

packets in 𝑃+
𝑗 , is at most 𝑝 + 𝐿/𝛿 ′, following a derivation similar to that in (23). The algorithm errs

in the second round only if |𝑃∗
𝑖 ( 𝑗) | > 𝜆 for some 𝑖, 𝑗 ∈ [𝑝]. Observe that |𝑃∗

𝑖 ( 𝑗) | is precisely the

number of packets in 𝑃+
𝑗 that have 𝑖 as their relay machines. Now, set 𝑓 = |𝑃+

𝑗 | and 𝐹 = 𝑝 + 𝐿/𝛿 ′; we
thus have 𝑓 ≤ 𝐹 as just explained. For each 𝑘 ∈ [𝑓 ], introduce a Bernoulli random variable 𝑋𝑘 that

equals 1 if the 𝑘-th packet of 𝑃+
𝑗 is relayed to machine 𝑖 , and 0 otherwise. Thus, Pr[𝑋𝑘 = 1] = 1/𝑝 ,

and |𝑃∗
𝑖 ( 𝑗) | =

∑
𝑘∈[ 𝑓 ] 𝑋𝑘 . Following a derivation similar to the one leading to (33), we obtain

Pr[|𝑃∗
𝑖 ( 𝑗) | ≥ 𝜆] ≤ exp(−Ω(𝛿3 · 𝛽 · log𝑝)) (34)

We can now conclude from (33) and (34) that, when 𝐿 ≥ 𝛽 · 𝑝 log𝑝 for a sufficiently large 𝛽 , our

algorithm errs with a probability at most 1/𝑝𝑐 .
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F Proof of Theorem 4.2
Recall that the input collection I (𝑁 ) of token passing has 𝑝 (𝑝 − 1) inputs (𝑆, 𝑥,𝑦), where 𝑆 is a

set of 𝑁 elements (same for all inputs), and 𝑥 and 𝑦 are distinct integers in [𝑝] (the inputs differ in
the pair (𝑥,𝑦)). Further recall that every input (𝑆, 𝑥,𝑦) has only one legal initial state, where every

machine is informed of the values 𝑥 and 𝑦, and all the 𝑁 /𝑝 = ⌈𝑝1−𝜖⌉ tokens are placed on machine

𝑥 . The goal of an algorithm is to move all tokens from machine 𝑥 to machine 𝑦.

Let A be a two-round communication oblivious algorithm that succeeds with probability at

least 2/3 on each every input in I (𝑁 ). We will prove that A must entail a load of Ω(𝑝1−𝜖/2) with
probability at least 1/2.

As A performs two rounds, its communication pattern can be represented as two 𝑝 × 𝑝 matrices

L1 and L2. Specifically, for each 𝑟 = 1 and 2, the value L𝑟 [𝑖, 𝑗] (where 𝑖, 𝑗 ∈ [𝑝]) is the number of

words that machine 𝑖 sends to machine 𝑗 in round 𝑟 . IfA is randomized, then L1 and L2 are random

variables. For each 𝑟 = 1 and 2, we define a 𝑝 × 𝑝 matrix L∗
𝑟 from L𝑟 as follows:

• L∗
𝑟 [𝑖, 𝑗] = L𝑟 [𝑖, 𝑗] for any 𝑖, 𝑗 ∈ [𝑝] satisfying 𝑖 ≠ 𝑗 .

• L∗
𝑟 [𝑖, 𝑖] = ⌈𝑝1−𝜖⌉ for each 𝑖 ∈ [𝑝].

We remind the reader that L𝑟 [𝑖, 𝑖] = 0 for all 𝑖 ∈ [𝑝], by definition of communication pattern. The

matrix L∗
𝑟 thus defined is a random variable decided by L𝑟 .

By communication obliviousness, the distribution of (L1, L2) is the same for all the inputs in

I (𝑁 ). Let L be the set of ordered pairs (Λ1, Λ2) satisfying
• each of Λ1 and Λ2 is a 𝑝 × 𝑝 matrix;

• Pr[(L∗
1
, L∗

2
) = (Λ1, Λ2)] > 0, namely, A exhibits with a non-zero probability a pattern (L1,

L2) such that the corresponding (L∗
1
, L∗

2
) equals (Λ1, Λ2);

• the following inequality holds for all 𝑘 ∈ [𝑝]:( ∑︁
𝑖∈[𝑝 ]

Λ1 [𝑖, 𝑘]
)
·
( ∑︁
𝑗∈[𝑝 ]

Λ2 [𝑘, 𝑗]
)
≤ 𝑝2−𝜖/24. (35)

The core of our argument is to prove

Pr[(L∗
1
, L∗

2
) ∉ L] ≥ 1/2. (36)

Note that whenever (L∗
1
, L∗

2
) ∉ L, it follows from the definition in (35) that there is at least one

𝑘 ∈ [𝑝] such that ( ∑︁
𝑖∈[𝑝 ]

L∗
1
[𝑖, 𝑘]

)
·
( ∑︁
𝑗∈[𝑝 ]

L∗
2
[𝑘, 𝑗]

)
> 𝑝2−𝜖/24

under which one of the following inequalities must be true:

• ∑
𝑖∈[𝑝 ] L∗

1
[𝑖, 𝑘] > 𝑝1−𝜖/2/

√
24, or

• ∑
𝑗∈[𝑝 ] L∗

2
[𝑘, 𝑗] > 𝑝1−𝜖/2/

√
24.

In the former case, we have∑︁
𝑖∈[𝑝 ]

L1 [𝑖, 𝑘] =

( ∑︁
𝑖∈[𝑝 ]

L∗
1
[𝑖, 𝑘]

)
− L∗

1
[𝑘, 𝑘] =

( ∑︁
𝑖∈[𝑝 ]

L∗
1
[𝑖, 𝑘]

)
− ⌈𝑝1−𝜖⌉ = Ω

(
𝑝1−𝜖/2

)
.

This means that the load of A is Ω(𝑝1−𝜖/2) as ∑𝑖∈[𝑝 ] L1 [𝑖, 𝑘] is the number of words received

by machine 𝑘 in the first round. In the latter case, following a similar derivation one can obtain∑
𝑗∈[𝑝 ] L2 [𝑘, 𝑗] = Ω(𝑝1−𝜖/2). This also implies that A has load Ω(𝑝1−𝜖/2) because ∑𝑗∈[𝑝 ] L2 [𝑘, 𝑗]

is the number of words sent by machine 𝑘 in the second round. Therefore, with probability at least

1/2, algorithm A demands a load of Ω(𝑝1−𝜖/2), which completes the proof of Theorem 4.2.
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Proof of Inequality (36). Assume for contradiction purposes that (36) does not hold, which means

Pr[(L∗
1
, L∗

2
) ∈ L] > 1/2. For every input (𝑆, 𝑥,𝑦) ∈ I (𝑁 ), we know

Pr[A succeeds on (𝑆, 𝑥,𝑦) | (L∗
1
, L∗

2
) ∈ L] ≥ 1/6. (37)

Otherwise, Pr[A succeeds on (𝑆, 𝑥,𝑦)] < 1/6 + Pr[(L∗
1
, L∗

2
) ∉ L] < 2/3, contradicting the fact that

A succeeds on any input with probability at least 2/3.

Lemma F.1. If A succeeds on (𝑆, 𝑥,𝑦) ∈ I (𝑁 ) under the condition (L∗
1
, L∗

2
) = (Λ1,Λ2), then∑︁

𝑘∈[𝑝 ]
min

{
Λ1 [𝑥, 𝑘],Λ2 [𝑘,𝑦]

}
≥ 𝑝1−𝜖 . (38)

Proof. Let us rewrite the left hand side of (38) as∑︁
𝑘∈[𝑝 ]

min

{
Λ1 [𝑥, 𝑘],Λ2 [𝑘,𝑦]

}
=

( ∑︁
𝑘∈[𝑝 ]\{𝑥,𝑦}

min

{
Λ1 [𝑥, 𝑘],Λ2 [𝑘,𝑦]

})
+min

{
Λ1 [𝑥,𝑦],Λ2 [𝑦,𝑦]

}
+min

{
Λ2 [𝑥, 𝑥],Λ2 [𝑥,𝑦]

}
=

( ∑︁
𝑘∈[𝑝 ]\{𝑥,𝑦}

min

{
Λ1 [𝑥, 𝑘],Λ2 [𝑘,𝑦]

})
+min

{
Λ1 [𝑥,𝑦], ⌈𝑝1−𝜖⌉

}
+min

{
⌈𝑝1−𝜖⌉,Λ2 [𝑥,𝑦]

}
. (39)

If a machine 𝑘 ∈ [𝑝] \ {𝑥,𝑦} receives a token from machine 𝑥 in the first round and sends the

token to machine 𝑦 in the second round, we say that the token is relayed by machine 𝑘 . Under the

condition (L∗
1
, L∗

2
) = (Λ1,Λ2), machine 𝑘 can relay no more than min{Λ1 [𝑥, 𝑘],Λ2 [𝑘,𝑦]} tokens. On

the other hand, if a token is not relayed by any machines, it needs to be sent from machine 𝑥 to

machine 𝑦 directly (in either the first or the second round). The number of tokens that can be sent

this way is at most

min

{
Λ1 [𝑥,𝑦], ⌈𝑝1−𝜖⌉

}
+min

{
⌈𝑝1−𝜖⌉,Λ2 [𝑥,𝑦]

}
.

Thus, (39) gives an upper bound on the total number of tokens that A can move to machine

𝑦 at the end of the second round. The upper bound must be at least ⌈𝑝1−𝜖⌉ for A to succeed on

(𝑥,𝑦). □

By putting together (37) and (38), we obtain the following for every pair (𝑥,𝑦) ∈ [𝑝] × [𝑝] with
𝑥 ≠ 𝑦:

E
[ ∑︁
𝑘∈[𝑝 ]

min

{
L∗
1
[𝑥, 𝑘], L∗

2
[𝑘,𝑦]

} ��� (L∗
1
, L∗

2
) ∈ L

]
≥ 𝑝1−𝜖

6

(40)

For any (Λ1,Λ2) ∈ L and any 𝑘 ∈ [𝑝], we have:( ∑︁
𝑥∈[𝑝 ]

Λ1 [𝑥, 𝑘]
)
·
( ∑︁
𝑦∈[𝑝 ]

Λ2 [𝑘,𝑦]
)

=
∑︁
𝑥∈[𝑝 ]

∑︁
𝑦∈[𝑝 ]

Λ1 [𝑥, 𝑘] · Λ2 [𝑘,𝑦]

≥
∑︁
𝑥∈[𝑝 ]

∑︁
𝑦∈[𝑝 ]

min

{
Λ1 [𝑥, 𝑘],Λ2 [𝑘,𝑦]

}
≥

∑︁
𝑥, 𝑦 ∈ [𝑝 ]
s.t. 𝑥 ≠ 𝑦

min

{
Λ1 [𝑥, 𝑘],Λ2 [𝑘,𝑦]

}
(41)

where the first inequality used the fact that 𝑎𝑏 ≥ min{𝑎, 𝑏} holds for any non-negative integers 𝑎

and 𝑏.
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We can now derive: ∑︁
𝑘∈[𝑝 ]

E
[( ∑︁

𝑥∈[𝑝 ]
L∗
1
[𝑖, 𝑘]

)
·
( ∑︁
𝑦∈[𝑝 ]

L∗
2
[𝑘, 𝑗]

) ��� (L∗
1
, L∗

2
) ∈ L

]
≥ E

[ ∑︁
𝑘∈[𝑝 ]

∑︁
𝑥, 𝑦 ∈ [𝑝 ]
s.t. 𝑥 ≠ 𝑦

min

{
L∗
1
[𝑥, 𝑘], L∗

2
[𝑘,𝑦]

} ��� (L∗
1
, L∗

2
) ∈ L

]
(by linearity of expectation and (41))

= E
[ ∑︁
𝑥, 𝑦 ∈ [𝑝 ]
s.t. 𝑥 ≠ 𝑦

∑︁
𝑘∈[𝑝 ]

min

{
L∗
1
[𝑥, 𝑘], L∗

2
[𝑘,𝑦]

} ��� (L∗
1
, L∗

2
) ∈ L

]
=

∑︁
𝑥, 𝑦 ∈ [𝑝 ]
s.t. 𝑥 ≠ 𝑦

E
[ ∑︁
𝑘∈[𝑝 ]

min

{
L∗
1
[𝑥, 𝑘], L∗

2
[𝑘,𝑦]

} ��� (L∗
1
, L∗

2
) ∈ L

]
(linearity of expectation)

≥ 𝑝1−𝜖 · 𝑝 (𝑝 − 1)
6

. (by (40))

Therefore, there is at least one 𝑘∗ ∈ [𝑝] such that

E
[( ∑︁

𝑥∈[𝑝 ]
L∗
1
[𝑖, 𝑘∗]

)
·
( ∑︁
𝑦∈[𝑝 ]

L∗
2
[𝑘∗, 𝑗]

) ��� (L∗
1
, L∗

2
) ∈ L

]
≥ 𝑝1−𝜖 (𝑝 − 1)

6

≥ 𝑝2−𝜖/12

where the last inequality used 𝑝 ≥ 2.

However, by the definition of L (in particular, the inequality (35)), when (L∗
1
, L∗

2
) ∈ L, the

product

∑
𝑥∈[𝑝 ] L∗

1
[𝑖, 𝑘] ·∑𝑦∈[𝑝 ] L∗

2
[𝑘, 𝑗] can be at most 𝑝2−𝜖/24 for all 𝑘 ∈ [𝑝]. This contradicts the

existence of 𝑘∗. Therefore, our assumption Pr[(L∗
1
, L∗

2
) ∈ L] > 1/2 must be a false one.
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