Two-Attribute Skew Free, Isolated CP Theorem, and
Massively Parallel Joins

Miao Qiao
University of Auckland
Auckland, New Zealand

miao.qiao@auckland.ac.nz

ABSTRACT

This paper presents an algorithm to process a multi-way join with
load O(n/ pz/ (#¢)) under the MPC model, where n is the number of
tuples in the input relations, & the maximum arity of those relations,
p the number of machines, and ¢ a newly introduced parameter
called the generalized vertex packing number. The algorithm owes
to two new findings. The first is a two-attribute skew free technique
to partition the join result for parallel computation. The second is
an isolated cartesian product theorem, which provides fresh graph-
theoretic insights on joins with & > 3 and generalizes an existing
theorem on a = 2.

CCS CONCEPTS

« Information systems — Join algorithms; « Theory of com-
putation — Massively parallel algorithms.

KEYWORDS
Joins; Conjunctive Queries; MPC Algorithms; Parallel Computing

ACM Reference Format:

Miao Qiao and Yufei Tao. 2021. Two-Attribute Skew Free, Isolated CP Theo-
rem, and Massively Parallel Joins. In Proceedings of the 40th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS °21),
June 20-25, 2021, Virtual Event, China. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3452021.3458321

1 INTRODUCTION

Massively-parallel computation systems such as Hadoop [7] and
Spark [1] are designed to leverage hundreds or even thousands of
machines to accomplish a computation task on data of a gigantic
volume. Performance bottleneck these systems is communication
rather than CPU computation. Understanding the communication
complexities of fundamental database problems has become an
active research area [2, 3, 5, 6, 10-12, 14, 15, 20].

1.1 Problem Definition

This paper studies parallel algorithms for processing natural joins.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS 21, June 20-25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8381-3/21/06...$15.00
https://doi.org/10.1145/3452021.3458321

Yufei Tao
Chinese University of Hong Kong
Hong Kong, China
taoyf@cse.cuhk.edu.hk

Joins. Denote by att a countably infinite set where each element is
an attribute. We will assume a total order on att, and use A < B to
represent the fact “attribute A ranking before attribute B”. Denote
by dom an infinite set where each element is a value.

A tuple over a set U C att is a function u : U — dom. Alter-
natively, we may represent a tuple as (ai, az, ..., @|q7|) where a; is
the output of u on the i-th (1 < i < |U|) smallest attribute in U
(according to <). Given a non-empty V C U, define u[V] as the
tuple v over V such that v(X) = u(X) for every X € V; we say
that v is a projection of u.

A relationis a set R of tuples over the same set U of attributes. U
is the scheme of R, denoted as scheme(R) = U. Define arity(R) =
|scheme(R)|, referred to as the arity of R. R is unary if arity(R) = 1,
or binary if arity(R) = 2.

A join query is defined as a set 2 of relations. The query result
Join(L2) is the relation:

{tuple u over attset(2) | VR € 2, u[scheme(R)] € IR}

where attset(2) = |Jp g scheme(R). If 2 includes only two rela-
tions R and 8, we may also represent Join(2) as R > 8. Define

no=) IR
Re2
= |attset(2)| (1)
= %géarity(ﬁ). (2)

In particular, n is the input size of 2. We will treat | 2| and k (hence,
) as constants, and assume « > 2 (a query with a = 1 has been
optimally solved; see Section 3).

Computation model. We will work under the massively parallel
computation (MPC) model, which has become a standard model
for studying parallel join algorithms nowadays [6, 8, 11, 12, 14, 20].
At the beginning, the input relations of 2 are distributed onto p
machines, each of which stores O(n/p) tuples. An algorithm can
perform only a constant number of rounds, each with two phases:

e Phase 1: Each machine performs local computation, and
prepares the messages to be sent to other machines.

e Phase 2: The machines exchange messages (which must be
prepared in Phase 1).

Each tuple in Join(2) must reside on at least one machine when the
algorithm terminates. The load of a round is the maximum number
of words received by a machine in that round. The load of the
algorithm is the maximum load of all rounds. The main challenge
in algorithm design is to minimize the load.

load ‘ source ‘ remark

O(n /pﬁ) [3] the hyper-cube (HC) algorithm

O(n/ p%) [6] the BinHC algorithm

O(n /pi) [14] the KBS algorithm; i = the edge quasi-packing number (Appendix H)

O(n/ p%) [12, 20] | p = the fractional edge-covering number (Section 3.1); the algorithm is applicable only to a = 2
O(n/ p%) (8] for acyclic queries

O(n /p“%/’) ours ¢ = the generalized vertex-packing number (Section 4); the algorithm subsumes [12, 20] when a = 2
O(n /pm) ours for ¢-uniform queries

O(n/ pﬁ) ours for symmetric queries

Table 1: Comparison of all the known generic algorithms

We assume p < y/n. Unless otherwise stated, by “an algorithm
having load at most L”, we mean that its load is at most L with
probability at least 1 — 1/p€ where ¢ > 0 can be set to an arbitrarily
large constant. Each value in dom is assumed to fit in a word.
Notation O(.) hides a factor polylogarithmic to p. Given an integer
x > 1, [x] denotes the set {1, ..., x}.

1.2 Previous Work

Afrati and Ullman [3] developed the hyper-cube (HC) algorithm
that answers a query 2 with load O(n/ pl/ 121y deterministically.
Extending HC with random binning ideas, Beame, Koutris, and
Suciu [5] obtained the BinHC algorithm with load O(n/ pl/ k).

Improving their earlier work [6], Koutris, Beame, and Suciu [14]
gave an algorithm — called KBS henceforth — with load O(n/ pl/),
where ¢ is the edge quasi-packing number of 2 (Appendix H).

There has been work dedicated to queries involving only re-
lations with arity at most 2, due to their special importance in
subgraph enumeration!. Ketsman and Suciu [12] were the first to
solve such queries 2 with load O(n/ pl/ #), where p is the fractional
edge covering number of 2 (Section 3.1). A simpler algorithm with
the same load was presented by Tao [20].

Recently, Hu [8] presented an algorithm for answering any
acyclic query? with load O(n/ pl/).

The above algorithms are generic because they support either
arbitrary queries [3, 14] or queries in a broad class [8, 12, 20]. There
are algorithms designed for specific joins, e.g., star joins [3], cycle
joins [14], clique joins [14], line joins [3, 14], Loomis-Whitney joins
[14], etc.

We refer the reader to [2, 10, 11] for algorithms that can achieve
a load sensitive to the output size | Join(2)|.

On the lower bound side, Atserias, Grohe, and Marx [4] showed
that |Join(2)| can reach Q(n”) but is always bounded by O(n”).
This implies [14] that any algorithm must incur a load of Q(n/ pl/ ?)
in the worst case. Furthermore, Hu [8] proved that Q(n/pl/) is
another worst-case lower bound, where 7 is the query’s factional

!Namely, find all the occurrences of a subgraph pattern in a graph.
2Specifically, alpha-acyclic queries, which generalize berge-acylic and r-hierarchical
queries.

edge packing number (Section 3.1); she also described a class of
queries whose 7 values are strictly larger than p. It is clear from the
above discussion that the upper and lower bounds have matched
for (i) queries with @ = 2 and (ii) acyclic queries. Matching the
lower bounds for an arbitrary query is still open.

The lower bounds mentioned earlier apply to algorithms that
perform an arbitrary (constant) number of rounds. In [14], Koutris,
Beame, and Suciu showed that Q(n/pl/l/’) is a lower bound for
single-round algorithms, subject to certain constraints.

Regarding other computational models, the (natural join) prob-
lem has been optimally settled in RAM [16, 17, 21], while external-
memory (EM; a.k.a. I/O-efficient) algorithms have been developed
for specific joins (see [9, 10, 18] and the references therein). There
exists a reduction [14] for converting an MPC algorithm to work
in the EM model. The reduction also applies to the algorithms
developed in this paper.

1.3 Our Results

We will describe an algorithm (Theorem 8.2) that answers an arbi-
trary query 2 with load

. 2

0 (n/p=*))
where > 2 is the maximum arity and ¢ is the generalized vertex
packing number of 2 that will be formally introduced in Section 4.
For a = 2, ¢ can be proven equal to p; thus, our load matches the

lower bound Q(n/pl/ P). For a > 3, the algorithm improves the
previous work on certain (non-trivial) query classes.

One notable class is the k-choose-a join 2, which has (l];) re-
lations (recall that k is the number of attributes), each having a
scheme that is a unique combination of « attributes. Currently, the
best solution to a k-choose-a join with a € [3, k — 2]? is the KBS
algorithm [14], which (as mentioned) requires a load of O(n /pl/ ¥y,
with the edge quasi-packing number ¢ at least k—a+1 (Appendix H).
On the other hand, 2 has a generalized vertex packing number
¢ = k/a (Section 4). The load of our algorithm is é(n/pz/k), and is
already better than O(n/pl/(k_”‘“)) fora < k/2+ 1.

3With a = k — 1, 2 is the Loomis-Whitney join and has been solved optimally. The
case o < 2 is left out because, in general, all queries with & < 2 have been settled.
The case @ = k is not interesting either because 2 has only one relation.

We can in fact prove a stronger result. A more general class is
the a-uniform join, where all the relations in a query 2 have arity
a. For such 2, the load of our algorithm can be further bounded as
(Theorem 9.1)

O (n pa¢—2a+2) . (4)
2/(k—a+2))

Hence, our load for a k-choose-a join is actually O(n/p
which strictly improves the KBS algorithm as long as a < k.

Yet another notable class is the symmetric join, each being an a-
uniform join 2 with an additional constraint that each attribute in
attset(2) belongs to the same number of relations. The k-choose-a
join is a proper subset of the symmetric join. To see this, consider
the cycle join [14] where @ = 2 and 2 contains k relations with
schemes {A1, A2}, {A2, A3}, .., {Ar_1. Ar }, {Ak, A1}, respectively.
A cycle join is symmetric but not a k-choose-2 join if k > 3.

The value ¢ for a symmetric join is always k/a (Section 4).
By (4), our algorithm answers a symmetric query with load
O(n/p?/(k=a+2)) This has an interesting implication. In general,
p > k/2 holds on all queries with a < 2. Hence, a query on binary
relations must incur a load of Q(n/ pz/ k) (see the lower bound dis-
cussion in Section 1.2). As O(n/pz/(k_a+2)) is o(n/pz/k) for a > 3,
every symmetric query with a > 3 is inherently easier than every
query with o < 2 (and the same value of k). No existing algorithms
can achieve such a separation.

Table 1 presents a summary of our results in comparison with
the existing ones.

A lower bound remark. As mentioned, our algorithm is optimal
for @ = 2. For a > 3, the load of our algorithm in (3) cannot be
significantly improved in the following sense: no algorithm can
achieve aload of o(n/ pz/ @)y in general. To explain, consider a class
of queries 2 constructed as follows. Let A, ..., Ak/z and By, ..., Brj2
be k > 6 distinct attributes. 2 has 2 + k/2 relations: (i) one with
scheme {Ay, ..., Ag o} and another with scheme {Bi1, 4..,Bk/2}, and
(ii) a relation with scheme {A;, B;} for each i € [k/2]. For every
such 2, @ = k/2 and ¢ = 2. As shown in [8], every algorithm
requires a load of Q(n/pz/k) processing 2. Notice that Q(n/pz/k) =
Q(n/pz/(“¢)), ie., Q(n/pz/("”/’)) is also a lower bound on the load.
Our algorithm is thus optimal on this class of queries.

2 OVERVIEW OF OUR TECHNIQUES

We will first review two standard techniques and then discuss the
new techniques developed in this paper.

Standard 1: Skew free. Consider an arbitrary relation R € 2 and
any non-empty V C scheme(R). Given a tuple v over V, define
fy (v, R) as the number of tuples u € R satisfying v = u[V]; we
will refer to fe (v, R) as the V-frequency of v in R.

Suppose that we assign a share of py > 1 to each attribute
A € attset(2) subject to

pa < p (5)
Acattset(2)

Relation R € 2 is skew free if

n
® "
fyle®) < [Tacv pa ©

holds for every non-empty V C scheme(R) and any tuple v over
V. 2 is skew free if all relations in 2 are skew free.

Standard 2: BinHC and the heavy-light technique. Suppose
that the share p4 of every attribute A € attset(2) has been decided.
Beame, Koutris, and Suciu [6] proved that the BinHC algorithm
(Section 1.2) solves a skew free query with load
« n
O|max ——|. 7)
Re2 HAEscheme(fR)PA
When 2 is not skew free, a common approach [12, 14, 20] is to
resort to the following algorithmic paradigm. First, design a number
of sub-queries. Then, choose the (attribute) shares appropriately
to make every sub-query skew free and, thus, solvable by BinHC.
What differentiates different algorithms is how to determine the
sub-queries such that they
o (Objective 1) together produce precisely Join(2), and
o (Objective 2) incur a small load under BinHC.

Fulfilling these objectives is non-trivial. In [14], Koutris, Beame,
and Suciu presented a method that we refer to as the heavy-light
technique, as outlined below. Let 1 > 0 be some real value. Call a
value x € dom

e heavy, if there exist a relation R € 2 and an attribute A €
scheme(R) such that R has at least n/A tuples u with u(A) =
X3
o light, otherwise.
For every possible U C attset(2), create a sub-query 2q¢ to pro-
duce all the tuples u € Join(2) such that u(A) is heavy if A € U
or light otherwise. Clearly, there are 2k sub-queries (see (1) for k);
and the union of their results is Join(2). This achieves Objective 1.

How about Objective 2? Let us fix a U C attset(2) and concen-
trate on an arbitrary relation R € 2. As far as 2q, is concerned,
we only need to consider those tuples u € R such that, for each
A € scheme(R), u(A) is heavy if A € U and light otherwise; denote
by R’ the set of such tuples. To apply BinHC on 2q¢;, we must set
the shares to make R’ skew free. This, however, can be difficult
because we do not have control over the V-frequency of a tuple
for any subset V C scheme(R’) with |'V| > 2.

Koutris, Beame, and Suciu [14] circumvented the issue by setting
A = p and fixing the share p4 to 1 for each attribute A € U.
Interestingly, R’ is guaranteed skew free regardless of the shares py
of A ¢ U. This follows from two observations: (i) trivially, every
heavy value can appear in at most |R’| < n tuples, and (ii) every
light value can belong to O(n/p) = O(n/T1 a¢qs pa) tuples, noticing
that []a¢qspa < p. The KBS algorithm achieves load é(n/pl/‘/’)
by optimizing the shares py of A ¢ U.

The above approach fails to work for A < p, whereas we often
need A = p° for some ¢ < 1 to improve upon é(n/pl/‘/’). To deal
with the issue, Ketsman and Suciu [12] and Tao [20] refined the
heavy-light technique, but their refinement heavily relies on the
premise o < 2.

(a) The original query (p = ¢ = 5and y = 9)

OB /OE
o o
F I

(@) (¢]

J K

(b) A residual query for the plan ({D}, {(G,H)})

Figure 1: Illustration of the proposed techniques

New 1: Two-attribute skew free. For a relation R € 2, the skew
free condition demands that V-frequencies be low for all non-
empty V C scheme(R). The is a stringent requirement and limits
the applicability of BinHC.

Our first idea is to relax the requirement. We say that R is
two-attribute skew free as long as (6) holds for every non-empty
V C scheme(R) with |V| < 2. 2 is two-attribute skew free if all
its relations are two-attribute skew free. As will be proved later
(Lemma 3.5), a two-attribute skew free query 2 can be answered
by BinHC with load

(3(max (min ;)) 8)
Re2 \ VCscheme(R) HAE"VPA
V<2

Relaxation of the skew free constraint is a matter of tradeoff. On
the one hand, the load in (8) is higher than (7); but on the other
hand, we gain greater flexibility in assigning shares. Fortunately,
we can compensate for the loss in (8) with an enhanced heavy-light
technique that is made possible by the new skew-free definition, as
outlined below.

New 2: Two-attribute heavy-light. Given a A > 0, define a value
x € dom to be light/heavy in the same way as before. In addition,
we say that a value pair (y, z) € dom X dom is:

e heavy, if there exist a relation R € 2 and two distinct at-
tributes Y, Z € scheme(R) such that the {Y, Z}-frequency of
tuple (y, z) in R is at least n/A?;

o light, otherwise.

Define a plan as:

Po= (XX (20 (0 Z0)))

wherea > 0,b > 0, X1, ..., X4, Y1, ..., Yp, Z1, ..., Z}, are distinct at-
tributes in attset(2), and Y; < Z; for each j € [b]. Since |attset(2)|
is a constant, only O(1) plans exist.

Let us concentrate on a plan P. Define H = {Xi, ..., X4, Y1,
s Yy, Z1, ..., Zp }. We issue sub-queries to extract all the tuples
u € Join(2) satisfying:

e u(X;)is heavy for all i € [a];

o u(A) is light for any attribute A ¢ {X1, ..., Xa };

o (u(Y;),u(Z;)) is heavy for all i € [b].

e (u(A),u(B)) is light for any distinct attributes A, B ¢ H.

The union of all sub-queries’ results is precisely Join(<2)
(Lemma 5.2).

For an illustration, Figure 1(a) shows a query 2 with attset(2) =
{A,B,...,K}. Each segment represents a binary relation, e.g., {A, G}.
Each ellipse represents a relation of arity 3, e.g., {A,B,C}. 2 has
thirteen binary relations and three arity-3 relations.

Consider the plan P = ({D}, {(G, H)}). Each sub-query 2’ issued
for P assigns (i) a heavy value — assumed d below — to D, and (ii) a
heavy value pair — assumed (g, h) — to (G,H). 2’ returns all and
only the tuples u € Join(Q) such that:

e u(D) =d;

* (u(G),u(H)) = (g,h);

o u(A) is light for every attribute A € {A,B,C,E,F,G,H, I, J,K}
(this implies that both g and h are light);

o (u(A),u(B)) is light for any distinct attributes A, B € {A, B,
C,E F,I,1,K}.

The relations in 2’ only need to contain the relevant tuples. For
example, let Ry 5} be the relation in 2 with scheme {G, J}. In
2’, the corresponding relation 9%’{6’ 7 includes only the tuples
v € Ry 5y such that ©(G) = g and v(J) is light. As another ex-
ample, let (R{A, g,c} be the relation in 2 with scheme {A,B,C}. The
corresponding relation iR’{ AB.C) in 2’ includes only the tuples
v € Rypp ¢y such that v(A), v(B), v(C) are light, and so are the

value pairs (v(A), v(B)), (v(B), v(C)), (v(A), v(C)).

Since attributes D, G, and H have been fixed to specific values,
they can be removed, giving rise to a residual query as is shown in
Figure 1(b). The 3-arity relation with scheme {C, D, E}, for instance,
now becomes a binary relation with scheme {C, E}. Similarly, three
isolated unary relations (on attributes F, J, and K) have been created.
We resolve this residual query in three (conceptual) steps:

(1) (Non-unary join) compute {1, the join result of the non-
unary relations with schemes {A,B, C}, {C,E}, and {E, I}.

(2) (Isolated CP) compute J», the cartesian product (CP) of the
three isolated unary relations.

(3) (Final CP) compute J1 X J2, the result of the residual query.

SetA= pl/ (ag) (¢ is the generalized vertex-packing number of 2;
Section 4). By assigning a share A to each attribute in {A,B, C,E, I},
we guarantee that every non-unary relation is two-attribute skew free.
Hence, BinHC can be used to perform Step (1) with load O(n/A2) =
O(n/p2/<0‘¢)), by virtue of (8).

Ensuring load é(n/pz/(“¢)) for Steps (2) and (3), however, re-
quires new insight into the mathematical structure of the problem,
as explained next.

New 3: A new isolated cartesian product theorem. The load
of Steps (2) and (3) critically depends on |J2|, namely, the CP size of
the isolated unary relations (e.g., those on F, J, and K in Figure 1(b)).
If |J2| were small for every residual query of the plan P, we could
bound the load to be O(n/ pz/ (ad)) easily. Unfortunately, this is not
true: |J2| can vary significantly for different residual queries.

We will establish an isolated cartesian product theorem, showing
that the average |J2| of all residual queries dedicated to P is suffi-
ciently small. This permits global optimization to allocate more
(resp. less) machines to those residual queries with larger (resp.
smaller) |J2|, thereby guaranteeing a load of O(n/ p2/ (”‘¢)) for every
residual query. The theorem generalizes an earlier result on binary
relations in [13, 20]. Its establishment, which constitutes the most
important technical contribution of this paper, owes heavily to the
newly introduced ¢. Our argument is considerably different from
(and actually subsumes) the ones in [13, 20], and sheds new light
on the join problem.

3 PRELIMINARIES

3.1 Hypergraphs & Edge Coverings/Packings

A hypergraph 4 is a pair (V, &) such that (i) V is a finite set where
each element is a vertex, and (ii) & is a set of hyperedges — or just
edges — each being a non-empty subset of V. For each e € &, the
size |e| is the edge’s arity; and e is unaryif |e| = 1. A vertex in V is
exposed if it belongs to no edges. Our discussion will concentrate
on hypergraphs without exposed vertices.

Let # be a function mapping & to values in [0, 1]. We call % (e)
the weight of e € & (under #') and Y, co W(e) the weight of /.
Given a vertex X € V, we call Y ,ce.xce # (e) the weight of X
(under #'). # is a fractional edge covering of ¢4 if the weight of
every vertex X € V isatleast 1. The fractional edge covering number
of 4 — denoted as p(¢) — is the minimum weight of all fractional
edge coverings of 4. # is a fractional edge packing of ¢ if the
weight of every vertex X € V is at most 1. The fractional edge
packing number of 4 — denoted as 7(¥) — is the maximum weight
of all fractional edge packings of 4.

Example. The hypergraph ¢ in Figure 1(a) has a fractional edge
covering number p(¥) = 5, achieved by the function % that maps
{0, K}, {G, 3}, {I, E}, {A, B, C}, and {F, G, H} to 1, and the other edges to
0. ¢ has a fractional edge packing number 7(¥) = 4.5, achieved by
the function % that maps {D, H}, {D, K}, and {K, H} to 0.5, {E, I}, {G, J},
and {A, B, C} to 1, and the other edges to 0. |

LEMMA 3.1. Ifa = max.ce |e|, thena - p(4) > |V|.

PRrOOF. Let # be a fractional edge covering of ¢ with the min-
imum weight. Thus, @ - p(9) = a Y oce # () = Yece le|# (e) =
2xe|V| Zecs:xee V(&) 2 Xxelv 1 =1V o

Given a subset U of V, we define the subgraph induced by U
as the hypergraph (U, &) where

& = {UneleeEAUNE*0}.

3.2 Query Hypergraph and AGM Bound

We say that a query 2 is clean if no two relations in 2 share the
same scheme. A clean 2 defines a hypergraph & = (attset(2), &)
where & = {scheme(R) | R € 2}.Foreach edgee € &, let R,
represent the relation R € 2 with e = scheme(R).

LEMMA 3.2 ([4]). Let # be a fractional edge covering of the hy-
pergraph & = (attset(2), &) defined by a clean query 2. Then,
|Join(2)] < Tees |Rel” ().

The above is commonly known as the AGM bound.

3.3 MPC Building Blocks

Cartesian products (CP). Consider a query 2 = {R1, Rz, ..., Rs}
with t > 2 where the relations have mutually disjoint schemes.
Thus, Join(2) = Ry X Rp X ... X Ry; we will use CP(L2) as an
alternative representation of this cartesian product.

LEmMa 3.3 ([13]). We can compute CP(2) with load
1
|CP(2")| 1271
—_— (10)
p 12/|

0]

non-empty 2 C 2

using p machines.

LEmMA 3.4 ([12, 13]). 21 and 2, are queries whose input sizes
are bounded by N. If

o Join(21) can be computed with load O(N/pi/[l) using p1
machines and
e Join(2,) with load (N)(N/p;/tz) using po machines
then we can compute Join(21) X Join(2s) using p1p2 machines with
load O(N /min{p*/t1, p!/12}).

Skew-free queries. Suppose that we have assigned a share py4 to
every attribute A € attset(2) subject to the condition in (5). In
Appendix A, we prove:

LEMMA 3.5. When 2 is two-attribute skew free (Section 2), the
BinHC algorithm of [6] answers 2 with a load not exceeding (8),
repeated here for the reader’s convenience:

(3(max (min ;))
Re2 \ Vcscheme(R) [1acy PA
|V|<2

4 GENERALIZED VERTEX PACKINGS

Let ¥ be a function mapping V to the values in (—co, 1] (note
that the output of .% can be negative). Define the weight of % as
Yxey F(X). For each edge e € &, we call), y ¢ -7 (X) the weight
of e (under .%).

We say that .Z is a generalized vertex packing of ¢ if the weight
of every edge e € & is at most 1. The generalized vertex-packing
number of 4 — denoted as ¢p(¥) — is the maximum weight of all
the generalized vertex packings of ¢.

Example. The hypergraph ¢ in Figure 1(a) has a generalized vertex
packing number $(¢) = 5, as is given by the function .# that maps
Bto —1,D, E, G, and H to 0, and the other vertices to 1. O

Next, we will prove several properties that will be useful to
our analysis. Our discussion will revolve around a special linear
program about ¢:

The characterizing program of ¢
Variables: x, for eache € &
Maximize:) o xe(|e| — 1) subject to
o foreachA eV, Y coace Xe < 1,and
e foreache € &, x, > 0.

The above program is always feasible (e.g., setting x, = 0 for all
e € &), and is always bounded (the first bullet implies x, < 1).It
thus has an optimal solution, which we denote as $(7).

Example. For the hypergraph ¢ in Figure 1(a), an optimal solution
to the characterizing program sets x, to 1 for e = {A,B, C}, {F, G, H},
{D,K}, and {E, I}, and to O for the other edges. This assignment
achieves the value ¢(%) = 6 for the objective function. O

LEMMA 4.1. §(94) + §(¥) = |'V|.

Proor. Consider the dual of the characterizing program:

Variables: y4 for each A € V

Minimize:) 4c y4 subject to
o foreache € &,) ace ya = le| — 1, and
o foreachAe V,ys > 0.

By the duality of linear programming (LP), the optimal value of the
objective function in the dual program is identical to that in the
characterizing program.

Let % be a generalized vertex packing of ¢ of the maximum
weight. Define y4 = 1 — % (A) for each A € V. We will prove that
the assignment {y4 | A € V} must be an optimal solution of the
dual program, i.e., HD) =Y Aya.

Foreache € &, 2 pceya = Zaee(1-F(A)) = le|-Xaece F(A) 2
le] — 1. This, together with the fact that y4 > 0 forall A € V,
indicates that {ya | A € V} is a feasible assignment (for the dual).

Suppose that there is another a feasible assignment {y’, |
A € V} able to make the objective function even lower, namely,
2aY,y < 2aya- Let us design a function .F’ by setting .7 '(A) =
1 -y, for each A € V. Clearly, #'(A) < 1 for every A € V.
Furthermore, for each e € &, Y pce F'(A) = Zaee(l —y)) =
le] = Zaecey);, < 1. Therefore, F' is a generalized vertex packing.
However, 34 F'(A) = X a(1 - y}) > Xa(l —ya) = X4 F(A),
which contradicts the definition of .%.

It follows from the above discussion that ¢(%) = Y 4ya =
2401 =Z(A) = V|- XA F(A) = |V]| - §(¥), which establishes
the lemma. o

LEMMA 4.2. Ifevery edge in contains two vertices, () = p(¥).

Proor. When |e| = 2 for every e € &, 5(‘4) is exactly the
fractional edge packing number 7(¥) (Section 3.1). As proved
in Theorem 2.2.7 of [19], such a ¢ must have the property that
p(&) + 1(4) = |V|. The lemma thus follows from Lemma 4.1. O

LEMMA 4.3. If¥ is the hypergraph defined by a symmetric query
2, §(9) = k/a, where a and k are given in (1) and (2), respectively.

Proor. We will prove:
PO +HG) < k (11)

which will establish the lemma by the following argument. Assume
without loss of generality that every vertex in ¢ is covered by
¢ edges. The number of edges in ¢ must be ck/a. Consider the
function % that maps each edge to 1/c. # is clearly a fractional
edge covering with weight k/a. On the other hand, Lemma 3.1 tells
us p(¢) > k/a, which leads to p(¢) = k/a. It follows from (11)
that 5((%) < k(1- é) On the other hand, consider the following
assignment to the variables in the characterizing program: {x, =
1/c | e € &}. This assignment satisfies all constraints, and achieves
Yecs xe(lel = 1) = % L(a — 1) = k(1 - 1). This implies ¢(¥) =
k(1 - é), which by Lemma 4.1 leads to ¢(¥4) = k/a.

It remains to prove (11), which (by Lemma 4.1) is equivalent to
showing p(¥) < ¢(¥). For this purpose, let us recall two standard
concepts from the fractional graph theory [19]. Let .#” be a func-
tion that maps V to the set of real values in [0, 1]. %" is a fractional
vertex packing of 4 if 3, gc. -7 ’(A) < 1 for every e € &. The frac-
tional vertex-packing number of ¢ is the maximum) 4cy % '(A)
of all the fractional vertex packings .#’. By the duality of LP, the
fractional vertex-packing number is precisely p(¥¢). The inequality
p(4) < §(9) follows from the definition of ¢(¥) (at the beginning
of Section 4), and the fact that any fractional vertex packing is a
generalized vertex packing. O

5 2-ATTRIBUTE HEAVY-LIGHT TAXONOMY

In Sections 5-7, we consider that the input query 2 is (i) clean
(Section 3.2), and (ii) unary-free, namely, each relation in 2 has
arity at least 2.

Denote by ¢4 = (attset(2), &) the hypergraph defined by 2
(Section 3.2). Set A to an arbitrary positive real value. In the manner
explained in Section 2, each value x € dom can be classified into
light/heavy, and so can each value pair (x, y) € dom X dom.

Configurations. Consider a plan P as defined in (9). As before,
set H = {Xi, ..., Xa, Y1, ..., Yy, Z1, ..., Z}} for some a,b > 0.
Given a U C H and a tuple u over U, we say that (U, u) is a
U -configuration of P if

u(X;) is heavy for every X; € U, i € [a];

u(Yj) is light for every Y; € U, j € [b];

u(Z;) is light for every Z; € U, j € [b];

(u(Yj),u(Z;)) is heavy for every (Y;, Zj) € U XU, j € [b] (if
either Y; ¢ U or Z; ¢ U, this condition does not apply to j).
When U = H, (U, u) is a full configuration of P.

PROPOSITION 5.1. P has at most A1l full configurations.

ProoF. There can be at most A values on each X; (i € [a]), and
at most A% value pairs on each (Y;,Zj) (j € [b]). Hence, the number
of full configurations is at most A4 - A2y = AIHI, O

Residual queries. Given a full configuration (H, h) of plan P, we
will formulate a residual query 2’(H, h) which returns exactly the
set of tuples u € Join(2) “consistent” with (H, h), meaning that:
e u(A) = h(A) for each A € H;
o u(A) is light for any attribute A ¢ H;

o (u(A),u(B)) is light for any distinct attributes A, B ¢ H.

Formally, an edge e € & is active on P if e has at least one attribute
outside H. For an active edge e, let R, (H, h) be the residual relation
of e that fulfills all the conditions below:

o R,(H.,h)isovere =e\ H;
o R.L(H, h) collects the projection v[e’] of all the tuples v €
Re (see Section 3.2 for the definition of R.) satisfying
— v(A) = h(A) foreachAeenH;
- v(A) is light for each A € ¢’;
- (v(A), v(B)) is light for any distinct A, B € ¢’.
We can now formulate the residual query as:

Q' (H.,h) = {RL(H.,h)|ec&, eactiveonP}. (12)

Example. Consider the query £ in Figure 1(a) and the plan P =
({D}, {(G,H)}). Hence, H = {D, G, H}. Consider the full configuration
(H, h) where h = (d, g, h).

All edges of the graph in Figure 1(a) are active except {D, H}. Set
e = {G, J}; thus e’ = {J}. The residual relation R, (H, h) collects all
tuples of the form (g, x) € R, where x is light. For another example,
sete = {A, B, C}; thus e’ = e. The residual relation R, (#, h) collects
all tuples (x,y, z) € Re such that the values x, y, z and the value
pairs (x, y), (x,), (y, z) are all light. O

The next lemma, proved in Appendix B, shows that we can find
the entire Join(2) by answering each residual query correctly:

LEMMA 5.2.

Join(2) = | | (U

P Il config. (H, h) of P

D(H.h)x{h}|. (13

Completing a configuration. Consider a U-configuration of P:
(U, u). We say that a full configuration (H, h) of P completes (U, u)
if u = h[U]. The following lemma states that (2, u) cannot be
completed by too many full configurations:

LEmMMA 5.3. (U, u) can be completed by O(/'ll(H\(ul)full configu-
rations of P.

Proor. We will design a tuple h over H to make the full con-
figuration (H, h) complete (U, u). Clearly, h(A) = u(A) for every
A € U. It remains to design h(A) for A e H\ U.

(1) Foreveryi € [a] with X; ¢ U, h(X;) can be any heavy value.

(2) For every j € [b] with Y; € U but Z; ¢ U, h(Z;) can be any

light value that makes (u(Y}), h(Z;)) heavy.

(3) For every j € [b] with Y; ¢ U but Z; € U, h(Y}) can be any

light value that makes (h(Y;), u(Z;)) heavy.

(4) For every j € [b] with Y; ¢ U and Z; ¢ U, h(Y}) and h(Z;)

can be any light values that make (h(Y}), h(Z;)) heavy.

We claim:

e for (1), there are at most A ways to set h(X;);
o for (2), there are at most A - | 2| ways to set h(Z;);
o for (3), there are at most A - | 2| ways to set h(Y});
o for (4), there are at most A% ways to set (h(Y}), h(Z;)).
The first and the last bullets are obvious because there are at
most A heavy values and A2 heavy value pairs. As the second and
third bullets are symmetric, we will prove only the former. Fix an

arbitrary j satisfying the condition in (2); denote by z a possible
value for h(Z;). As (u(Yj), z) is heavy, at least n/A? tuples — count-
ing over all the relations in 2 — carry u(Y}) and z (on attributes Y;
and Zj, resp.) simultaneously. If there are at least A - | 2| choices
of z, the total number of tuples carrying u(Y;) must be at least
%/1|Q| = |2|n/A. But this means that at least n/A such tuples fall
in the same relation in 2, contradicting the fact that u(Yj}) is light.

Denote by c¢; the number of i values satisfying (1), and by ¢z, c3,
and ¢4 the number of j values satisfying (2), (3), and (4), respectively.
The above discussion indicates that the number of distinct (H, h)
meeting all the four conditions is (applying | 2| = O(1))

O(Acl+C2+C3+ZC4)

Notice that ¢; + ¢2 + ¢3 + 2¢4 is at most the number of attributes in
H \ U. This completes the proof. O

Total input size of the residual queries. Lemma 5.3 has an im-
portant corollary:

COROLLARY 5.4. For any plan P of a unary-free query 2, the
residual queries (i.e., one for each full configuration of P) together
have a total input size O(n - AK=2). If 2 is a-uniform, the bound can
be reduced to O(n - Ak~9),

Proor. Consider any edge e € &. A tuple u € R, participates
in a residual query if and only if the full configuration produc-
ing the residual query completes the e-configuration (e, u). By
Lemma 5.3, (e,u) can be completed by o(Ak-lely full configura-
tions. For a unary-free 2, k — |e| < k — 2. Hence, the total input
size of all residual queries is O(n - Ak=2). The claim on a-uniform
queries follows from the fact that k — |e| = k — a. o

We close the section by pointing out that 2 has only a constant
number of plans. Therefore, all the residual queries on the right
hand side of (13) can be larger than what is stated in Corollary 5.4
by a constant factor.

6 SIMPLIFYING A RESIDUAL QUERY

This section will concentrate on an arbitrary full configuration
(H, h) of P. We will explain how to simplify the residual query
Q'(H, h) in (12). As before, let 4 = (attset(2), &) be the hyper-
graph of 2. Set L = attset(2) \ H.

The residual graph. Define 4’ = (£, &”’) as the subgraph of ¢
induced (Section 3.1) by L; we will refer to ¢’ as the residual graph
of H. Note that 4’ depends only on H (not on h).

A vertex (ak.a. attribute) A € L is orphaned if it appears in a
unary edge in & (that is, {A} € &”’). Such a vertex is further said
to be isolated if it appears in no non-unary edges in &”. Denote by
I the set of isolated vertices.

Example. For the ¢ in Figure 1(a), Figure 1(b) shows the residual
graph ¢’ for H = {D, G, H}. The isolated set is 7 = {F, J,K}. Every
other vertex in £ = {A,B,C,E, F, I, J,K} is orphaned. For example,
A is orphaned because the edge {A, G} in ¢ shrinks into a unary edge
A in 4’; however, A is not isolated because it also appears in the
edge {A, B, C} of ¥’. O

Unary intersection on an orphaned attribute. Consider an or-
phaned attribute A € L. Given an edge e in ¥/, we call e an orphaning
edge of Aif e \ H = {A}. Define a unary relation for A:

RY(H,b) = RL(H,) (14)
orphaning edge e of A

where R, (H, h) is the residual relation of e (Section 5). Only the
values in RX(?{ , h) can possibly contribute to the result of 2.

Example (cont.). The orphaned attribute C in Figure 1(b) has two
orphaning edges: {C, G} and {C, H}. R'(H, h) is the intersection of
the residual relations of those two edges. Equivalently, R'(H, h)
contains all the values x such that tuples (x, g) and (x, h) belong
to relations Ryc) and Ryc yy, respectively. Similarly, the isolated
vertex K has three orphaning edges: {K, D}, {K, G}, and {K, H}. R/ (H, h)
contains all the values x such that tuples (x, d), (x, g), and (x, h)
belong to relations Rk ¢}, Rk 6} and Rk u), respectively. O

Semi-join reduction. Let e be an edge in ¢ such thate’ = e \ H
is not unary. Define the semi-join reduced relation of e as:

RY(H,h) = the join result of Ry (H, h) and all R’{(H, h)
where A € e’ is an orphaned attribute. (15)

To see the rationale behind, consider a tuple u € R, (H, h) such that
u(A) does not appear in IRX(W, h); clearly, u cannot contribute to
FJoin(2). Ry (H, h) contains what remains in R, (H, h) after elimi-
nating all such tuples u.

Example (cont.). In Figure 1(b), consider e = {C,D, E}, and hence,
e’ = {C,E}. Recall that R} (H, h) includes all tuples (x, y) such that
(x,d,y) in Re. RV (H, h) shrinks R, (H, h) by keeping only the
tuples (x,y) where x € R'(H, h) and y € RI'(H, h). |

The simplified residual query. We are now ready to formulate:

Dy H) = |RUH B | e\ H is non-unary} (16)
DY(H,) = {RX((H,h)‘AELisisolated} (17)
2"H) = D), (H.h)U2F(H D). (18)

Every relation in 27/(#H, h) is unary and is on an isolated vertex,

whereas every relation in Ql’l’g 4+(F,) has at least two attributes.

Example. In Figure 1(b), Q;{ght(ﬂ, h) joins the semi-join reduced
relations of {A, B, C}, {C, E}, and {E, I}. Q}'(?’(, h) computes the CP
(cartesian product) of R (H, h), R} (H, h), and R/ (H, h). Finally,

2""(H, h) returns the CP of the previous two queries’ results. O
We prove in Appendix C:
ProrosiTION 6.1. 2'(H, h) and 2" (H, h) have the same result.

7 AN ISOLATED CP THEOREM

In this section, we will focus on an arbitrary plan P. Every full
configuration (H, h) of P has a simplified residual query 2" (H, h)
that computes CP(,@’I’(“H, h)) x]oin(a@;i’ght(ﬂ, h)). As shown in
Lemma 3.3, the cost of CP(Q}’(‘H, h)) depends on the carte-
sian product size of every non-empty subset of the relations in
CP(Q:,’ (H, h)). Next, we will prove that the sum of those cartesian

product sizes is small.

For every non-empty subset J of 7, define:

Q2G(H.h) = {Rj(H.h)|Ae T} (19)
where R’/(H,h) is given in (14). Although the size of
CP(QQ’T('H, h)) may vary significantly on different (H, h), we are
able to bound the total size (lumping over all (H, h)):

THEOREM 7.1 (ISOLATED CARTESIAN PRODUCT THEOREM). Let 2
be a unary-free clean query. For each plan P of 2 and any non-empty
g C 1, it holds that

D |CP(Q:§(7{,h))‘ < @@-lID-1L\T] . 1T

full config.
(H, h) of P

where ¢ the generalized vertex packing number of 2 (Section 4).

Recall that £ = attset(2) \ H, and « is the maximum arity de-
fined in (2). The rest of the section serves as a proof of Theorem 7.1.

7.1 Three Properties of the Isolated Vertices

Let 4 = (attset(2), &) be the hypergraph defined by 2. The next
lemma states several properties of 7

LEMMA 7.2. Ifan edge e € & satisfiese N J # O, then
(1) lengl=1,

(2) eC (JUH), and
B)lel=lenT|+lenH|=lenH|+1.

ProOF. By definition of isolated vertex (Section 6),no edge e € &
can contain two vertices in 7, which yields Property (1). To prove
(2), let A be the only attribute in e N 7. If (2) does not hold, then
because of (1), e must have another attribute B ¢ H which, however,
contradicts the fact that A is isolated. (3) follows from (1), (2) and
the fact that J and H are disjoint. O

7.2 Utilizing the Characterizing Program

Henceforth, we will denote by {x, | e € &} an optimal assignment
for the characterizing program of 2 (Section 4). Thus, (2) =
e xe(le] — 1); we will abbreviate ¢(2) as ¢.

Define
& = {eeélenT 0} (20)
We prove in Appendix D (recall that k = |attset(2))):
LEmMmA 7.3.
k=1T1=), xe-(el-1) < a@-1TD.

ec&*

In the next subsection, we will prove:

LEMMA 7.4.

D ‘CP (ggmh))’ < A HI-Zecsr xellel-1) 1T

full config.
(‘H, h) of P

This will complete the whole proof of Theorem 7.1 because

IH| - Z Ixel-(lel =1) < [H|-k+[T[+a(@-1T]

ecs*
a(p—1JD) - 1L+ 1T
a(@—1IN - 1L\ T

where the first inequality applied Lemma 7.3.

7.3 Proof of Lemma 7.4

Recall from (9) that plan P specifies a > 0 attributes Xj, ..., X, and
b > 0 attribute pairs (Y1, Z1), ..., (Yp, Zp). We create a + b special
relations as follows:

e for each i € [a], create a relation 8; with scheme(8;) = {X;}
which contains all the values heavy on X;;
e for each j € [b], create a relation D; with scheme(D;) =
{Yj, Z;} which contains all the value pairs (y, z) such that
- (y,2) is heavy on {Y}, Z; };
— y and z are both light values.
Clearly, |S;] < Aand |D;| < A2 for all i, j. Let Pheavy be the query
that includes the above a+b relations. Note that attset(Zpeqyvy) = H.
As the relations in 24y, have disjoint schemes, the result of
Qheavy is CP(Qheavy)~

Define:
2" = {Rel|ec &)

where &* is defined in (20). Recall that R, is the input relation in 2
with scheme e. By Property (2) in Lemma 7.2, attset(2*) € J UH.
We prove in Appendix E:

PRrROPOSITION 7.5.

D |cp (25, h))‘ < |CP(Lheauy) < Toin(2")|.
full config.
(H, h) of P
Our goal, therefore, is to prove that the size of CP(Zpeqyy) <
FJoin(2*) is sufficiently small.

Strategy overview. Towards the above purpose, we will construct
a sequence of queries 2y, 2y, ..., 2, for some ¢ > 0 such that:
° QO = Q*;
e attset(2s) € J UH foreachs € [0,(];
o CP(Zheavy) > Join(2Ls) = CP(Lheqyy) > Join(2*) for each
s €[0,{].

Eventually, we will prove that [CP(Zpeqyy) > Join(Ze)| is low
enough. This, together with Proposition 7.5, will allow us to estab-
lish Lemma 7.4.

Constructing 2,1 for s > 0. Suppose that we have already ob-
tained 2 for some s > 0. Let ¥ = (attset(Zs), &) be the hyper-
graph defined by Z;. For each edge e € &, denote by R, s the
relation in 25 whose scheme is e.

We assume that each edge e € & is assigned areal value x, s > 0
such that {x, s | e € &5} is a feasible assignment of the characteriz-
ing program of ¥, (Section 4). At s = 0, this assumption is fulfilled
by simply setting x. o = x, for each e € &. Recall (Section 7.2)
that {x. | e € &} is a feasible assignment for the characterizing
program of ¢.

For each attribute A € J U H, define:

if A € attset(Z2s)
otherwise

Fs(A) =

{ ?eeg’s:AEe Xe,s (21)

Note that .#(A) < 1 for every A. We build 24; only if there
exists some j € [b] such that Fs(Y;) # Fs(Zj); otherwise, s is
the last query constructed (i.e., £ = s). We refer to j as the triggering
index of 2s41. Without loss of generality, our discussion below
assumes .%(Yj) > Fs(Z;). The opposite case is symmetric and can
be handled analogously.

By the fact #(Yj) > Fs(Z;), there must exist a triggering edge
e* € & which includes Y; but not Z;. Based on e*, we will produce
a feasible assignment {x. s4+1 | € € &s41} for the characterizing
program of the hypergraph ¥s.1 = (attset(Zs41), &5+1) defined by
D +1. After that, the construction process is iteratively invoked.

Define:
et = efu{z;} (22)
Rer s 24 Djoa R+ ifet € &,
+ _ e,s] er,s S
= { Rer,s »2D; otherwise 3)
Note that scheme(R") = e*. Set
As = min{xe*,Syys(Yj)_ﬂs(Zj)}-

Depending on Ag, we generate P differently:
o Case Ag < xer 52
- Ife* € &, then Ds1q = (25 \ {Re+ s}) U{RT};
- otherwise, 2541 = 25 U {R+}.
o Case A; = xex st
- Ife* € &, then Dg11 = (25 \ {Rer 5, Rer s }) U{RT};
- otherwise, 2541 = (Zs \ {Res,s}) U{RT}.

Remember that we also need to produce a feasible assignment
{xe*, s+1 | € € Y541} for the characterizing program of ¥%1. This
is done as follows:

e First, for every edge e in % other than e* and ™, retain its
assigned value, namely, x¢ s4+1 = X, s.
o Then, we proceed differently depending on Ag:
— Case Ag < xer 52
* Set xex s+1 = Xex,s — As.
Set X+ g41 10 A + xe+ g if et € &, or to A otherwise.
— Case Ag = xex s:
Set X+ g41 t0 A + X+ s if €7 € &%, or to Ag otherwise.

We now prove that the above generation fulfills our purposes:

LEMMA 7.6. Both statements below are true:

o {x¢ s+1|e€Ysi1} is afeasible assignment for the character-
izing program of Ys41.
b CP(Qheavy) P 30in(gs+l) = CP(Qheavy) P jOln(o@*)

Proor. For the first statement, we need to prove that .%s11(A) <
1 for every A € J U H, where .Fg.1(A) is as defined in (21).4 Our
design makes sure .Z;,1(A) = .F(A) for every A € J U H with
A # Zj; thus, Fs11(A) < 1 follows from %5(A) < 1. Regarding
Zj, our design guarantees F41(Zj) = Fs(Zj) + As. By definition
As < F(Y)) — Fs(Z;). Therefore, Fs11(Z;) < Fs(¥j) < 1.

For the second statement, it suffices to show

CP(Qheavy) >]Oin(gs+l) = CP(Qheavy) > jom(gs)~ (24)

4Obviously, by replacing s with s + 1.

Consider first the case where e* € &. Recall that D; € Dhoavy-
Thus, Rev,s >« Re+ 5 29 CP(Pheavy) equals Rer s > Djpa R+ s pa
CP(Zheavy), which is simply Rt ba CP(Zheavy)- This proves the
correctness of (24). The case where e ¢ & is similar. O

The next lemma shows that the above inductive generative pro-
cess will terminate eventually:

LEMMA 7.7. The sequence of queries 2y, 21, ..., Z¢ is finite.

ProoF. Recall that the generation proceeds differently in two
cases depending on Ag. It suffices to show that each case can occur
only a finite number of times.

A new query is generated only if we can find j € [b] such
that #5(Yj) # Fs(Zj). Every time the case As < x+ s happens,
As = Fs(Y;) — Fs(Z)). Therefore, Fs11(Y}) = Fs+1(Z)), by the
reasoning in the proof of Lemma 7.6. This means that Fy will
remain the same as F¢(Z;) for all s” > s + 1. Therefore, this case
can occur at most b times.

For each relation R € 25, we define its imbalance count as the
number of j € [b] values satisfying the condition that scheme(XR)
contains exactly one attribute in {Y}, Z;}. The imbalance count of
9 is the sum of imbalanced counts of all the relations therein.

e After an occurrence of the case Ag < x.+ g, the imbalance
count of 2.1 can increase by at most b compared to that
of s, due to the inclusion of R*.

e After an occurrence of the case A; = x¢+ g, the imbalance
count of 21 must decrease by 1 compared to that of Z;,
due to the eviction of Re+ .

Given that the Ag < x,+ s case happens at most b times, we conclude
that As = xe+ s can occur at most b(|2| + b) times. O

LEMMA 7.8. In the last query Dy, it must hold for each j € [b] that
Fe(Y)) = F(Z)) = max{ Fo(Y)), Fo(Zj)}.

Forany A ¢ {Y1,Z1,..., Yy, Zp}, it holds that Fy(A) = F1(A) =
oo = Fp(A).

Proor. The generative process must continue if F,(X;) #
F¢(Y)); this proves F¢(Y;) = F¢(Zj). Assume, without loss of
generality, that %#((Y;) > Fy(Z;). By the argument in the proof of
Lemma 7.6, we know F(Y;) = Z1(Y}) = ... = F¢(Y;). This proves
the correctness of the first sentence of the lemma.

The second sentence follows directly from the way we design
Xe,s-]

Bounding the size of CP(Z},y,) p< Join(2y). For each s € [0, 7],

define:
B =[] Ressles
e€ds
A= 1) - Fo(Z)).
Jjelb]
LEMMA 7.9.

By < By .

Proor. Let us start by observing:
A= DA (25)
s€l0,£-1]

To explain why, consider an arbitrary s € [0,¢ — 1]. If j is the
triggering index of D41, | Fs11(Y}) — Fs11(Z;)| must decrease by
Ag compared to |Fs(Y;) — Fs(Z;)|. The correctness of (25) then
follows from Lemma 7.8.

Equipped with (25), to prove the lemma it suffices to show:
2%334—1 < 933 'AAS (26)

holds for every s € [0, £ — 1]. For this purpose, let us scrutinize once
again the two cases that happen in generating Zs1. As before, let
Jj be the triggering index and e* be the triggering edge. We will first
consider the scenario where et ¢ &.

e Case A < x¢+,s: We have
|Rex s|xe*’$_AS : |:R+|AS
L [Rensle

where e™ and R* are defined in (22) and (23), respectively.
In general, it holds that

|RT| < [Rev,s| - 4 (28)

Bs+1 = Bs

27)

To understand why;, first notice that less than A tuples in D i
can share the same value on Yj.5 This, in turn, indicates that
a tuple R+ 5 can join with less than A tuples in D;, which
yields (28). Putting together (27) and (28) validates (26).

o Case Ag = xex 5t

|R+|As

|:Re*,s |A5

which together with (28) validates (26).

The scenario where e™ € & is similar:

Bs+1 = Bs

o Case Ag < xer st

|:Re*,s |Xe*,s—As . |fR+|As+xe+,s

Bsy1 = B - (29)
’ T Re s [Rer [T
e Case A; = xe» 5t
As+x,+
[R5t
Bsv1 = Bs (30)

|:Re*,s|As . |:Re+,s|xe+’s

Both (29) and (30) give (26), using (28) and the fact that |R*| <
|Re+ s|. The completes the proof of Lemma 7.9. O

We are ready to bound the size of CP(Zpeqyy) > Join(2¢). To-
wards this purpose, for each attribute A € 7, let us create a “domain”
relation U 4 which includes all the A-values that appear in the input
relations of 2. Clearly, |U4| < n. Now, define a clean query:

Qﬁnal = e@heavy UZeU U {Uat|-
Aed

We prove in Appendix F:
PROPOSITION 7.10. Join(ZLfina1) = CP(Lheqvy) > Join(2Ly).

SRecall that each tuple (y, z) in D ; must appear in at least n/A? tuples of the input
relations of 2. Hence, if y can pair up with at least A distinct z, y appears in at least
/Tnz/l = n/A tuples. This contradicts the fact that y is a light value.

Hence, instead of the size of CP(Zpeqyy) > Join(2y), we can
focus on bounding | Join(2g,a1)l:

LEMMA 7.11.

|Join(2pna)| < nl 1 AHI=Zecs xe(lel=1), (31)

ProoF. Let @, be the hypergraph defined by 2y, We will
construct a fractional edge covering %" of 9.y, which by the AGM
bound in Lemma 3.2 yields an upper bound on | Join(2)| which
will turn out to be the right hand side of (31).

The construction of # is based on the feasible assignment {x,_¢ |
e € &y} of the characterizing program of ¥:

e For each edge e of Gppn,1, we set #/(e) = xe, ¢

e For the unary edge {A} where A € T, set # ({A}) = 1 -
F¢(A). By the feasibility of {x, ¢ | e € &}, F¢(A) < 1;and
hence, # ({A}) > 0.

e For the unary edge {X;} where i € [a], set # ({X;}) =
1= F¢(Xi).

e For the binary edge {Y}, Z;} where j € [b], set # ({Y}, Z;}) =

1—Z¢(Y;), which must be equal to 1 —.%(Z;) by Lemma 7.8.

The weight of A under # equals exactly 1 for every A €
attset(2Lfing1) = J U H, namely, #' is an edge covering for Gppng.

By Lemma 3.2, | Join(2fina1)| is bounded by

a
1_[aI=F1(4) rl |:Re’€|xe.f 1—1 |Si|1—91(xi)
i=1

Aed ecY, j=1

= plISacy FiA) | g, Sy FeX) | 2EIL(-FY)) (39

Utilizing Lemmas 7.8 and 7.9, we can derive:
By N2 Lia (=T
By - 2D - AZ5- 22 max{ Fo(Y)). Fo(Z))}
= By ATia 22max{Fo(Y)). Fo(Z)}+ | Fo(Y))=Fo(Z))|
= By ATia0=F)+1-Fo(Z))
(u nxe) J2b-SL (FoV)+FoZ))
ec&*

Plugging the above into (32) and applying .#¢(X;) = %y(X;) for
each i € [a] (Lemma 7.8) yields:

(32) < nlT1-Zacy FiA) . ([nxe) ANHZacn FoA) (33

ecs*

IA

IA

By Property (1) of Lemma 7.2, every e € &* covers exactly one
attribute in . Thus:

Dixe=) FoA)=) FuA)
ees* Aeg Aedg
where the last equality used Lemma 7.8. Furthermore:
DAz Y D xe=) xe(lel-1)
AeH AceH ee&*:Ace ec&*

where the last equality used Property (3) of Lemma 7.2. Therefore,
from (33), we get

32) < nlIlAIHI-Zeese xe(lel-D)

b
rl |@j|1—91(Yj)

which completes the proof. O

By combining Lemmas 7.11, 7.6 and Propositions 7.10 and 7.5,
we conclude the proof of Lemma 7.2.

8 AN MPC JOIN ALGORITHM

Next, we will describe our MPC algorithm for answering an arbi-
trary query 2. It suffices to consider that 2 is clean (Section 3.1)
because otherwise 2 can be converted to a clean query with the
same result in load O(n/p) [14].

Specifically, we will fix an arbitrary plan P of 2, and explain
how to compute
2" (H,h) =
full config. (H, h) of P

9'(H, h)
full config. (H, h) of P
where the equality is due to Proposition 6.1. By taking the union
of the above for every P, we obtain the final result Join(2)
(Lemma 5.2). We will prove an identical upper bound on the load for
all P. Since 2 has O(1) plans, processing all of them concurrently
can increase the load only by a constant factor.

We will first discuss the scenario where 2 is unary-free. Extend-
ing the algorithm to allow unary relations is easy, as will be shown
in Appendix G.

From now, we will fix
1 = pl/(mﬁ)_ (34)

In general, it holds that®
k<ap<ag (35)

where p is the fractional edge covering number of 2. By Proposi-
tion 5.1, the number of full configurations of P is at most

ANHI ¢ gk = pklad) <

Without loss of generality, we assume that, given a tuple u in any
input relation of 2, the machine can identify all heavy values and
value-pairs contained in u. This can be achieved with the techniques
of [11] which essentially sort the input relations a constant number
of times, incurring an extra load of O(n/p).

Step 1: Generating the input relations of the residual queries.
Recall (from Section 5) that a residual query 2’(H, h) is defined
for every full configuration (%, h). Denote by nq, j, the input size
of 2'(H, h). All the ng j, values can be obtained with sorting and
broadcast to all machines in load O(p + n/p) = O(n/p).

We allocate
A
O(n - 1k-2)
machines to store the relations of 2’(H, h). By Corollary 5.4, the

total number of machines needed is at most p. The number of tuples
received by each machine is bounded by

k=2
ol™m| _ 5 n- k=2 _olme ol
Pyn P P I

©The first inequality is by Lemma 3.1, and the second is due to fact p < ¢ (shown in
the proof of Lemma 4.3).

Pyp = P

where the last equality used (35).

Step 2: Simplifying the residual queries. In this step, for each
Q' (H, h), its pﬁH h assigned machines work together to produce
the simplified residual query 2" (H, h) as given in (18). This re-
quires only set intersection (for (14)) and semi-join reduction (for
(15)), both of which can be performed with load O(nq{’h/p,’]_{’h) =

O(n/p*(*?)) [14]. After this, the size of CP(2//(H, h)) is known
for each (H, h); those at most p CP sizes are broadcast to all p
machines with load O(p) = O(n/p).

Step 3: Computing the simplified residual queries. For each
(H, h), we allocate

|CP(2%)(H. b))
OA*@=IITD-IL\T] . nlT1y

_ofatlp Y
non-empty J C I
machines to process 2’/(H, h), where Q:,’T(‘H, h) is defined in (19).
By Theorem 7.1 and the fact 2(7.,’,,)/““ < AHIHILL < jk < P,
we can adjust the hidden constants to make sure ¥4 p) p;:[p <SP

144
Py p

LEMMA 8.1. 2" (H, h) can be answered with load O(n/pz/(“¢))
using py/ , machines.

Proor. jJoin(2”(H,h)) is the cartesian product of

CP(2//(H.h)) and Join(2}f, (H.0). 1 T # 0, use pf}, , /AL

machines to compute CP(Q’I’ (H, h)). By Lemma 3.3, the load is

|CP(2'(H, k)| /I
(P)I/JI

(37)
AL

for some non-empty J C 7. (36) guarantees that
|CP(222(H,)
P ST DT - pl)

o _
Pyp =€

with which we can derive

/1(1(</>*L7‘|L)/:|V|+IJ\ a’(q;—“l}'fl\)

_ A n- y _ = n P adld = n
(37)_0(P11)‘O(pl/1T])‘O(p1/¢)
which is O(n/pz/(a¢)) because a > 2. Regarding Ql’itght(w’ h), all of

its relations are two-attribute skew free if a share of 1 is assigned to

each attribute in £ \ 7. By Lemma 3.5, Qz'{gm(% h) can be solved

with load O(n/A2) = é(n/pz/(“¢)) using AL\ T machines.

By combining the above with Lemma 3.4, we conclude that
Join(2”(H, h)) can be computed with load é(n/pz/(“¢)) using
(pﬁ,f{ h//l‘L\ﬂ) AL = p(’}’{ A machines. O

Combining the above with Appendix G for handling queries
with unary relations, we have established:

THEOREM 8.2. There exists an MPC algorithm that answers a query
2 with load O(n/p*(@9)), where n is the input size of 2, p is the
number of machines, « is given in (2), and ¢ is the generalized vertex-
covering number of 2.

(36)

When « = 2, the fractional edge covering number p of 2 equals
¢ (Lemma 4.2); therefore, our algorithm achieves the optimal load
On/p!/»).

9 UNIFORM QUERIES

We can strengthen Theorem 8.2 when 2 is a-uniform:

THEOREM 9.1. There exists an MPC algorithm that answers an
a-uniform query with a > 2 using load O(n/p?/(@$=2+2)) where
the meanings of n, p, a, and ¢ are the same as in Theorem 8.2.

We will prove the theorem by adapting the algorithm in the
previous section. The first change is to set A higher:
1
A = pad-arz, (38)
In Step 1, we set
L)
O(n - Ak-a)

Corollary 5.4 ensures that still at most p machines are necessary.

The load becomes:
n- Ak—a
=0
P

PROPOSITION 9.2. (39) is bounded by O(n/p?/(@$-2+2)).

Pyp = P

N, h

(39)

!
Py p

Proor. With the A in (38), we only need to prove:
k—a+2 .

ap—a+2
which is true because of (35). O

Step 2 requires no changes and entails a load of O(Z?”' + Iﬂ))
H,h

which is bounded by (39). Step 3 also proceeds in the same ‘manner
as in Section 8, but Lemma 8.1 can be improved to:

LEMMA 9.3. We can answer 2" (H, h) in load é(n/pz/("“{”“*z))
usingp;fl p Mmachines, wherep(’}'{ p is given in (36).

Proor. If || > 0, use pﬁ”{h//lw\f' machines to compute
CP(Q:T’(W, h)). The load is now
a(g-1T1)

5 2 {@g-ara 7]

n- <[n-p ap-a+2)- ~ n

6 -6 =0 ——M—
a(p-|T1)

(P11) (P11) (Pg—ww)

for some non-empty J <€ 7. To bound the above with
O(n/p*/(@$=a+2) it suffices to show:

1 a¢ - 19D S 2

m_(a¢—a+2)-|j| ap—a+2
Sap-a+2-alg-1TJ) = 2T
o (J-Da-2) > 0

which is true.

The rest of the proof proceeds as in Lemma 8.1. Given AL
machines, Ql'i’ght(‘H, h) incurs load O(n/A2) = é(n/pz/(“¢_“+2)).
Lemma 9.3 then follows from an application of Lemma 3.4. O

The proof of Theorem 9.1 is now complete. By combining the
theorem with Lemma 4.3, we have:

COROLLARY 9.4. There exists an MPC algorithm that answers a
symmetric query 2 using load O(n/pz/(k_“+2)), where the meanings
ofn, p, & > 2 are the same as in Theorem 9.1, and k = |attset(2)|.

ACKNOWLEDGMENTS

Miao Qiao was patially supported by Marsden Fund UOA1732 from
Royal Society of New Zealand, and the Catalyst: Strategic Fund NZ-
Singapore Data Science Research Programme UOAX2001, from the
Ministry of Business Innovation and Employment, New Zealand.
Yufei Tao was partially supported by GRF grant 14207820 from
HKRGC and a research grant from Alibaba Group.

REFERENCES

[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin,
and Avi Silberschatz. 2009. HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads. Proceedings of the VLDB
Endowment (PVLDB) 2, 1 (2009), 922-933.

[2] Foto N. Afrati, Manas R. Joglekar, Christopher Ré, Semih Salihoglu, and Jeffrey D.
Ullman. 2017. GYM: A Multiround Distributed Join Algorithm. In Proceedings of
International Conference on Database Theory (ICDT). 4:1-4:18.

[3] Foto N. Afrati and Jeffrey D. Ullman. 2011. Optimizing Multiway Joins in a
Map-Reduce Environment. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 23, 9 (2011), 1282-1298.

[4] Albert Atserias, Martin Grohe, and Daniel Marx. 2013. Size Bounds and Query
Plans for Relational Joins. SIAM Journal of Computing 42, 4 (2013), 1737-1767.

[5] Paul Beame, Paraschos Koutris, and Dan Suciu. 2014. Skew in parallel query
processing. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS). 212-223.

[6] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication Steps for
Parallel Query Processing. Journal of the ACM (JACM) 64, 6 (2017), 40:1-40:58.

[7] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 137-150.

[8] Xiao Hu. 2021. Cover or Pack: New Upper and Lower Bounds for Massively
Parallel Joins. Accepted to appear in PODS (2021).

[9] Xiaocheng Hu, Miao Qiao, and Yufei Tao. 2016. I/O-efficient join dependency
testing, Loomis-Whitney join, and triangle enumeration. Journal of Computer
and System Sciences (JCSS) 82, 8 (2016), 1300-1315.

[10] Xiao Hu and Ke Yi. 2019. Instance and Output Optimal Parallel Algorithms for
Acyclic Joins. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS). 450-463.

[11] Xiao Hu, Ke Yi, and Yufei Tao. 2019. Output-Optimal Massively Parallel Algo-
rithms for Similarity Joins. ACM Transactions on Database Systems (TODS) 44, 2
(2019), 6:1-6:36.

[12] Bas Ketsman and Dan Suciu. 2017. A Worst-Case Optimal Multi-Round Algo-
rithm for Paralle] Computation of Conjunctive Queries. In Proceedings of ACM
Symposium on Principles of Database Systems (PODS). 417-428.

[13] Bas Ketsman, Dan Suciu, and Yufei Tao. 2020. A Near-Optimal Parallel Algorithm

for Joining Binary Relations. CoRR abs/2011.14482 (2020).

Paraschos Koutris, Paul Beame, and Dan Suciu. 2016. Worst-Case Optimal Algo-

rithms for Parallel Query Processing. In Proceedings of International Conference

on Database Theory (ICDT). 8:1-8:18.

[15] Paraschos Koutris and Dan Suciu. 2011. Parallel evaluation of conjunctive queries.

In Proceedings of ACM Symposium on Principles of Database Systems (PODS). 223~

234.

Hung Q. Ngo, Ely Porat, Christopher Re, and Atri Rudra. 2018. Worst-case

Optimal Join Algorithms. Journal of the ACM (JACM) 65, 3 (2018), 16:1-16:40.

[17] Hung Q. Ngo, Christopher Re, and Atri Rudra. 2013. Skew strikes back: new

developments in the theory of join algorithms. SIGMOD Rec. 42, 4 (2013), 5-16.

Rasmus Pagh and Francesco Silvestri. 2014. The input/output complexity of

triangle enumeration. In Proceedings of ACM Symposium on Principles of Database

Systems (PODS). 224-233.

[19] Edward R. Scheinerman and Daniel H. Ullman. 1997. Fractional Graph Theory: A

Rational Approach to the Theory of Graphs. Wiley, New York.

Yufei Tao. 2020. A Simple Parallel Algorithm for Natural Joins on Binary Relations.

In Proceedings of International Conference on Database Theory (ICDT). 25:1-25:18.

[21] Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.
In Proceedings of International Conference on Database Theory (ICDT). 96-106.

[14

[16

[18

[20

APPENDIX
A PROOF OF LEMMA 3.5

Denote by actdom the set of values that appear in the relations
of 2. Let R be an arbitrary relation in 2. Assume, without loss
of generality, that scheme(R) = {Aj1, ..., A, } where r = arity(R).
Define p; as the assigned share of A;, for each i € [r]. Choose
independent and perfectly random hash functions Ay, ..., h, such
that h; maps actdom to [p;]. Allocate each tuple u € R to the bin
(h1(ay), ..., hr(ar)) where (ay, ..., ar) = (u(Aq), ..., u(Ay)).

LEmMA A.1(THEOREM 3.2 OF [6]). IfR is skew free, the probability
that every bin is allocated O(n/[1}_, p;) tuples of R is at least 1-1/p°©
where the constant ¢ can be arbitrarily large.

Now, consider r > 2 and that R is not skew free, but:

e R has at most n/p; tuples that agree on Ay;

e R has at most n/py tuples that agree on Ay;

o R has at most n/(p1p2) tuples that agree on A; and A simul-
taneously.

LEMMA A.2. Subject to the above conditions, the probability that
every bin is allocated O(n/(p1p2)) tuples of R is at least 1 — 1/p°
where the constant ¢ can be arbitrarily large.

Proor. Define p; = p1, p; = p2, and p; = 1 forall i € [3,r].
Let us re-assign attribute A; a share of p] for each i € [r]. The
stated conditions indicate that R is skew free under the shares
p{, ... py. Allocate each tuple (ay, ..., ar) in R to the two-attribute
bin (hi(a1), hz(az)). By Lemma A.1, with probability at least 1-1/p€,
each two-attribute bin is allocated O(n/ (p1p2)) tuples.

Lemma A.2 then follows from the fact that each bin (x1, x2, ..., x)
is allocated a subset of the tuples allocated to the two-attribute bin
(x1,x2). o

Lemma A.2 implies:

CoRrOLLARY A.3. IfR has arityr > 2 and is two-attribute free, the
probability that every bin is allocated

O(min L)
i,jelr] pipj
i#j

tuples of R is at least 1 — 1/p° where the constant ¢ can be arbitrarily
large.

The BinHC algorithm answers 2 as follows. For every A €
attset(2), it chooses an independent and perfectly random hash
function h4 that maps actdom to [p4]. A bucket is a function b :
attset(2) — [p] subject to the constraint that b(A) € [pa] for each
A € attset(2). Due to (5), the number of distinct buckets is at most
p. Assigning a machine to each possible bucket, BinHC solves £ in
two steps:

(1) For every relation R € 2, send each tuple u € R to every
machine responsible for a bucket b satisfying the condition
that b(A) = ha(u(A)) for all A € scheme(R).

(2) Each machine generates the maximum subset of Join(2)
that can be produced from the data received.

By Corollary A.3 (for non-unary relations) and Lemma A.1 (for
unary relations), the load is at most (8).

B PROOF OF LEMMA 5.2

It is obvious that the right hand side of (13) is a subset of the left
hand side. Next, we will prove the opposite: any tuple u € Join(2)
must be produced by the right hand side.

Given u, we construct a plan P and its corresponding H as
follows:
1. $1=0,5=0
2. S = attset(2)
3. while 3 X € S such that u(X) is heavy do
4. add X to S, and remove X from S
5. while Jdistinct Y, Z € S s.t. (w(Y),u(2)) is heavy do
6 add (Y, Z) to Sy (assuming Y < Z), and remove Y, Z from S
7. return P = (51, S;) and H = scheme(2)\ S

Set h = u[H]. We will show that u[attset(2) \ H] €
Join(2'(H, h)), which will complete the proof.

Consider an arbitrary edge e € & active on P. As u € Join(2),
we know ule] € R,. Asbefore, set e’ = e\ H. To prove u attset(2)\
H] € Join(2'(H, h)), it suffices to show that ule’] € R,(H, h). In
turn, to prove ule’] € R,(H, h), we must establish two facts:

e for any attribute A € e’, u(A) is light;

e for any distinct attributes A, B € ¢’, (u(A), u(B)) is light.
The first bullet holds because otherwise A would have been added
to S; at Line 4. The second bullet also holds because otherwise
(A, B) (assuming A < B) would have been added to S, at Line 6.

C PROOF OF PROPOSITION 6.1

Let u be a tuple output by 2'(H,h). We will prove u €
Join(2"'(H, h)). Consider an arbitrary orphaned vertex A. For each
orphaning edge e of A, we must have ule] € R,(H, h); therefore,
u(A) € RY(H, h). This further implies that, for every edge e of &
such that e \ H is non-unary, u[e \ H] € R,/ (H, h). It thus follows
that u € Join(2" (H, h)).

Conversely, let u be a tuple output by 2’ (H, h). We will prove
u € Join(2’'(H, h)). This means that, for every orphaned vertex
A, we must have u(A) € R’ (H, h). Thus, for each orphaning edge
e of A, it holds that u[e] € R, (H, h). Consider an arbitrary edge
e of 4 such that e \ ‘H is non-unary. Clearly, ule \ H] appears
in R (‘H, h), which ensures u[e] € R,(H, h). It thus follows that
u € Join(2'(H, h)).

D PROOF OF LEMMA 7.3

Consider an edge e € &. As |e| < a, we have

le|]-1 «

EREESE (40)

As {x. | e € &} is a feasible assignment for the characterizing
program, Y\.cg.ace Xe < 1holds for every A € V. Hence:

k=lgl = 31

A¢T

2 Z Z xe=Z|e\j|'xe
A¢J ec&:Ace ecs

= D lelxe+ D (el-1x
ec&:eNng=0 eeS:eNJ#0

where the last equality used Property (1) of Lemma 7.2. With the
above, we can derive

1
k=1F1+— D (=1 x

ec&:eNJ+0

1
> > xlel+ >0 (lel-Dxe (1 + ﬁ)
ee&:eNng=0 ec&:eNJ+0
lel-1 « a
> xele| D xellel-1)—
le] a-1 a-1
ec&:eNng=0 ee&:eNJ#0
(applied (40))
24 e [24
= D xellel -1 —— =9 —.
a-—1 a-—1
ecs

Multiplying both sides by a — 1, we have:
@-Dk=1Th+ D, (el-1-x

ec&:eNnJ#0

pa

\

= k-9a

where the last equality used Lemma 4.1. Therefore:

ka —k—|Tla+ ||+ Z (lel = Dxe > ka — pa.
ee&*

Re-arranging the terms proves the lemma.

E PROOF OF PROPOSITION 7.5

Clearly:

> ler(esaem) = Y |er(2geim) x|,
full config. full config.
(H, h) of P (H, h) of P

Thus, we only need to prove:

g cp(g:,}(w,h))x{h}gcp(ghmy)mjom(g*). (41)
full config.
(H, h) of P

Fix any (H,h) of P. Let u be an arbitrary tuple in
CP(QE’T('H, h)) x {h}. We will show that u € CP(Zpeqry) >
Join(2%), which will complete the proof.

Consider attribute X; for any i € [a]. By definition of h, u(X;) =
h(X;) must be heavy. Hence, u(X;) € §;. Likewise, consider at-
tributes Y; and Z; for any j € [b]. By definition of h, (h(Y;), h(Z}))
must be heavy while both h(Y;) and h(Z;)) must be light. Therefore,
(w(¥).u(Z)) = (h(Y)). h(Z))) € D.

Consider an arbitrary edge e € &*. Let A be the (only) isolated
vertex in e (Property (1) of Lemma 7.2). Note that e\ {A} C H (Prop-
erty (2) of Lemma 7.2), and that e is an orphaning edge of A (Sec-
tion 6). The factu € CP(Q}(‘H, h))x {h} tells us u(A) € R’/(H, h)
(Section 6). By (15), this indicates u[e] € R,(H, h) (Section 5), and
hence, ufe] € Re.

We have shown that u[scheme(R)] € R for every relation R
involved on the right hand side of (41). It thus follows that u €
CP(Qheavy) »< Join(2%).

F PROOF OF PROPOSITION 7.10

It is obvious that Join(Zgna) S CP(Lheavy) > Join(2p). Next,
we will prove that the opposite is also true. Let u be a tuple in
CP(Zheavy) »< Join(Zg). For each A € I, u(A) must appear in
some input relation of 2, which means u(A) € U4. It thus follows
that u(A) € Join(2gnar)-

G QUERIES WITH UNARY RELATIONS

A unary relation R € 2 can be of two types:

e non-isolated: 2 contains another relation R’ such that
scheme(R) C scheme(R');
e isolated: no such R’ exists.

As shown in [11, 14], all the non-isolated unary relations can be
eliminated with load O(n/p). Henceforth, we will assume that all
unary relations are isolated.

Let g be the number of (isolated) unary relations which are
denoted as Ry, ..., Ry, respectively. Define 2 =2\ {Ry,..., Rg};
2’ is a query without isolated relations. We have:

Foin(2) = Foin(2') x (R1 x ... x Ry).

Let ¢ and ¢’ be the generalized vertex packing numbers of 2 and
2’, respectively. It is easy to verify by definition that

$ = ¢ +g.

Given p; machines, our algorithm in Section 8 computes
Join(2’) with load é(n/pf/(aqy)). By Lemma 3.3, R; X ... X Ry
can be computed with load O(n/ p;/ 9) using p, machines. Setting

p = P¢//¢
po = pIl?

we can apply Lemma 3.4 to obtain Join(2) with load

~ n
Ol ——==—
min{p ¢ ,p¢}

using p1ps = p machines. The above is bounded by O(n/p?/(#9))
because o > 2.

H EDGE QUASI-PACKING NUMBER

Consider a hypergraph ¢ = (V, &) without exposed vertices (Sec-
tion 3.1). Given a subset U of V, denote by ¢_q, the graph obtained
by removing U from ¥, or formally: 4_q; = (V \ U, &_q;) where
& q ={e\U|ee &ande\ U # 0}. The edge quasi-packing
number Y(¥) of 4 equals

max 7(9_q)
Uucv u

where 7(¢_qy) is the fractional edge-packing number of ¢_q; (Sec-
tion 3.1).

Example. Let & be the graph in Figure 1(a). Consider a set U which
includes all attributes except D, G, and H. ¥4, contains 8 unary edges:
{A}, {B}, {C}, {E}, {F}, {1}, {7}, and {K}. Consider the fractional
edge packing # that maps these edges to 1, and the other edges
of ¥q; to 0. # has a weight of 8. We can therefore conclude that
Y(9) > 8. O

We now echo the claim in Section 1.3 that if 2 is a k-choose-a
join, then ¥(2) > k — a + 1. Let Ay, ..., Ag be the attributes in
attset(2), and 4 = (V, &) be the hypergraph of 2. Consider a set
U ={A1,...,Ag_g+1} Foreachi € [k—a+1], 9q contains a unary
edge {A;} (shrunk from the edge {A;, Ax_q+2, Ak—g+3s - Ax } In
%). Thus, ¥4, admits a fractional edge packing % that maps only
the k — o + 1 edges {A1}, {A2}, ..., {Ag_g+1} to 1, and the other
edges to 0. It thus follows that /(2) > 1(Yq) =k —a + 1.

