
Two-A�ribute Skew Free, Isolated CP Theorem, and
Massively Parallel Joins

Miao Qiao
University of Auckland
Auckland, New Zealand

miao.qiao@auckland.ac.nz

Yufei Tao
Chinese University of Hong Kong

Hong Kong, China
taoyf@cse.cuhk.edu.hk

ABSTRACT

This paper presents an algorithm to process a multi-way join with

load Õ(n/p2/(αϕ)) under the MPC model, where n is the number of

tuples in the input relations, α the maximum arity of those relations,

p the number of machines, and ϕ a newly introduced parameter

called the generalized vertex packing number. The algorithm owes

to two new findings. The first is a two-attribute skew free technique

to partition the join result for parallel computation. The second is

an isolated cartesian product theorem, which provides fresh graph-

theoretic insights on joins with α ≥ 3 and generalizes an existing

theorem on α = 2.

CCS CONCEPTS

• Information systems → Join algorithms; • Theory of com-

putation →Massively parallel algorithms.

KEYWORDS

Joins; Conjunctive Queries; MPC Algorithms; Parallel Computing

ACM Reference Format:

Miao Qiao and Yufei Tao. 2021. Two-Attribute Skew Free, Isolated CP Theo-

rem, and Massively Parallel Joins. In Proceedings of the 40th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ’21),

June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3452021.3458321

1 INTRODUCTION

Massively-parallel computation systems such as Hadoop [7] and

Spark [1] are designed to leverage hundreds or even thousands of

machines to accomplish a computation task on data of a gigantic

volume. Performance bottleneck these systems is communication

rather than CPU computation. Understanding the communication

complexities of fundamental database problems has become an

active research area [2, 3, 5, 6, 10–12, 14, 15, 20].

1.1 Problem Definition

This paper studies parallel algorithms for processing natural joins.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS ’21, June 20–25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00
https://doi.org/10.1145/3452021.3458321

Joins. Denote by att a countably infinite set where each element is

an attribute. We will assume a total order on att, and use A ≺ B to

represent the fact “attribute A ranking before attribute B”. Denote

by dom an infinite set where each element is a value.

A tuple over a set U ⊆ att is a function u : U → dom. Alter-

natively, we may represent a tuple as (a1,a2, ...,a |U |) where ai is
the output of u on the i-th (1 ≤ i ≤ |U|) smallest attribute in U
(according to ≺). Given a non-empty V ⊆ U, define u[V] as the
tuple v over V such that v(X ) = u(X ) for every X ∈ V; we say

thatv is a projection of u.

A relation is a setR of tuples over the same setU of attributes.U
is the scheme of R, denoted as scheme(R) = U. Define arity(R) =
|scheme(R)|, referred to as the arity of R. R is unary if arity(R) = 1,

or binary if arity(R) = 2.

A join query is defined as a set Q of relations. The query result

Join(Q) is the relation:{
tuple u over a�set(Q)

�� ∀R ∈ Q, u[scheme(R)] ∈ R
}

where a�set(Q) = ⋃
R∈Q scheme(R). If Q includes only two rela-

tions R and S, we may also represent Join(Q) as R ⊲⊳ S. Define

n =

∑
R∈Q

|R|

k = |a�set(Q)| (1)

α = max
R∈Q

arity(R). (2)

In particular, n is the input size of Q. We will treat |Q | and k (hence,

α ) as constants, and assume α ≥ 2 (a query with α = 1 has been

optimally solved; see Section 3).

Computation model.We will work under the massively parallel

computation (MPC) model, which has become a standard model

for studying parallel join algorithms nowadays [6, 8, 11, 12, 14, 20].

At the beginning, the input relations of Q are distributed onto p

machines, each of which stores O(n/p) tuples. An algorithm can

perform only a constant number of rounds, each with two phases:

• Phase 1: Each machine performs local computation, and

prepares the messages to be sent to other machines.

• Phase 2: The machines exchange messages (which must be

prepared in Phase 1).

Each tuple in Join(Q)must reside on at least one machine when the

algorithm terminates. The load of a round is the maximum number

of words received by a machine in that round. The load of the

algorithm is the maximum load of all rounds. The main challenge

in algorithm design is to minimize the load.



load source remark

Õ(n/p
1

|Q| ) [3] the hyper-cube (HC) algorithm

Õ(n/p
1
k ) [6] the BinHC algorithm

Õ(n/p
1
ψ ) [14] the KBS algorithm;ψ = the edge quasi-packing number (Appendix H)

Õ(n/p
1
ρ ) [12, 20] ρ = the fractional edge-covering number (Section 3.1); the algorithm is applicable only to α = 2

Õ(n/p
1
ρ ) [8] for acyclic queries

Õ(n/p
2
αϕ ) ours ϕ = the generalized vertex-packing number (Section 4); the algorithm subsumes [12, 20] when α = 2

Õ(n/p
2

αϕ−α+2 ) ours for α-uniform queries

Õ(n/p
2

k−α+2 ) ours for symmetric queries

Table 1: Comparison of all the known generic algorithms

We assume p ≤ √
n. Unless otherwise stated, by “an algorithm

having load at most L”, we mean that its load is at most L with

probability at least 1− 1/pc where c > 0 can be set to an arbitrarily

large constant. Each value in dom is assumed to fit in a word.

Notation Õ(.) hides a factor polylogarithmic to p. Given an integer

x ≥ 1, [x] denotes the set {1, ...,x}.

1.2 Previous Work

Afrati and Ullman [3] developed the hyper-cube (HC) algorithm

that answers a query Q with load O(n/p1/ |Q |) deterministically.

Extending HC with random binning ideas, Beame, Koutris, and

Suciu [5] obtained the BinHC algorithm with load Õ(n/p1/k ).

Improving their earlier work [6], Koutris, Beame, and Suciu [14]

gave an algorithm — called KBS henceforth — with load Õ(n/p1/ψ ),
whereψ is the edge quasi-packing number of Q (Appendix H).

There has been work dedicated to queries involving only re-

lations with arity at most 2, due to their special importance in

subgraph enumeration1. Ketsman and Suciu [12] were the first to

solve such queries Q with load Õ(n/p1/ρ ), where ρ is the fractional

edge covering number of Q (Section 3.1). A simpler algorithm with

the same load was presented by Tao [20].

Recently, Hu [8] presented an algorithm for answering any

acyclic query2 with load Õ(n/p1/ρ ).

The above algorithms are generic because they support either

arbitrary queries [3, 14] or queries in a broad class [8, 12, 20]. There

are algorithms designed for specific joins, e.g., star joins [3], cycle

joins [14], clique joins [14], line joins [3, 14], Loomis-Whitney joins

[14], etc.

We refer the reader to [2, 10, 11] for algorithms that can achieve

a load sensitive to the output size |Join(Q)|.

On the lower bound side, Atserias, Grohe, and Marx [4] showed

that |Join(Q)| can reach Ω(nρ ) but is always bounded by O(nρ ).
This implies [14] that any algorithm must incur a load of Ω(n/p1/ρ )
in the worst case. Furthermore, Hu [8] proved that Ω(n/p1/τ ) is
another worst-case lower bound, where τ is the query’s factional

1Namely, find all the occurrences of a subgraph pattern in a graph.
2Specifically, alpha-acyclic queries, which generalize berge-acylic and r -hierarchical
queries.

edge packing number (Section 3.1); she also described a class of

queries whose τ values are strictly larger than ρ. It is clear from the

above discussion that the upper and lower bounds have matched

for (i) queries with α = 2 and (ii) acyclic queries. Matching the

lower bounds for an arbitrary query is still open.

The lower bounds mentioned earlier apply to algorithms that

perform an arbitrary (constant) number of rounds. In [14], Koutris,

Beame, and Suciu showed that Ω(n/p1/ψ ) is a lower bound for

single-round algorithms, subject to certain constraints.

Regarding other computational models, the (natural join) prob-

lem has been optimally settled in RAM [16, 17, 21], while external-

memory (EM; a.k.a. I/O-efficient) algorithms have been developed

for specific joins (see [9, 10, 18] and the references therein). There

exists a reduction [14] for converting an MPC algorithm to work

in the EM model. The reduction also applies to the algorithms

developed in this paper.

1.3 Our Results

We will describe an algorithm (Theorem 8.2) that answers an arbi-

trary query Q with load

Õ
(
n/p

2
αϕ

)
(3)

where α ≥ 2 is the maximum arity and ϕ is the generalized vertex

packing number of Q that will be formally introduced in Section 4.

For α = 2, ϕ can be proven equal to ρ; thus, our load matches the

lower bound Ω(n/p1/ρ ). For α ≥ 3, the algorithm improves the

previous work on certain (non-trivial) query classes.

One notable class is the k-choose-α join Q, which has
(k
α

)
re-

lations (recall that k is the number of attributes), each having a

scheme that is a unique combination of α attributes. Currently, the

best solution to a k-choose-α join with α ∈ [3,k − 2]3 is the KBS
algorithm [14], which (as mentioned) requires a load of Õ(n/p1/ψ ),
with the edge quasi-packing numberψ at leastk−α+1 (Appendix H).
On the other hand, Q has a generalized vertex packing number

ϕ = k/α (Section 4). The load of our algorithm is Õ(n/p2/k ), and is

already better than Õ(n/p1/(k−α+1)) for α < k/2 + 1.

3With α = k − 1, Q is the Loomis-Whitney join and has been solved optimally. The
case α ≤ 2 is left out because, in general, all queries with α ≤ 2 have been settled.
The case α = k is not interesting either because Q has only one relation.



We can in fact prove a stronger result. A more general class is

the α -uniform join, where all the relations in a query Q have arity

α . For such Q, the load of our algorithm can be further bounded as

(Theorem 9.1)

Õ
(
n/p

2
αϕ−α+2

)
. (4)

Hence, our load for a k-choose-α join is actually Õ(n/p2/(k−α+2)),
which strictly improves the KBS algorithm as long as α < k .

Yet another notable class is the symmetric join, each being an α-

uniform join Q with an additional constraint that each attribute in

a�set(Q) belongs to the same number of relations. The k-choose-α

join is a proper subset of the symmetric join. To see this, consider

the cycle join [14] where α = 2 and Q contains k relations with

schemes {A1,A2}, {A2,A3}, ..., {Ak−1,Ak }, {Ak ,A1}, respectively.
A cycle join is symmetric but not a k-choose-2 join if k > 3.

The value ϕ for a symmetric join is always k/α (Section 4).

By (4), our algorithm answers a symmetric query with load

Õ(n/p2/(k−α+2)). This has an interesting implication. In general,

ρ ≥ k/2 holds on all queries with α ≤ 2. Hence, a query on binary

relations must incur a load of Ω(n/p2/k ) (see the lower bound dis-

cussion in Section 1.2). As Õ(n/p2/(k−α+2)) is o(n/p2/k ) for α ≥ 3,

every symmetric query with α ≥ 3 is inherently easier than every

query with α ≤ 2 (and the same value of k). No existing algorithms

can achieve such a separation.

Table 1 presents a summary of our results in comparison with

the existing ones.

A lower bound remark. As mentioned, our algorithm is optimal

for α = 2. For α ≥ 3, the load of our algorithm in (3) cannot be

significantly improved in the following sense: no algorithm can

achieve a load ofo(n/p2/(αϕ)) in general. To explain, consider a class
of queriesQ constructed as follows. LetA1, ...,Ak/2 andB1, ...,Bk/2
be k ≥ 6 distinct attributes. Q has 2 + k/2 relations: (i) one with
scheme {A1, ...,Ak/2} and another with scheme {B1, ...,Bk/2}, and
(ii) a relation with scheme {Ai ,Bi } for each i ∈ [k/2]. For every
such Q, α = k/2 and ϕ = 2. As shown in [8], every algorithm

requires a load of Ω(n/p2/k ) processingQ. Notice that Ω(n/p2/k ) =
Ω(n/p2/(αϕ)), i.e., Ω(n/p2/(αϕ)) is also a lower bound on the load.

Our algorithm is thus optimal on this class of queries.

2 OVERVIEW OF OUR TECHNIQUES

We will first review two standard techniques and then discuss the

new techniques developed in this paper.

Standard 1: Skew free. Consider an arbitrary relation R ∈ Q and

any non-empty V ⊆ scheme(R). Given a tuple v over V , define

fV (v,R) as the number of tuples u ∈ R satisfying v = u[V]; we
will refer to fV (v,R) as theV-frequency ofv in R.

Suppose that we assign a share of pA ≥ 1 to each attribute

A ∈ a�set(Q) subject to
∏

A∈a�set(Q)
pA ≤ p. (5)

Relation R ∈ Q is skew free if

fV (v,R) ≤ n∏
A∈V pA

(6)

holds for every non-empty V ⊆ scheme(R) and any tuple v over

V . Q is skew free if all relations in Q are skew free.

Standard 2: BinHC and the heavy-light technique. Suppose

that the share pA of every attributeA ∈ a�set(Q) has been decided.

Beame, Koutris, and Suciu [6] proved that the BinHC algorithm

(Section 1.2) solves a skew free query with load

Õ

(
max
R∈Q

n∏
A∈scheme(R) pA

)
. (7)

When Q is not skew free, a common approach [12, 14, 20] is to

resort to the following algorithmic paradigm. First, design a number

of sub-queries. Then, choose the (attribute) shares appropriately

to make every sub-query skew free and, thus, solvable by BinHC.

What differentiates different algorithms is how to determine the

sub-queries such that they

• (Objective 1) together produce precisely Join(Q), and
• (Objective 2) incur a small load under BinHC.

Fulfilling these objectives is non-trivial. In [14], Koutris, Beame,

and Suciu presented a method that we refer to as the heavy-light

technique, as outlined below. Let λ > 0 be some real value. Call a

value x ∈ dom

• heavy, if there exist a relation R ∈ Q and an attribute A ∈
scheme(R) such that R has at least n/λ tuples u with u(A) =
x ;

• light, otherwise.

For every possibleU ⊆ a�set(Q), create a sub-query QU to pro-

duce all the tuples u ∈ Join(Q) such that u(A) is heavy if A ∈ U
or light otherwise. Clearly, there are 2k sub-queries (see (1) for k);

and the union of their results is Join(Q). This achieves Objective 1.

How about Objective 2? Let us fix a U ⊆ a�set(Q) and concen-

trate on an arbitrary relation R ∈ Q. As far as QU is concerned,

we only need to consider those tuples u ∈ R such that, for each

A ∈ scheme(R), u(A) is heavy if A ∈ U and light otherwise; denote

by R′ the set of such tuples. To apply BinHC on QU , we must set

the shares to make R′ skew free. This, however, can be difficult

because we do not have control over the V-frequency of a tuple

for any subsetV ⊆ scheme(R′) with |V| ≥ 2.

Koutris, Beame, and Suciu [14] circumvented the issue by setting

λ = p and fixing the share pA to 1 for each attribute A ∈ U.

Interestingly, R′ is guaranteed skew free regardless of the shares pA
of A < U. This follows from two observations: (i) trivially, every

heavy value can appear in at most |R′ | ≤ n tuples, and (ii) every

light value can belong to Õ(n/p) = Õ(n/∏A<U pA) tuples, noticing
that

∏
A<U pA ≤ p. The KBS algorithm achieves load Õ(n/p1/ψ )

by optimizing the shares pA of A < U.

The above approach fails to work for λ ≪ p, whereas we often

need λ = pc for some c < 1 to improve upon Õ(n/p1/ψ ). To deal

with the issue, Ketsman and Suciu [12] and Tao [20] refined the

heavy-light technique, but their refinement heavily relies on the

premise α ≤ 2.



A B
C

D=d E

F
G=g H=h

I

J K

A B

C
E

F I

J K

(a) The original query (ρ = ϕ = 5 andψ = 9) (b) A residual query for the plan ({D}, {(G, H)})

Figure 1: Illustration of the proposed techniques

New 1: Two-attribute skew free. For a relation R ∈ Q, the skew

free condition demands that V-frequencies be low for all non-

emptyV ⊆ scheme(R). The is a stringent requirement and limits

the applicability of BinHC.

Our first idea is to relax the requirement. We say that R is

two-attribute skew free as long as (6) holds for every non-empty

V ⊆ scheme(R) with |V| ≤ 2. Q is two-attribute skew free if all

its relations are two-attribute skew free. As will be proved later

(Lemma 3.5), a two-attribute skew free query Q can be answered

by BinHC with load

Õ
(
max
R∈Q

(
min

V⊆scheme(R)
|V |≤2

n∏
A∈V pA

))
. (8)

Relaxation of the skew free constraint is a matter of tradeoff. On

the one hand, the load in (8) is higher than (7); but on the other

hand, we gain greater flexibility in assigning shares. Fortunately,

we can compensate for the loss in (8) with an enhanced heavy-light

technique that is made possible by the new skew-free definition, as

outlined below.

New 2: Two-attribute heavy-light. Given a λ > 0, define a value

x ∈ dom to be light/heavy in the same way as before. In addition,

we say that a value pair (y, z) ∈ dom × dom is:

• heavy, if there exist a relation R ∈ Q and two distinct at-

tributes Y ,Z ∈ scheme(R) such that the {Y ,Z }-frequency of

tuple (y, z) in R is at least n/λ2;
• light, otherwise.

Define a plan as:

P =

(
{X1, ...,Xa }, {(Y1,Z1), ..., (Yb ,Zb )}

)
(9)

where a ≥ 0, b ≥ 0, X1, ...,Xa ,Y1, ...,Yb ,Z1, ...,Zb are distinct at-

tributes in a�set(Q), and Yj ≺ Z j for each j ∈ [b]. Since |a�set(Q)|
is a constant, only O(1) plans exist.

Let us concentrate on a plan P . Define H = {X1, ..., Xa , Y1,

..., Yb , Z1, ...,Zb }. We issue sub-queries to extract all the tuples

u ∈ Join(Q) satisfying:
• u(Xi ) is heavy for all i ∈ [a];
• u(A) is light for any attribute A < {X1, ...,Xa };
• (u(Yi ),u(Zi )) is heavy for all i ∈ [b].
• (u(A),u(B)) is light for any distinct attributes A,B < H .

The union of all sub-queries’ results is precisely Join(Q)
(Lemma 5.2).

For an illustration, Figure 1(a) shows a queryQ with a�set(Q) =
{A, B, ..., K}. Each segment represents a binary relation, e.g., {A, G}.
Each ellipse represents a relation of arity 3, e.g., {A, B, C}. Q has

thirteen binary relations and three arity-3 relations.

Consider the plan P = ({D}, {(G, H)}). Each sub-query Q′ issued
for P assigns (i) a heavy value — assumed d below — to D, and (ii) a

heavy value pair — assumed (g, h) — to (G, H). Q′ returns all and
only the tuples u ∈ Join(Q) such that:

• u(D) = d;

• (u(G),u(H)) = (g, h);
• u(A) is light for every attribute A ∈ {A, B, C, E, F, G, H, I, J, K}
(this implies that both g and h are light);

• (u(A),u(B)) is light for any distinct attributes A,B ∈ {A, B,
C, E, F, I, J, K}.

The relations in Q′ only need to contain the relevant tuples. For

example, let R{G,J} be the relation in Q with scheme {G, J}. In
Q′, the corresponding relation R′

{G,J} includes only the tuples

v ∈ R{G,J} such that v(G) = g and v(J) is light. As another ex-
ample, let R{A,B,C} be the relation in Q with scheme {A, B, C}. The
corresponding relation R′

{A,B,C} in Q′ includes only the tuples

v ∈ R{A,B,C} such that v(A), v(B), v(C) are light, and so are the

value pairs (v(A),v(B)), (v(B),v(C)), (v(A),v(C)).

Since attributes D, G, and H have been fixed to specific values,

they can be removed, giving rise to a residual query as is shown in

Figure 1(b). The 3-arity relation with scheme {C, D, E}, for instance,
now becomes a binary relation with scheme {C, E}. Similarly, three

isolated unary relations (on attributes F, J, and K) have been created.

We resolve this residual query in three (conceptual) steps:

(1) (Non-unary join) compute J1, the join result of the non-

unary relations with schemes {A, B, C}, {C, E}, and {E, I}.
(2) (Isolated CP) compute J2, the cartesian product (CP) of the

three isolated unary relations.

(3) (Final CP) compute J1 × J2, the result of the residual query.

Set λ =p1/(αϕ) (ϕ is the generalized vertex-packing number ofQ;

Section 4). By assigning a share λ to each attribute in {A, B, C, E, I},
we guarantee that every non-unary relation is two-attribute skew free.

Hence, BinHC can be used to perform Step (1) with load Õ(n/λ2) =
Õ(n/p2/(αϕ)), by virtue of (8).

Ensuring load Õ(n/p2/(αϕ)) for Steps (2) and (3), however, re-

quires new insight into the mathematical structure of the problem,

as explained next.



New 3: A new isolated cartesian product theorem. The load

of Steps (2) and (3) critically depends on |J2 |, namely, the CP size of

the isolated unary relations (e.g., those on F, J, and K in Figure 1(b)).

If |J2 | were small for every residual query of the plan P , we could

bound the load to be Õ(n/p2/(αϕ)) easily. Unfortunately, this is not
true: |J2 | can vary significantly for different residual queries.

We will establish an isolated cartesian product theorem, showing

that the average |J2 | of all residual queries dedicated to P is suffi-

ciently small. This permits global optimization to allocate more

(resp. less) machines to those residual queries with larger (resp.

smaller) |J2 |, thereby guaranteeing a load of Õ(n/p2/(αϕ)) for every
residual query. The theorem generalizes an earlier result on binary

relations in [13, 20]. Its establishment, which constitutes the most

important technical contribution of this paper, owes heavily to the

newly introduced ϕ. Our argument is considerably different from

(and actually subsumes) the ones in [13, 20], and sheds new light

on the join problem.

3 PRELIMINARIES

3.1 Hypergraphs & Edge Coverings/Packings

A hypergraph G is a pair (V,E ) such that (i)V is a finite set where

each element is a vertex, and (ii) E is a set of hyperedges — or just

edges — each being a non-empty subset ofV . For each e ∈ E , the

size |e | is the edge’s arity; and e is unary if |e | = 1. A vertex inV is

exposed if it belongs to no edges. Our discussion will concentrate

on hypergraphs without exposed vertices.

Let W be a function mapping E to values in [0, 1]. We call W (e)
the weight of e ∈ E (under W ) and

∑
e ∈E W (e) the weight of W .

Given a vertex X ∈ V , we call
∑
e ∈E :X ∈e W (e) the weight of X

(under W ). W is a fractional edge covering of G if the weight of

every vertexX ∈ V is at least 1. The fractional edge covering number

of G — denoted as ρ(G ) — is the minimum weight of all fractional

edge coverings of G . W is a fractional edge packing of G if the

weight of every vertex X ∈ V is at most 1. The fractional edge

packing number of G — denoted as τ (G ) — is the maximum weight

of all fractional edge packings of G .

Example. The hypergraph G in Figure 1(a) has a fractional edge

covering number ρ(G ) = 5, achieved by the function W that maps

{D, K}, {G, J}, {I, E}, {A, B, C}, and {F, G, H} to 1, and the other edges to

0. G has a fractional edge packing number τ (G ) = 4.5, achieved by

the function W that maps {D, H}, {D, K}, and {K, H} to 0.5, {E, I}, {G, J},

and {A, B, C} to 1, and the other edges to 0. �

Lemma 3.1. If α = maxe ∈E |e |, then α · ρ(G ) ≥ |V|.

Proof. Let W be a fractional edge covering of G with the min-

imum weight. Thus, α · ρ(G ) = α ∑
e ∈E W (e) ≥ ∑

e ∈E |e |W (e) =∑
X ∈ |V |

∑
e ∈E :X ∈e W (e) ≥ ∑

X ∈ |V | 1 = |V|. �

Given a subset U of V , we define the subgraph induced by U
as the hypergraph (U,E ′) where

E
′
= {U ∩ e

�� e ∈ E ∧U ∩ e , ∅}.

3.2 Query Hypergraph and AGM Bound

We say that a query Q is clean if no two relations in Q share the

same scheme. A clean Q defines a hypergraph G = (a�set(Q),E )
where E = {scheme(R)

�� R ∈ Q}. For each edge e ∈ E , let Re
represent the relation R ∈ Q with e = scheme(R).

Lemma 3.2 ([4]). Let W be a fractional edge covering of the hy-

pergraph G = (a�set(Q),E ) defined by a clean query Q. Then,

|Join(Q)| ≤ ∏
e ∈E |Re |W (e).

The above is commonly known as the AGM bound.

3.3 MPC Building Blocks

Cartesian products (CP). Consider a query Q = {R1,R2, ...,Rt }
with t ≥ 2 where the relations have mutually disjoint schemes.

Thus, Join(Q) = R1 × R2 × ... × Rt ; we will use CP(Q) as an
alternative representation of this cartesian product.

Lemma 3.3 ([13]). We can compute CP(Q) with load

O
©­«

max
non-empty Q

′ ⊆ Q

|CP(Q′)|
1

|Q′ |

p
1

|Q′ |

ª®¬
(10)

using p machines.

Lemma 3.4 ([12, 13]). Q1 and Q2 are queries whose input sizes

are bounded by N . If

• Join(Q1) can be computed with load Õ(N /p1/t11 ) using p1
machines and

• Join(Q2) with load Õ(N /p1/t22 ) using p2 machines

then we can compute Join(Q1) × Join(Q2) using p1p2 machines with

load Õ(N /min{p1/t1 ,p1/t2 }).
Skew-free queries. Suppose that we have assigned a share pA to

every attribute A ∈ a�set(Q) subject to the condition in (5). In

Appendix A, we prove:

Lemma 3.5. When Q is two-attribute skew free (Section 2), the

BinHC algorithm of [6] answers Q with a load not exceeding (8),

repeated here for the reader’s convenience:

Õ
(
max
R∈Q

(
min

V⊆scheme(R)
|V |≤2

n∏
A∈V pA

))
.

4 GENERALIZED VERTEX PACKINGS

Let F be a function mapping V to the values in (−∞, 1] (note
that the output of F can be negative). Define the weight of F as∑
X ∈V F (X ). For each edge e ∈ E , we call

∑
X ∈e F (X ) the weight

of e (under F ).

We say that F is a generalized vertex packing of G if the weight

of every edge e ∈ E is at most 1. The generalized vertex-packing

number of G — denoted as ϕ(G ) — is the maximum weight of all

the generalized vertex packings of G .

Example. The hypergraph G in Figure 1(a) has a generalized vertex

packing number ϕ(G ) = 5, as is given by the function F that maps

B to −1, D, E, G, and H to 0, and the other vertices to 1. �

Next, we will prove several properties that will be useful to

our analysis. Our discussion will revolve around a special linear

program about G :



The characterizing program of G

Variables: xe for each e ∈ E

Maximize:
∑
e ∈E xe (|e | − 1) subject to

• for each A ∈ V ,
∑
e ∈E :A∈e xe ≤ 1, and

• for each e ∈ E , xe ≥ 0.

The above program is always feasible (e.g., setting xe = 0 for all

e ∈ E ), and is always bounded (the first bullet implies xe ≤ 1). It

thus has an optimal solution, which we denote as ϕ(G ).

Example. For the hypergraph G in Figure 1(a), an optimal solution

to the characterizing program sets xe to 1 for e = {A, B, C}, {F, G, H},
{D, K}, and {E, I}, and to 0 for the other edges. This assignment

achieves the value ϕ(G ) = 6 for the objective function. �

Lemma 4.1. ϕ(G ) + ϕ(G ) = |V|.

Proof. Consider the dual of the characterizing program:

Variables: yA for each A ∈ V
Minimize:

∑
A∈V yA subject to

• for each e ∈ E ,
∑
A∈e yA ≥ |e | − 1, and

• for each A ∈ V , yA ≥ 0.

By the duality of linear programming (LP), the optimal value of the

objective function in the dual program is identical to that in the

characterizing program.

Let F be a generalized vertex packing of G of the maximum

weight. Define yA = 1 − F (A) for each A ∈ V . We will prove that

the assignment {yA | A ∈ V} must be an optimal solution of the

dual program, i.e., ϕ(G ) = ∑
A yA.

For each e ∈ E , ΣA∈eyA = ΣA∈e (1−F (A)) = |e |−∑
A∈e F (A) ≥

|e | − 1. This, together with the fact that yA ≥ 0 for all A ∈ V ,

indicates that {yA | A ∈ V} is a feasible assignment (for the dual).

Suppose that there is another a feasible assignment {y′
A

|
A ∈ V} able to make the objective function even lower, namely,∑
A y

′
A
<

∑
A yA. Let us design a function F ′ by setting F ′(A) =

1 − y′
A
for each A ∈ V . Clearly, F ′(A) ≤ 1 for every A ∈ V .

Furthermore, for each e ∈ E ,
∑
A∈e F ′(A) = ΣA∈e (1 − y′

A
) =

|e | − ΣA∈ey′A ≤ 1. Therefore, F ′ is a generalized vertex packing.

However,
∑
A F ′(A) = ∑

A(1 − y′
A
) > ∑

A(1 − yA) =
∑
A F (A),

which contradicts the definition of F .

It follows from the above discussion that ϕ(G ) = ∑
A yA =∑

A(1 −F (A)) = |V| −∑
A F (A) = |V| −ϕ(G ), which establishes

the lemma. �

Lemma 4.2. If every edge in G contains two vertices, ϕ(G ) = ρ(G ).

Proof. When |e | = 2 for every e ∈ E , ϕ(G ) is exactly the

fractional edge packing number τ (G ) (Section 3.1). As proved

in Theorem 2.2.7 of [19], such a G must have the property that

ρ(G ) + τ (G ) = |V|. The lemma thus follows from Lemma 4.1. �

Lemma 4.3. If G is the hypergraph defined by a symmetric query

Q, ϕ(G ) = k/α , where α and k are given in (1) and (2), respectively.

Proof. We will prove:

ρ(G ) + ϕ(G ) ≤ k (11)

which will establish the lemma by the following argument. Assume

without loss of generality that every vertex in G is covered by

c edges. The number of edges in G must be ck/α . Consider the
function W that maps each edge to 1/c . W is clearly a fractional

edge covering with weight k/α . On the other hand, Lemma 3.1 tells

us ρ(G ) ≥ k/α , which leads to ρ(G ) = k/α . It follows from (11)

that ϕ(G ) ≤ k(1 − 1
α ). On the other hand, consider the following

assignment to the variables in the characterizing program: {xe =
1/c | e ∈ E }. This assignment satisfies all constraints, and achieves∑
e ∈E xe (|e | − 1) = ck

α
1
c (α − 1) = k(1 − 1

α ). This implies ϕ(G ) =
k(1 − 1

α ), which by Lemma 4.1 leads to ϕ(G ) = k/α .

It remains to prove (11), which (by Lemma 4.1) is equivalent to

showing ρ(G ) ≤ ϕ(G ). For this purpose, let us recall two standard

concepts from the fractional graph theory [19]. Let F ′ be a func-
tion that mapsV to the set of real values in [0, 1]. F ′ is a fractional
vertex packing of G if

∑
A∈e F ′(A) ≤ 1 for every e ∈ E . The frac-

tional vertex-packing number of G is the maximum
∑
A∈V F ′(A)

of all the fractional vertex packings F ′. By the duality of LP, the

fractional vertex-packing number is precisely ρ(G ). The inequality
ρ(G ) ≤ ϕ(G ) follows from the definition of ϕ(G ) (at the beginning
of Section 4), and the fact that any fractional vertex packing is a

generalized vertex packing. �

5 2-ATTRIBUTE HEAVY-LIGHT TAXONOMY

In Sections 5-7, we consider that the input query Q is (i) clean

(Section 3.2), and (ii) unary-free, namely, each relation in Q has

arity at least 2.

Denote by G = (a�set(Q),E ) the hypergraph defined by Q

(Section 3.2). Set λ to an arbitrary positive real value. In the manner

explained in Section 2, each value x ∈ dom can be classified into

light/heavy, and so can each value pair (x ,y) ∈ dom × dom.

Configurations. Consider a plan P as defined in (9). As before,

set H = {X1, ..., Xa , Y1, ..., Yb , Z1, ...,Zb } for some a,b ≥ 0.

Given a U ⊆ H and a tuple u over U, we say that (U,u) is a
U-configuration of P if

• u(Xi ) is heavy for every Xi ∈ U, i ∈ [a];
• u(Yj ) is light for every Yj ∈ U, j ∈ [b];
• u(Z j ) is light for every Z j ∈ U, j ∈ [b];
• (u(Yj ),u(Z j )) is heavy for every (Yj ,Z j ) ∈ U ×U, j ∈ [b] (if
either Yj < U or Z j < U , this condition does not apply to j).

WhenU = H , (U,u) is a full configuration of P .

Proposition 5.1. P has at most λ |H | full configurations.

Proof. There can be at most λ values on each Xi (i ∈ [a]), and
at most λ2 value pairs on each (Yj ,Z j ) (j ∈ [b]). Hence, the number

of full configurations is at most λa · (λ2)b = λ |H | . �

Residual queries. Given a full configuration (H ,h) of plan P , we

will formulate a residual query Q′(H ,h) which returns exactly the

set of tuples u ∈ Join(Q) “consistent” with (H ,h), meaning that:

• u(A) = h(A) for each A ∈ H ;

• u(A) is light for any attribute A < H ;



• (u(A),u(B)) is light for any distinct attributes A,B < H .

Formally, an edge e ∈ E is active onP if e has at least one attribute

outsideH . For an active edge e , letR′
e (H ,h) be the residual relation

of e that fulfills all the conditions below:

• R′
e (H ,h) is over e ′ = e \ H ;

• R′
e (H ,h) collects the projection v[e ′] of all the tuples v ∈

Re (see Section 3.2 for the definition of Re ) satisfying

– v(A) = h(A) for each A ∈ e ∩H ;

– v(A) is light for each A ∈ e ′;
– (v(A),v(B)) is light for any distinct A,B ∈ e ′.

We can now formulate the residual query as:

Q
′(H ,h) =

{
R′
e (H ,h)

�� e ∈ E , e active on P
}
. (12)

Example. Consider the query Q in Figure 1(a) and the plan P =

({D}, {(G, H)}). Hence,H = {D, G, H}. Consider the full configuration
(H ,h) where h = (d, g, h).

All edges of the graph in Figure 1(a) are active except {D, H}. Set
e = {G, J}; thus e ′ = {J}. The residual relationR′

e (H ,h) collects all
tuples of the form (g,x) ∈ Re where x is light. For another example,

set e = {A, B, C}; thus e ′ = e . The residual relationR′
e (H ,h) collects

all tuples (x ,y, z) ∈ Re such that the values x , y, z and the value

pairs (x ,y), (x , z), (y, z) are all light. �

The next lemma, proved in Appendix B, shows that we can find

the entire Join(Q) by answering each residual query correctly:

Lemma 5.2.

Join(Q) =
⋃
P

©­«
⋃

full config. (H, h) of P
Q

′(H ,h) × {h}ª®¬
. (13)

Completing a configuration. Consider a U-configuration of P :

(U,u). We say that a full configuration (H ,h) of P completes (U,u)
if u = h[U]. The following lemma states that (U,u) cannot be
completed by too many full configurations:

Lemma 5.3. (U,u) can be completed by O(λ |H\U |) full configu-
rations of P .

Proof. We will design a tuple h over H to make the full con-

figuration (H ,h) complete (U,u). Clearly, h(A) = u(A) for every
A ∈ U. It remains to design h(A) for A ∈ H \ U.

(1) For every i ∈ [a]withXi < U,h(Xi ) can be any heavy value.

(2) For every j ∈ [b] with Yj ∈ U but Z j < U, h(Z j ) can be any

light value that makes (u(Yj ),h(Z j )) heavy.
(3) For every j ∈ [b] with Yj < U but Z j ∈ U, h(Yj ) can be any

light value that makes (h(Yj ),u(Z j )) heavy.
(4) For every j ∈ [b] with Yj < U and Z j < U, h(Yj ) and h(Z j )

can be any light values that make (h(Yj ),h(Z j )) heavy.
We claim:

• for (1), there are at most λ ways to set h(Xi );
• for (2), there are at most λ · |Q | ways to set h(Z j );
• for (3), there are at most λ · |Q | ways to set h(Yj );
• for (4), there are at most λ2 ways to set (h(Yj ),h(Z j )).

The first and the last bullets are obvious because there are at

most λ heavy values and λ2 heavy value pairs. As the second and

third bullets are symmetric, we will prove only the former. Fix an

arbitrary j satisfying the condition in (2); denote by z a possible

value for h(Z j ). As (u(Yj ), z) is heavy, at least n/λ2 tuples — count-

ing over all the relations in Q — carry u(Yj ) and z (on attributes Yj
and Z j , resp.) simultaneously. If there are at least λ · |Q | choices
of z, the total number of tuples carrying u(Yj ) must be at least
n
λ2
λ |Q | = |Q |n/λ. But this means that at least n/λ such tuples fall

in the same relation in Q, contradicting the fact that u(Yj ) is light.

Denote by c1 the number of i values satisfying (1), and by c2, c3,

and c4 the number of j values satisfying (2), (3), and (4), respectively.

The above discussion indicates that the number of distinct (H ,h)
meeting all the four conditions is (applying |Q | = O(1))

O(λc1+c2+c3+2c4 )

Notice that c1 + c2 + c3 + 2c4 is at most the number of attributes in

H \U. This completes the proof. �

Total input size of the residual queries. Lemma 5.3 has an im-

portant corollary:

Corollary 5.4. For any plan P of a unary-free query Q, the

residual queries (i.e., one for each full configuration of P) together

have a total input size O(n · λk−2). If Q is α -uniform, the bound can

be reduced to O(n · λk−α ).

Proof. Consider any edge e ∈ E . A tuple u ∈ Re participates

in a residual query if and only if the full configuration produc-

ing the residual query completes the e-configuration (e,u). By
Lemma 5.3, (e,u) can be completed by O(λk−|e |) full configura-
tions. For a unary-free Q, k − |e | ≤ k − 2. Hence, the total input

size of all residual queries is O(n · λk−2). The claim on α-uniform

queries follows from the fact that k − |e | = k − α . �

We close the section by pointing out that Q has only a constant

number of plans. Therefore, all the residual queries on the right

hand side of (13) can be larger than what is stated in Corollary 5.4

by a constant factor.

6 SIMPLIFYING A RESIDUAL QUERY

This section will concentrate on an arbitrary full configuration

(H ,h) of P . We will explain how to simplify the residual query

Q′(H ,h) in (12). As before, let G = (a�set(Q),E ) be the hyper-
graph of Q. Set L = a�set(Q) \ H .

The residual graph. Define G ′
= (L,E ′) as the subgraph of G

induced (Section 3.1) by L; we will refer to G ′ as the residual graph
ofH . Note that G ′ depends only onH (not on h).

A vertex (a.k.a. attribute) A ∈ L is orphaned if it appears in a

unary edge in E ′ (that is, {A} ∈ E ′). Such a vertex is further said

to be isolated if it appears in no non-unary edges in E ′. Denote by
I the set of isolated vertices.

Example. For the G in Figure 1(a), Figure 1(b) shows the residual

graph G ′ for H = {D, G, H}. The isolated set is I = {F, J, K}. Every
other vertex in L = {A, B, C, E, F, I, J, K} is orphaned. For example,

A is orphaned because the edge {A, G} in G shrinks into a unary edge

A in G ′; however, A is not isolated because it also appears in the

edge {A, B, C} of G ′. �



Unary intersection on an orphaned attribute. Consider an or-

phaned attributeA ∈ L. Given an edge e inG , we call e an orphaning

edge of A if e \ H = {A}. Define a unary relation for A:

R′′
A(H ,h) =

⋂
orphaning edge e of A

R′
e (H ,h) (14)

where R′
e (H ,h) is the residual relation of e (Section 5). Only the

values in R′′
A
(H ,h) can possibly contribute to the result of Q.

Example (cont.). The orphaned attribute C in Figure 1(b) has two

orphaning edges: {C, G} and {C, H}. R′′
C
(H ,h) is the intersection of

the residual relations of those two edges. Equivalently, R′′
C
(H ,h)

contains all the values x such that tuples (x , g) and (x , h) belong
to relations R{C,G} and R{C,H} , respectively. Similarly, the isolated

vertex K has three orphaning edges: {K, D}, {K, G}, and {K, H}.R′′
K
(H ,h)

contains all the values x such that tuples (x , d), (x , g), and (x , h)
belong to relations R{K,G} , R{K,G} , and R{K,H} , respectively. �

Semi-join reduction. Let e be an edge in G such that e ′ = e \ H
is not unary. Define the semi-join reduced relation of e as:

R′′
e (H ,h) = the join result of R′

e (H ,h) and all R′′
A(H ,h)

where A ∈ e ′ is an orphaned attribute. (15)

To see the rationale behind, consider a tupleu ∈ R′
e (H ,h) such that

u(A) does not appear in R′′
A
(H ,h); clearly, u cannot contribute to

Join(Q). R′′
e (H ,h) contains what remains in R′

e (H ,h) after elimi-

nating all such tuples u.

Example (cont.). In Figure 1(b), consider e = {C, D, E}, and hence,

e ′ = {C, E}. Recall that R′
e (H ,h) includes all tuples (x ,y) such that

(x , d,y) in Re . R
′′
e (H ,h) shrinks R′

e (H ,h) by keeping only the

tuples (x ,y) where x ∈ R′′
C
(H ,h) and y ∈ R′′

E
(H ,h). �

The simplified residual query.We are now ready to formulate:

Q
′′
light (H ,h) =

{
R′′
e (H ,h)

��� e \ H is non-unary
}

(16)

Q
′′
I (H ,h) =

{
R′′
A(H ,h)

��� A ∈ L is isolated
}

(17)

Q
′′(H ,h) = Q

′′
light (H ,h) ∪ Q

′′
I (H ,h). (18)

Every relation in Q′′
I (H ,h) is unary and is on an isolated vertex,

whereas every relation in Q′′
light

(H ,h) has at least two attributes.

Example. In Figure 1(b), Q′′
light

(H ,h) joins the semi-join reduced

relations of {A, B, C}, {C, E}, and {E, I}. Q′′
I (H ,h) computes the CP

(cartesian product) of R′′
F
(H ,h), R′′

J
(H ,h), and R′′

K
(H ,h). Finally,

Q′′(H ,h) returns the CP of the previous two queries’ results. �

We prove in Appendix C:

Proposition 6.1. Q′(H ,h) and Q′′(H ,h) have the same result.

7 AN ISOLATED CP THEOREM

In this section, we will focus on an arbitrary plan P . Every full

configuration (H ,h) of P has a simplified residual query Q′′(H ,h)
that computes CP(Q′′

I (H ,h)) × Join(Q′′
light

(H ,h)). As shown in

Lemma 3.3, the cost of CP(Q′′
I (H ,h)) depends on the carte-

sian product size of every non-empty subset of the relations in

CP(Q′′
I (H ,h)). Next, we will prove that the sum of those cartesian

product sizes is small.

For every non-empty subset J of I, define:
Q

′′
J (H ,h) = {R′′

A(H ,h) | A ∈ J}. (19)

where R′′
A
(H ,h) is given in (14). Although the size of

CP(Q′′
J (H ,h)) may vary significantly on different (H ,h), we are

able to bound the total size (lumping over all (H ,h)):
Theorem 7.1 (Isolated cartesian product theorem). Let Q

be a unary-free clean query. For each plan P of Q and any non-empty

J ⊆ I, it holds that∑
full config.
(H, h) of P

���CP (
Q

′′
J (H ,h)

)��� ≤ λα (ϕ−|J |)−|L\J | · n |J |

where ϕ the generalized vertex packing number of Q (Section 4).

Recall that L = a�set(Q) \ H , and α is the maximum arity de-

fined in (2). The rest of the section serves as a proof of Theorem 7.1.

7.1 Three Properties of the Isolated Vertices

Let G = (a�set(Q),E ) be the hypergraph defined by Q. The next

lemma states several properties of J :

Lemma 7.2. If an edge e ∈ E satisfies e ∩ J , ∅, then
(1) |e ∩ J | = 1,

(2) e ⊆ (J ∪H), and
(3) |e | = |e ∩ J | + |e ∩H | = |e ∩H | + 1.

Proof. By definition of isolated vertex (Section 6), no edge e ∈ E

can contain two vertices in J , which yields Property (1). To prove

(2), let A be the only attribute in e ∩ J . If (2) does not hold, then

because of (1), e must have another attribute B < H which, however,

contradicts the fact that A is isolated. (3) follows from (1), (2) and

the fact that J andH are disjoint. �

7.2 Utilizing the Characterizing Program

Henceforth, we will denote by {xe | e ∈ E } an optimal assignment

for the characterizing program of Q (Section 4). Thus, ϕ(Q) =∑
e xe (|e | − 1); we will abbreviate ϕ(Q) as ϕ.

Define

E
∗
= {e ∈ E | e ∩ J , ∅}. (20)

We prove in Appendix D (recall that k = |a�set(Q)|):
Lemma 7.3.

k − |J | −
∑
e ∈E ∗

xe · (|e | − 1) ≤ α (ϕ − |J |) .

In the next subsection, we will prove:

Lemma 7.4.∑
full config.
(H, h) of P

���CP (
Q

′′
J (H ,h)

)��� ≤ λ |H |−∑
e∈E ∗ xe ( |e |−1) · n |J |

.

This will complete the whole proof of Theorem 7.1 because

|H | −
∑
e ∈E ∗

|xe | · (|e | − 1) ≤ |H | − k + |J | + α (ϕ − |J |)

= α (ϕ − |J |) − |L| + |J |
= α (ϕ − |J |) − |L \ J |



where the first inequality applied Lemma 7.3.

7.3 Proof of Lemma 7.4

Recall from (9) that plan P specifies a ≥ 0 attributes X1, ...,Xa and

b ≥ 0 attribute pairs (Y1,Z1), ..., (Yb ,Zb ). We create a + b special

relations as follows:

• for each i ∈ [a], create a relation Si with scheme(Si ) = {Xi }
which contains all the values heavy on Xi ;

• for each j ∈ [b], create a relation Dj with scheme(Dj ) =
{Yj ,Z j } which contains all the value pairs (y, z) such that

– (y, z) is heavy on {Yj ,Z j };
– y and z are both light values.

Clearly, |Si | ≤ λ and |Dj | ≤ λ2 for all i, j. Let Qheavy be the query

that includes the abovea+b relations. Note that a�set(Qheavy) = H .

As the relations in Qheavy have disjoint schemes, the result of

Qheavy is CP(Qheavy).

Define:

Q
∗
= {Re | e ∈ E

∗}.

where E ∗ is defined in (20). Recall thatRe is the input relation in Q

with scheme e . By Property (2) in Lemma 7.2, a�set(Q∗) ⊆ J ∪H .

We prove in Appendix E:

Proposition 7.5.∑
full config.
(H, h) of P

���CP (
Q

′′
J (H ,h)

)��� ≤
��CP(Qheavy) ⊲⊳ Join(Q∗)

�� .

Our goal, therefore, is to prove that the size of CP(Qheavy) ⊲⊳
Join(Q∗) is sufficiently small.

Strategy overview. Towards the above purpose, we will construct

a sequence of queries Q0,Q1, ...,Qℓ for some ℓ ≥ 0 such that:

• Q0 = Q∗;
• a�set(Qs ) ⊆ J ∪H for each s ∈ [0, ℓ];
• CP(Qheavy) ⊲⊳ Join(Qs ) = CP(Qheavy) ⊲⊳ Join(Q∗) for each
s ∈ [0, ℓ].

Eventually, we will prove that |CP(Qheavy) ⊲⊳ Join(Qℓ)| is low
enough. This, together with Proposition 7.5, will allow us to estab-

lish Lemma 7.4.

Constructing Qs+1 for s ≥ 0. Suppose that we have already ob-

tained Qs for some s ≥ 0. Let Gs = (a�set(Qs ),Es ) be the hyper-
graph defined by Qs . For each edge e ∈ Es , denote by Re,s the

relation in Qs whose scheme is e .

We assume that each edge e ∈ Es is assigned a real value xe,s ≥ 0

such that {xe,s | e ∈ Es } is a feasible assignment of the characteriz-

ing program of Gs (Section 4). At s = 0, this assumption is fulfilled

by simply setting xe,0 = xe for each e ∈ Es . Recall (Section 7.2)

that {xe | e ∈ E } is a feasible assignment for the characterizing

program of G .

For each attribute A ∈ J ∪H , define:

Fs (A) =

{ ∑
e ∈Es :A∈e xe,s if A ∈ a�set(Qs )

0 otherwise
(21)

Note that Fs (A) ≤ 1 for every A. We build Qs+1 only if there

exists some j ∈ [b] such that Fs (Yj ) , Fs (Z j ); otherwise, Qs is

the last query constructed (i.e., ℓ = s). We refer to j as the triggering

index of Qs+1. Without loss of generality, our discussion below

assumes Fs (Yj ) > Fs (Z j ). The opposite case is symmetric and can

be handled analogously.

By the fact Fs (Yj ) > Fs (Z j ), there must exist a triggering edge

e∗ ∈ Es which includes Yj but not Z j . Based on e∗, we will produce
a feasible assignment {xe,s+1 | e ∈ Es+1} for the characterizing
program of the hypergraph Gs+1 = (a�set(Qs+1),Es+1) defined by

Qs+1. After that, the construction process is iteratively invoked.

Define:

e+ = e∗ ∪ {Z j } (22)

R+ =

{
Re∗,s ⊲⊳ Dj ⊲⊳ Re+,s if e+ ∈ Es

Re∗,s ⊲⊳ Dj otherwise
(23)

Note that scheme(R+) = e+. Set

∆s = min{xe∗,s ,Fs (Yj ) − Fs (Z j )}.

Depending on ∆s , we generate Qs+1 differently:

• Case ∆s < xe∗,s :

– If e+ ∈ Es , then Qs+1 = (Qs \ {Re+,s }) ∪ {R+};
– otherwise, Qs+1 = Qs ∪ {R+}.

• Case ∆s = xe∗,s :

– If e+ ∈ Es , then Qs+1 = (Qs \ {Re∗,s ,Re+,s }) ∪ {R+};
– otherwise, Qs+1 = (Qs \ {Re∗,s }) ∪ {R+}.

Remember that we also need to produce a feasible assignment

{xe∗,s+1 | e∗ ∈ Gs+1} for the characterizing program of Gs+1. This

is done as follows:

• First, for every edge e in Gs other than e
∗ and e+, retain its

assigned value, namely, xe,s+1 = xe,s .

• Then, we proceed differently depending on ∆s :

– Case ∆s < xe∗,s :

∗ Set xe∗,s+1 = xe∗,s − ∆s .

∗ Set xe+,s+1 to ∆s + xe+,s if e
+ ∈ Es , or to ∆s otherwise.

– Case ∆s = xe∗,s :

∗ Set xe+,s+1 to ∆s + xe+,s if e
+ ∈ Es , or to ∆s otherwise.

We now prove that the above generation fulfills our purposes:

Lemma 7.6. Both statements below are true:

• {xe,s+1 | e ∈ Gs+1} is a feasible assignment for the character-

izing program of Gs+1.

• CP(Qheavy) ⊲⊳ Join(Qs+1) = CP(Qheavy) ⊲⊳ Join(Q∗).

Proof. For the first statement, we need to prove thatFs+1(A) ≤
1 for every A ∈ J ∪H , where Fs+1(A) is as defined in (21).4 Our

design makes sure Fs+1(A) = Fs (A) for every A ∈ J ∪ H with

A , Z j ; thus, Fs+1(A) ≤ 1 follows from Fs (A) ≤ 1. Regarding

Z j , our design guarantees Fs+1(Z j ) = Fs (Z j ) + ∆s . By definition

∆s ≤ Fs (Yj ) − Fs (Z j ). Therefore, Fs+1(Z j ) ≤ Fs (Yj ) ≤ 1.

For the second statement, it suffices to show

CP(Qheavy) ⊲⊳ Join(Qs+1) = CP(Qheavy) ⊲⊳ Join(Qs ). (24)

4Obviously, by replacing s with s + 1.



Consider first the case where e+ ∈ Es . Recall that Dj ∈ Qheavy .

Thus, Re∗,s ⊲⊳ Re+,s ⊲⊳ CP(Qheavy) equals Re∗,s ⊲⊳ Dj ⊲⊳ Re+,s ⊲⊳

CP(Qheavy), which is simply R+ ⊲⊳ CP(Qheavy). This proves the
correctness of (24). The case where e+ < Es is similar. �

The next lemma shows that the above inductive generative pro-

cess will terminate eventually:

Lemma 7.7. The sequence of queries Q0,Q1, ...,Qℓ is finite.

Proof. Recall that the generation proceeds differently in two

cases depending on ∆s . It suffices to show that each case can occur

only a finite number of times.

A new query is generated only if we can find j ∈ [b] such
that Fs (Yj ) , Fs (Z j ). Every time the case ∆s < xe∗,s happens,

∆s = Fs (Yj ) − Fs (Z j ). Therefore, Fs+1(Yj ) = Fs+1(Z j ), by the

reasoning in the proof of Lemma 7.6. This means that Fs ′ will

remain the same as Fs ′(Z j ) for all s ′ ≥ s + 1. Therefore, this case

can occur at most b times.

For each relation R ∈ Qs , we define its imbalance count as the

number of j ∈ [b] values satisfying the condition that scheme(R)
contains exactly one attribute in {Yj ,Z j }. The imbalance count of

Qs is the sum of imbalanced counts of all the relations therein.

• After an occurrence of the case ∆s < xe∗,s , the imbalance

count of Qs+1 can increase by at most b compared to that

of Qs , due to the inclusion of R+.

• After an occurrence of the case ∆s = xe∗,s , the imbalance

count of Qs+1 must decrease by 1 compared to that of Qs ,

due to the eviction of Re∗,s .

Given that the∆s < xe∗,s case happens atmostb times, we conclude

that ∆s = xe∗,s can occur at most b(|Q | + b) times. �

Lemma 7.8. In the last query Qℓ , it must hold for each j ∈ [b] that

Fℓ(Yj ) = Fℓ(Z j ) = max{F0(Yj ),F0(Z j )}.

For any A < {Y1,Z1, ...,Yb ,Zb }, it holds that F0(A) = F1(A) =
... = Fℓ(A).

Proof. The generative process must continue if Fℓ(X j ) ,
Fℓ(Yj ); this proves Fℓ(Yj ) = Fℓ(Z j ). Assume, without loss of

generality, that F0(Yj ) > F0(Z j ). By the argument in the proof of

Lemma 7.6, we know F0(Yj ) = F1(Yj ) = ... = Fℓ(Yj ). This proves
the correctness of the first sentence of the lemma.

The second sentence follows directly from the way we design

xe,s . �

Bounding the size of CP(Qheavy) ⊲⊳ Join(Qℓ). For each s ∈ [0, ℓ],
define:

Bs =

∏
e ∈Es

|Re,s |xe,s

∆ =

∑
j ∈[b]

|F0(Yj ) − F0(Z j )|.

Lemma 7.9.

Bℓ ≤ B0 · λ∆ .

Proof. Let us start by observing:

∆ =

∑
s ∈[0, ℓ−1]

∆s . (25)

To explain why, consider an arbitrary s ∈ [0, ℓ − 1]. If j is the
triggering index of Qs+1, |Fs+1(Yj ) −Fs+1(Z j )| must decrease by

∆s compared to |Fs (Yj ) − Fs (Z j )|. The correctness of (25) then
follows from Lemma 7.8.

Equipped with (25), to prove the lemma it suffices to show:

Bs+1 ≤ Bs · λ∆s (26)

holds for every s ∈ [0, ℓ− 1]. For this purpose, let us scrutinize once
again the two cases that happen in generating Qs+1. As before, let

j be the triggering index and e∗ be the triggering edge. We will first

consider the scenario where e+ < Es .

• Case ∆s < xe∗,s : We have

Bs+1 = Bs ·
|Re∗,s |xe∗,s−∆s · |R+ |∆s

|Re∗,s |xe∗,s
(27)

where e+ and R+ are defined in (22) and (23), respectively.

In general, it holds that

|R+ | ≤ |Re∗,s | · λ (28)

To understand why, first notice that less than λ tuples in Dj

can share the same value on Yj .
5 This, in turn, indicates that

a tuple Re∗,s can join with less than λ tuples in Dj , which

yields (28). Putting together (27) and (28) validates (26).

• Case ∆s = xe∗,s :

Bs+1 = Bs ·
|R+ |∆s
|Re∗,s |∆s

which together with (28) validates (26).

The scenario where e+ ∈ Es is similar:

• Case ∆s < xe∗,s :

Bs+1 = Bs ·
|Re∗,s |xe∗,s−∆s · |R+ |∆s+xe+,s
|Re∗,s |xe∗,s · |Re+,s |xe+,s

(29)

• Case ∆s = xe∗,s :

Bs+1 = Bs ·
|R+ |∆s+xe+,s

|Re∗,s |∆s · |Re+,s |xe+,s
(30)

Both (29) and (30) give (26), using (28) and the fact that |R+ | ≤
|Re+,s |. The completes the proof of Lemma 7.9. �

We are ready to bound the size of CP(Qheavy) ⊲⊳ Join(Qℓ). To-
wards this purpose, for each attributeA ∈ J , let us create a “domain”

relationUA which includes all theA-values that appear in the input

relations of Q. Clearly, |UA | ≤ n. Now, define a clean query:

Qfinal = Qheavy ∪ Qℓ ∪
©­«
⋃
A∈J

{UA}
ª®¬
.

We prove in Appendix F:

Proposition 7.10. Join(Qfinal) = CP(Qheavy) ⊲⊳ Join(Qℓ).
5Recall that each tuple (y, z) inDj must appear in at least n/λ2 tuples of the input
relations of Q. Hence, if y can pair up with at least λ distinct z , y appears in at least
n

λ2
λ = n/λ tuples. This contradicts the fact that y is a light value.



Hence, instead of the size of CP(Qheavy) ⊲⊳ Join(Qℓ), we can
focus on bounding |Join(Qfinal)|:

Lemma 7.11.

|Join(Qfinal)| ≤ n |J | · λ |H |−∑
e∈E ∗ xe ( |e |−1). (31)

Proof. Let Gfinal be the hypergraph defined by Qfinal . We will

construct a fractional edge coveringW of Gfinal , which by the AGM

bound in Lemma 3.2 yields an upper bound on |Join(Qfinal)| which
will turn out to be the right hand side of (31).

The construction ofW is based on the feasible assignment {xe, ℓ |
e ∈ Eℓ} of the characterizing program of Gℓ :

• For each edge e of Gfinal , we set W (e) = xe, ℓ .
• For the unary edge {A} where A ∈ J , set W ({A}) = 1 −

Fℓ(A). By the feasibility of {xe, ℓ | e ∈ Eℓ}, Fℓ(A) ≤ 1; and

hence, W ({A}) ≥ 0.

• For the unary edge {Xi } where i ∈ [a], set W ({Xi }) =
1 − Fℓ(Xi ).

• For the binary edge {Yj ,Z j }where j ∈ [b], setW ({Yj ,Z j }) =
1−Fℓ(Yj ), which must be equal to 1−Fℓ(Z j ) by Lemma 7.8.

The weight of A under W equals exactly 1 for every A ∈
a�set(Qfinal) = J ∪H , namely, W is an edge covering for Gfinal .

By Lemma 3.2, |Join(Qfinal)| is bounded by

∏
A∈J

n1−Fl (A)
∏
e ∈Gℓ

|Re, ℓ |xe, ℓ
a∏
i=1

|Si |1−Fl (Xi )
b∏
j=1

|Dj |1−Fl (Yj )

= n |J |−∑
A∈J Fl (A) · Bℓ · λa−

∑a
i=1 Fℓ (Xi ) · λ2

∑b
j=1(1−Fℓ (Yj )). (32)

Utilizing Lemmas 7.8 and 7.9, we can derive:

Bℓ · λ2
∑b
j=1(1−Fℓ (Yj ))

≤ B0 · λ∆ · λ
∑b
j=1 2−2max{F0(Yj ),F0(Z j )}

= B0 · λ
∑b
j=1 2−2max{F0(Yj ),F0(Z j )}+ |F0(Yj )−F0(Z j ) |

= B0 · λ
∑b
j=1(1−F0(Yj )+(1−F0(Z j ))

≤
( ∏
e ∈E ∗

nxe

)
· λ2b−

∑b
j=1(F0(Yj )+F0(Z j )).

Plugging the above into (32) and applying Fℓ(Xi ) = F0(Xi ) for
each i ∈ [a] (Lemma 7.8) yields:

(32) ≤ n |J |−∑
A∈J Fl (A) ·

( ∏
e ∈E ∗

nxe

)
· λ |H |−∑

A∈H F0(A). (33)

By Property (1) of Lemma 7.2, every e ∈ E ∗ covers exactly one

attribute in J . Thus:∑
e ∈E ∗

xe =
∑
A∈J

F0(A) =
∑
A∈J

Fℓ(A)

where the last equality used Lemma 7.8. Furthermore:∑
A∈H

F0(A) ≥
∑
A∈H

∑
e ∈E ∗:A∈e

xe =
∑
e ∈E ∗

xe (|e | − 1)

where the last equality used Property (3) of Lemma 7.2. Therefore,

from (33), we get

(32) ≤ n |J | · λ |H |−∑
e∈E ∗ xe ( |e |−1)

which completes the proof. �

By combining Lemmas 7.11, 7.6 and Propositions 7.10 and 7.5,

we conclude the proof of Lemma 7.2.

8 AN MPC JOIN ALGORITHM

Next, we will describe our MPC algorithm for answering an arbi-

trary query Q. It suffices to consider that Q is clean (Section 3.1)

because otherwise Q can be converted to a clean query with the

same result in load Õ(n/p) [14].

Specifically, we will fix an arbitrary plan P of Q, and explain

how to compute⋃
full config. (H, h) of P

Q
′′(H ,h) =

⋃
full config. (H, h) of P

Q
′(H ,h)

where the equality is due to Proposition 6.1. By taking the union

of the above for every P , we obtain the final result Join(Q)
(Lemma 5.2). We will prove an identical upper bound on the load for

all P . Since Q has O(1) plans, processing all of them concurrently

can increase the load only by a constant factor.

We will first discuss the scenario where Q is unary-free. Extend-

ing the algorithm to allow unary relations is easy, as will be shown

in Appendix G.

From now, we will fix

λ = p1/(αϕ). (34)

In general, it holds that6

k ≤ αρ ≤ αϕ (35)

where ρ is the fractional edge covering number of Q. By Proposi-

tion 5.1, the number of full configurations of P is at most

λ |H | ≤ λk = pk/(αϕ) ≤ p.

Without loss of generality, we assume that, given a tupleu in any

input relation of Q, the machine can identify all heavy values and

value-pairs contained inu. This can be achieved with the techniques

of [11] which essentially sort the input relations a constant number

of times, incurring an extra load of Õ(n/p).

Step 1: Generating the input relations of the residual queries.

Recall (from Section 5) that a residual query Q′(H ,h) is defined
for every full configuration (H ,h). Denote by nH,h the input size

of Q′(H ,h). All the nH,h values can be obtained with sorting and

broadcast to all machines in load Õ(p + n/p) = Õ(n/p).

We allocate

p′H,h
= p ·

nH,h

Θ(n · λk−2)
machines to store the relations of Q′(H ,h). By Corollary 5.4, the

total number of machines needed is at most p. The number of tuples

received by each machine is bounded by

O

(
nH,h

p′H,h

)
= O

(
n · λk−2

p

)
= O

©­«
n · p

k−2
αϕ

p

ª®¬
= O

©­«
n

p
2
αϕ

ª®¬
6The first inequality is by Lemma 3.1, and the second is due to fact ρ ≤ ϕ (shown in
the proof of Lemma 4.3).



where the last equality used (35).

Step 2: Simplifying the residual queries. In this step, for each

Q′(H ,h), its p′H,h
assigned machines work together to produce

the simplified residual query Q′′(H ,h) as given in (18). This re-

quires only set intersection (for (14)) and semi-join reduction (for

(15)), both of which can be performed with load O(nH,h/p′H,h
) =

O(n/p2/(αϕ)) [14]. After this, the size of CP(Q′′
I (H ,h)) is known

for each (H ,h); those at most p CP sizes are broadcast to all p

machines with load O(p) = O(n/p).

Step 3: Computing the simplified residual queries. For each

(H ,h), we allocate

p′′H,h
= Θ

©­«
λ |L |

+ p
∑

non-empty J ⊆ I

|CP(Q′′
J (H ,h))|

Θ(λα (ϕ−|J |)−|L\J | · n |J |)
ª®¬

(36)

machines to process Q′′(H ,h), where Q′′
J (H ,h) is defined in (19).

By Theorem 7.1 and the fact
∑
(H,h) λ

|L | ≤ λ |H |+ |L | ≤ λk ≤ p,

we can adjust the hidden constants to make sure
∑
(H,h) p

′′
H,h

≤ p.

Lemma 8.1. Q′′(H ,h) can be answered with load O(n/p2/(αϕ))
using p′′H,h

machines.

Proof. Join(Q′′(H ,h)) is the cartesian product of

CP(Q′′
I (H ,h)) and Join(Q′′

light
(H ,h)). If I , ∅, use p′′H,h

/λ |L\I |

machines to compute CP(Q′′
I (H ,h)). By Lemma 3.3, the load is

Õ

©­­­­«
|CP(Q′′

J (H ,h))|1/ |J |

(
p′′H,h

λ |L\I|

)1/ |J |

ª®®®®¬
(37)

for some non-empty J ⊆ I. (36) guarantees that

p′′H,h
= Ω

(
p ·

|CP(Q′′
J (H ,h))|

Θ(λα (ϕ−|J |)−|L\J | · n |J |)

)

with which we can derive

(37) = Õ
©­«
n · λ

α (ϕ−|J|)−|I|+|J|
|J|

p1/ |J |
ª®¬
= Õ

©­«
n · p

α (ϕ−|J|)
αϕ |J|

p1/ |J |
ª®¬
= Õ

(
n

p1/ϕ

)

which isO(n/p2/(αϕ)) because α ≥ 2. RegardingQ′′
light

(H ,h), all of
its relations are two-attribute skew free if a share of λ is assigned to

each attribute in L \ I. By Lemma 3.5, Q′′
light

(H ,h) can be solved

with load Õ(n/λ2) = Õ(n/p2/(αϕ)) using λ |L\I | machines.

By combining the above with Lemma 3.4, we conclude that

Join(Q′′(H ,h)) can be computed with load Õ(n/p2/(αϕ)) using
(p′′H,h

/λ |L\I |) · λ |L\I |
= p′′H,h

machines. �

Combining the above with Appendix G for handling queries

with unary relations, we have established:

Theorem 8.2. There exists anMPC algorithm that answers a query

Q with load Õ(n/p2/(αϕ)), where n is the input size of Q, p is the

number of machines, α is given in (2), and ϕ is the generalized vertex-

covering number of Q.

When α = 2, the fractional edge covering number ρ of Q equals

ϕ (Lemma 4.2); therefore, our algorithm achieves the optimal load

Õ(n/p1/ρ ).

9 UNIFORM QUERIES

We can strengthen Theorem 8.2 when Q is α-uniform:

Theorem 9.1. There exists an MPC algorithm that answers an

α-uniform query with α ≥ 2 using load Õ(n/p2/(αϕ−α+2)), where
the meanings of n, p, α , and ϕ are the same as in Theorem 8.2.

We will prove the theorem by adapting the algorithm in the

previous section. The first change is to set λ higher:

λ = p
1

αϕ−α+2 . (38)

In Step 1, we set

p′H,h
= p ·

nH,h

Θ(n · λk−α )
Corollary 5.4 ensures that still at most p machines are necessary.

The load becomes:

O

(
nH,h

p′H,h

)
= O

(
n · λk−α

p

)
(39)

Proposition 9.2. (39) is bounded by Õ(n/p2/(αϕ−α+2)).

Proof. With the λ in (38), we only need to prove:

k − α + 2
αϕ − α + 2 ≤ 1

which is true because of (35). �

Step 2 requires no changes and entails a load of O(nH,h

p′H,h

+
n
p ),

which is bounded by (39). Step 3 also proceeds in the same manner

as in Section 8, but Lemma 8.1 can be improved to:

Lemma 9.3. We can answer Q′′(H ,h) in load Õ(n/p2/(αϕ−α+2))
using p′′H,h

machines, where p′′H,h
is given in (36).

Proof. If |I | > 0, use p′′H,h
/λ |L\I | machines to compute

CP(Q′′
I (H ,h)). The load is now

Õ
©­«
n · λ

α (ϕ−|J|)
|J|

p1/ |J |
ª®¬
= Õ

©­«
n · p

α (ϕ−|J|)
(αϕ−α+2)·|J|

p1/ |J |
ª®¬
= Õ

©­«
n

p
1
|J| −

α (ϕ−|J|)
(αϕ−α+2)·|J|

ª®¬
for some non-empty J ⊆ I. To bound the above with

Õ(n/p2/(αϕ−α+2)), it suffices to show:

1

|J | −
α(ϕ − |J |)

(αϕ − α + 2) · |J | ≥ 2

αϕ − α + 2
⇔ αϕ − α + 2 − α(ϕ − |J |) ≥ 2|J |

⇔ (|J | − 1)(α − 2) ≥ 0

which is true.

The rest of the proof proceeds as in Lemma 8.1. Given λ |L\I |

machines, Q′′
light

(H ,h) incurs load Õ(n/λ2) = Õ(n/p2/(αϕ−α+2)).
Lemma 9.3 then follows from an application of Lemma 3.4. �

The proof of Theorem 9.1 is now complete. By combining the

theorem with Lemma 4.3, we have:



Corollary 9.4. There exists an MPC algorithm that answers a

symmetric query Q using load Õ(n/p2/(k−α+2)), where the meanings

of n, p, α ≥ 2 are the same as in Theorem 9.1, and k = |a�set(Q)|.

ACKNOWLEDGMENTS

Miao Qiao was patially supported by Marsden Fund UOA1732 from

Royal Society of New Zealand, and the Catalyst: Strategic Fund NZ-

Singapore Data Science Research Programme UOAX2001, from the

Ministry of Business Innovation and Employment, New Zealand.

Yufei Tao was partially supported by GRF grant 14207820 from

HKRGC and a research grant from Alibaba Group.

REFERENCES
[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin,

and Avi Silberschatz. 2009. HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads. Proceedings of the VLDB
Endowment (PVLDB) 2, 1 (2009), 922–933.

[2] Foto N. Afrati, Manas R. Joglekar, Christopher Ré, Semih Salihoglu, and Jeffrey D.
Ullman. 2017. GYM: A Multiround Distributed Join Algorithm. In Proceedings of
International Conference on Database Theory (ICDT). 4:1–4:18.

[3] Foto N. Afrati and Jeffrey D. Ullman. 2011. Optimizing Multiway Joins in a
Map-Reduce Environment. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 23, 9 (2011), 1282–1298.

[4] Albert Atserias, Martin Grohe, and Daniel Marx. 2013. Size Bounds and Query
Plans for Relational Joins. SIAM Journal of Computing 42, 4 (2013), 1737–1767.

[5] Paul Beame, Paraschos Koutris, and Dan Suciu. 2014. Skew in parallel query
processing. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS). 212–223.

[6] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication Steps for
Parallel Query Processing. Journal of the ACM (JACM) 64, 6 (2017), 40:1–40:58.

[7] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 137–150.

[8] Xiao Hu. 2021. Cover or Pack: New Upper and Lower Bounds for Massively
Parallel Joins. Accepted to appear in PODS (2021).

[9] Xiaocheng Hu, Miao Qiao, and Yufei Tao. 2016. I/O-efficient join dependency
testing, Loomis-Whitney join, and triangle enumeration. Journal of Computer
and System Sciences (JCSS) 82, 8 (2016), 1300–1315.

[10] Xiao Hu and Ke Yi. 2019. Instance and Output Optimal Parallel Algorithms for
Acyclic Joins. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS). 450–463.

[11] Xiao Hu, Ke Yi, and Yufei Tao. 2019. Output-Optimal Massively Parallel Algo-
rithms for Similarity Joins. ACM Transactions on Database Systems (TODS) 44, 2
(2019), 6:1–6:36.

[12] Bas Ketsman and Dan Suciu. 2017. A Worst-Case Optimal Multi-Round Algo-
rithm for Parallel Computation of Conjunctive Queries. In Proceedings of ACM
Symposium on Principles of Database Systems (PODS). 417–428.

[13] Bas Ketsman, Dan Suciu, and Yufei Tao. 2020. A Near-Optimal Parallel Algorithm
for Joining Binary Relations. CoRR abs/2011.14482 (2020).

[14] Paraschos Koutris, Paul Beame, and Dan Suciu. 2016. Worst-Case Optimal Algo-
rithms for Parallel Query Processing. In Proceedings of International Conference
on Database Theory (ICDT). 8:1–8:18.

[15] Paraschos Koutris and Dan Suciu. 2011. Parallel evaluation of conjunctive queries.
In Proceedings of ACM Symposium on Principles of Database Systems (PODS). 223–
234.

[16] Hung Q. Ngo, Ely Porat, Christopher Re, and Atri Rudra. 2018. Worst-case
Optimal Join Algorithms. Journal of the ACM (JACM) 65, 3 (2018), 16:1–16:40.

[17] Hung Q. Ngo, Christopher Re, and Atri Rudra. 2013. Skew strikes back: new
developments in the theory of join algorithms. SIGMOD Rec. 42, 4 (2013), 5–16.

[18] Rasmus Pagh and Francesco Silvestri. 2014. The input/output complexity of
triangle enumeration. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS). 224–233.

[19] Edward R. Scheinerman and Daniel H. Ullman. 1997. Fractional Graph Theory: A
Rational Approach to the Theory of Graphs. Wiley, New York.

[20] Yufei Tao. 2020. A Simple Parallel Algorithm for Natural Joins on Binary Relations.
In Proceedings of International Conference on Database Theory (ICDT). 25:1–25:18.

[21] Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.
In Proceedings of International Conference on Database Theory (ICDT). 96–106.

APPENDIX

A PROOF OF LEMMA 3.5

Denote by actdom the set of values that appear in the relations

of Q. Let R be an arbitrary relation in Q. Assume, without loss

of generality, that scheme(R) = {A1, ...,Ar } where r = arity(R).
Define pi as the assigned share of Ai , for each i ∈ [r ]. Choose
independent and perfectly random hash functions h1, ...,hr such

that hi maps actdom to [pi ]. Allocate each tuple u ∈ R to the bin

(h1(a1), ...,hr (ar )) where (a1, ...,ar ) = (u(A1), ...,u(Ar )).

Lemma A.1 (Theorem 3.2 of [6]). IfR is skew free, the probability

that every bin is allocated Õ(n/∏r
i=1 pi ) tuples ofR is at least 1−1/pc

where the constant c can be arbitrarily large.

Now, consider r ≥ 2 and that R is not skew free, but:

• R has at most n/p1 tuples that agree on A1;

• R has at most n/p2 tuples that agree on A2;

• R has at most n/(p1p2) tuples that agree onA1 andA2 simul-

taneously.

Lemma A.2. Subject to the above conditions, the probability that

every bin is allocated Õ(n/(p1p2)) tuples of R is at least 1 − 1/pc
where the constant c can be arbitrarily large.

Proof. Define p′1 = p1, p
′
2 = p2, and p

′
i = 1 for all i ∈ [3, r ].

Let us re-assign attribute Ai a share of p′i for each i ∈ [r ]. The
stated conditions indicate that R is skew free under the shares

p′1, ...,p
′
r . Allocate each tuple (a1, ...,ar ) in R to the two-attribute

bin (h1(a1),h2(a2)). By LemmaA.1, with probability at least 1−1/pc ,
each two-attribute bin is allocated Õ(n/(p1p2)) tuples.

LemmaA.2 then follows from the fact that each bin (x1,x2, ...,xr )
is allocated a subset of the tuples allocated to the two-attribute bin

(x1,x2). �

Lemma A.2 implies:

Corollary A.3. If R has arity r ≥ 2 and is two-attribute free, the

probability that every bin is allocated

Õ
(
min
i, j ∈[r ]
i,j

n

pipj

)

tuples of R is at least 1− 1/pc where the constant c can be arbitrarily

large.

The BinHC algorithm answers Q as follows. For every A ∈
a�set(Q), it chooses an independent and perfectly random hash

function hA that maps actdom to [pA]. A bucket is a function b :

a�set(Q) → [p] subject to the constraint that b(A) ∈ [pA] for each
A ∈ a�set(Q). Due to (5), the number of distinct buckets is at most

p. Assigning a machine to each possible bucket, BinHC solves Q in

two steps:

(1) For every relation R ∈ Q, send each tuple u ∈ R to every

machine responsible for a bucket b satisfying the condition

that b(A) = hA(u(A)) for all A ∈ scheme(R).
(2) Each machine generates the maximum subset of Join(Q)

that can be produced from the data received.

By Corollary A.3 (for non-unary relations) and Lemma A.1 (for

unary relations), the load is at most (8).



B PROOF OF LEMMA 5.2

It is obvious that the right hand side of (13) is a subset of the left

hand side. Next, we will prove the opposite: any tuple u ∈ Join(Q)
must be produced by the right hand side.

Given u, we construct a plan P and its corresponding H as

follows:

1. S1 = ∅, S2 = ∅
2. S = a�set(Q)
3. while ∃ X ∈ S such that u(X ) is heavy do

4. add X to S1, and remove X from S

5. while ∃ distinct Y ,Z ∈ S s.t. (u(Y ),u(Z )) is heavy do

6. add (Y ,Z ) to S2 (assuming Y ≺ Z ), and remove Y ,Z from S

7. return P = (S1, S2) andH = scheme(Q) \ S
Set h = u[H]. We will show that u[a�set(Q) \ H] ∈

Join(Q′(H ,h)), which will complete the proof.

Consider an arbitrary edge e ∈ E active on P . As u ∈ Join(Q),
we knowu[e] ∈ Re . As before, set e

′
= e\H . To proveu[a�set(Q)\

H] ∈ Join(Q′(H ,h)), it suffices to show that u[e ′] ∈ R′
e (H ,h). In

turn, to prove u[e ′] ∈ R′
e (H ,h), we must establish two facts:

• for any attribute A ∈ e ′, u(A) is light;
• for any distinct attributes A,B ∈ e ′, (u(A),u(B)) is light.

The first bullet holds because otherwise A would have been added

to S1 at Line 4. The second bullet also holds because otherwise

(A,B) (assuming A ≺ B) would have been added to S2 at Line 6.

C PROOF OF PROPOSITION 6.1

Let u be a tuple output by Q′(H ,h). We will prove u ∈
Join(Q′′(H ,h)). Consider an arbitrary orphaned vertexA. For each
orphaning edge e of A, we must have u[e] ∈ R′

e (H ,h); therefore,
u(A) ∈ R′′

A
(H ,h). This further implies that, for every edge e of G

such that e \H is non-unary, u[e \H] ∈ R′′
e (H ,h). It thus follows

that u ∈ Join(Q′′(H ,h)).

Conversely, let u be a tuple output by Q′′(H ,h). We will prove

u ∈ Join(Q′(H ,h)). This means that, for every orphaned vertex

A, we must have u(A) ∈ R′′
A
(H ,h). Thus, for each orphaning edge

e of A, it holds that u[e] ∈ R′
e (H ,h). Consider an arbitrary edge

e of G such that e \ H is non-unary. Clearly, u[e \ H] appears
in R′′

e (H ,h), which ensures u[e] ∈ R′
e (H ,h). It thus follows that

u ∈ Join(Q′(H ,h)).

D PROOF OF LEMMA 7.3

Consider an edge e ∈ E . As |e | ≤ α , we have

1 ≥ |e | − 1

|e |
α

α − 1
. (40)

As {xe | e ∈ E } is a feasible assignment for the characterizing

program,
∑
e ∈E :A∈e xe ≤ 1 holds for every A ∈ V . Hence:

k − |J | =

∑
A<J

1

≥
∑
A<J

∑
e ∈E :A∈e

xe =
∑
e ∈E

|e \ J | · xe

=

∑
e ∈E :e∩J=∅

|e | · xe +
∑

e ∈E :e∩J,∅
(|e | − 1) · xe

where the last equality used Property (1) of Lemma 7.2. With the

above, we can derive

k − |J | + 1

α − 1

∑
e ∈E :e∩J,∅

(|e | − 1) · xe

≥
∑

e ∈E :e∩J=∅
xe |e | +

∑
e ∈E :e∩J,∅

(|e | − 1)xe
(
1 +

1

α − 1

)

≥
∑

e ∈E :e∩J=∅
xe |e | ·

|e | − 1

|e |
α

α − 1
+

∑
e ∈E :e∩J,∅

xe (|e | − 1) α

α − 1

(applied (40))

=

∑
e ∈E

xe (|e | − 1) · α

α − 1
= ϕ · α

α − 1
.

Multiplying both sides by α − 1, we have:

(α − 1)(k − |J |) +
∑

e ∈E :e∩J,∅
(|e | − 1) · xe ≥ ϕα

= (k − ϕ)α
where the last equality used Lemma 4.1. Therefore:

kα − k − |J |α + |J | +
∑
e ∈E ∗

(|e | − 1)xe ≥ kα − ϕα .

Re-arranging the terms proves the lemma.

E PROOF OF PROPOSITION 7.5

Clearly:∑
full config.
(H, h) of P

���CP (
Q

′′
J (H ,h)

)��� = ∑
full config.
(H, h) of P

���CP (
Q

′′
J (H ,h)

)
× {h}

��� .

Thus, we only need to prove:⋃
full config.
(H, h) of P

CP
(
Q

′′
J (H ,h)

)
× {h} ⊆ CP(Qheavy) ⊲⊳ Join(Q∗). (41)

Fix any (H ,h) of P . Let u be an arbitrary tuple in

CP(Q′′
J (H ,h)) × {h}. We will show that u ∈ CP(Qheavy) ⊲⊳

Join(Q∗), which will complete the proof.

Consider attribute Xi for any i ∈ [a]. By definition of h, u(Xi ) =
h(Xi ) must be heavy. Hence, u(Xi ) ∈ Si . Likewise, consider at-

tributes Yj and Z j for any j ∈ [b]. By definition of h, (h(Yj ),h(Z j ))
must be heavy while bothh(Yj ) andh(Z j ))must be light. Therefore,

(u(Yj ),u(Z j )) = (h(Yj ),h(Z j )) ∈ Dj .

Consider an arbitrary edge e ∈ E ∗. Let A be the (only) isolated

vertex in e (Property (1) of Lemma 7.2). Note that e \{A} ⊆ H (Prop-

erty (2) of Lemma 7.2), and that e is an orphaning edge of A (Sec-

tion 6). The factu ∈ CP(Q′′
J (H ,h))× {h} tells usu(A) ∈ R′′

A
(H ,h)

(Section 6). By (15), this indicates u[e] ∈ R′
e (H ,h) (Section 5), and

hence, u[e] ∈ Re .

We have shown that u[scheme(R)] ∈ R for every relation R

involved on the right hand side of (41). It thus follows that u ∈
CP(Qheavy) ⊲⊳ Join(Q∗).



F PROOF OF PROPOSITION 7.10

It is obvious that Join(Qfinal) ⊆ CP(Qheavy) ⊲⊳ Join(Qℓ). Next,
we will prove that the opposite is also true. Let u be a tuple in

CP(Qheavy) ⊲⊳ Join(Qℓ). For each A ∈ I, u(A) must appear in

some input relation of Q, which means u(A) ∈ UA. It thus follows

that u(A) ∈ Join(Qfinal).

G QUERIES WITH UNARY RELATIONS

A unary relation R ∈ Q can be of two types:

• non-isolated: Q contains another relation R′ such that

scheme(R) ⊆ scheme(R′);
• isolated: no such R′ exists.

As shown in [11, 14], all the non-isolated unary relations can be

eliminated with load Õ(n/p). Henceforth, we will assume that all

unary relations are isolated.

Let д be the number of (isolated) unary relations which are

denoted as R1, ..., Rд , respectively. Define Q′
= Q \ {R1, ...,Rд};

Q′ is a query without isolated relations. We have:

Join(Q) = Join(Q′) × (R1 × ... × Rд).
Let ϕ and ϕ ′ be the generalized vertex packing numbers of Q and

Q′, respectively. It is easy to verify by definition that

ϕ = ϕ ′ + д.

Given p1 machines, our algorithm in Section 8 computes

Join(Q′) with load Õ(n/p2/(αϕ
′)

1 ). By Lemma 3.3, R1 × ... × Rд

can be computed with load O(n/p1/д2 ) using p2 machines. Setting

p1 = pϕ
′/ϕ

p2 = pд/ϕ

we can apply Lemma 3.4 to obtain Join(Q) with load

Õ
©­«

n

min{p
2
αϕ ,p

1
ϕ }

ª®¬
using p1p2 = p machines. The above is bounded by Õ(n/p2/(αϕ))
because α ≥ 2.

H EDGE QUASI-PACKING NUMBER

Consider a hypergraph G = (V,E ) without exposed vertices (Sec-

tion 3.1). Given a subsetU ofV , denote by G−U the graph obtained

by removing U from G , or formally: G−U = (V \ U,E−U ) where
E−U = {e \ U | e ∈ E and e \ U , ∅}. The edge quasi-packing
numberψ (G ) of G equals

max
U⊆V

τ (G−U )

where τ (G−U ) is the fractional edge-packing number of G−U (Sec-

tion 3.1).

Example. Let G be the graph in Figure 1(a). Consider a setU which

includes all attributes except D, G, and H. GU contains 8 unary edges:

{A}, {B}, {C}, {E}, {F}, {I}, {J}, and {K}. Consider the fractional
edge packing W that maps these edges to 1, and the other edges

of GU to 0. W has a weight of 8. We can therefore conclude that

ψ (G ) ≥ 8. �

We now echo the claim in Section 1.3 that if Q is a k-choose-α

join, then ψ (Q) ≥ k − α + 1. Let A1, ...,Ak be the attributes in

a�set(Q), and G = (V,E ) be the hypergraph of Q. Consider a set

U = {A1, ...,Ak−α+1}. For each i ∈ [k−α+1], GU contains a unary

edge {Ai } (shrunk from the edge {Ai ,Ak−α+2,Ak−α+3, ...,Ak } in
G ). Thus, GU admits a fractional edge packing W that maps only

the k − α + 1 edges {A1}, {A2}, ..., {Ak−α+1} to 1, and the other

edges to 0. It thus follows thatψ (Q) ≥ τ (GU ) = k − α + 1.


