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ABSTRACT

In the top-K range reporting problem, the dataset contains
N points in the real domain R, each of which is associated
with a real-valued score. Given an interval [z1,x2] in R and
an integer K < N, a query returns the K points in [z1, z2]
having the smallest scores. We want to store the dataset in
a structure so that queries can be answered efficiently. In
the external memory model, the state of the art is a static
structure that consumes O(N/B) space, answers a query in
O(logy N + K/B) time, and can be constructed in O(N +
(Nlog N/B)log,,5(N/B)) time, where B is the size of a
disk block, and M the size of memory. We present a fully-
dynamic structure that retains the same space and query
bounds, and can be updated in O(log% N) amortized time
per insertion and deletion. Our structure can be constructed
in O((N/B)log,;,5(N/B)) time.

Categories and Subject Descriptors

F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures; H.3.1 [Information storage
and retrieval]: Content analysis and indexing—indezing
methods

General Terms
Theory

Keywords

Range top-k, data structure, external memory, logarithmic
sketch

1. INTRODUCTION

In the top-K range reporting problem, the dataset is a set
P of N points in the real domain R, where each point x is
associated with a distinct score, denoted as score(x), in R.
Given an interval [z1,z2] in R and an integer K < N, a
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query reports, among all the points of P in [z1, z2], the K
points with the lowest scores. As a special case, if Pﬂ[ml, 1:2]
contains less than K points, the query returns all of them.
The objective is to maintain P in a structure such that every
query can be answered efficiently. In this paper, we study
the problem in a dynamic setting, i.e., points can be inserted
into and deleted from P. The top-K range reporting prob-
lem can also be defined in a symmetric manner, so that a
query returns the K points with the highest scores.

We consider the external memory (EM) model [2], where
a machine has a disk of an unlimited capacity, and mem-
ory of M words. The disk is formatted into disjoint blocks
of B words. The value of M is at least 2B. We further
require that B > 64. Time is measured by the number
of I/Os performed, and space is measured by the number
of blocks occupied. On an input of size N, a linear com-
plexity is O(N/B), whereas a poly-logarithmic complexity is
O(logy N) for some positive constant c.

1.1 Applications

The top-K range reporting problem has been studied in a
variety of areas, e.g., information retrieval [1, 5], OLAP [9],
data streams [8], etc. It finds use in applications where
people would like to identify the best few objects, among
only a subset of the dataset satisfying a range predicate.
For example, a user of a hotel database may be interested
in discovering the K best rated hotels whose prices are in
a designated range. Likewise, for promotion purposes, the
manager of a company may want to find the K salesmen with
the best performance, among those salesmen whose salaries
are in a certain range. In fact, one can easily notice that
the top-K range reporting problem generalizes conventional
SQL construct of the form

SELECT MIN(A;) FROM ...

That is, instead of retrieving simply the min (a.k.a. top-1)
of A1, a top-K range query aims at returning the K objects
with the best A; values. Therefore, an efficient structure for
this problem augments a relational database with the power
to support the top-K version of MIN aggregation (and hence,
also MAX aggregation) in the presence of a range predicate.

WHERE A € [z1,x2].

1.2 Related work

We will focus on only structures with non-trivial worst-
case query cost, as they are the subject of this paper.
Afshani, Brodal and Zeh [1] developed a static struc-
ture that occupies O(N/B) space, answers a query in



O(logg N + K/B) 1/Os, and can be built in O(N +
(Nlog N/B)log,,5(N/B)) time. They also considered a
variant of the problem called ordered top-K range reporting
where the points in the query result must be sorted by their
scores. For this variant, they show that, for any parame-
ter a € [1,log,;, 5(IN/B)], a data structure that achieves

0, + O« query time must consume
log® Y N + O(aK /B ¥
o (N _allog, (N/B)
B log(a~log,, (N/B))

space. In other words, if only linear space is allowed, « has
to be

log,, (N/B)
o <10g 1ogM<N/B>) '

Interestingly, this provides motivation to focus on the un-
ordered version (i.e., the target problem of this paper)
because, as long as an unordered query can be solved
in O(logg N + K/B) time, we can trivially produce the
ordered output by sorting. The total cost O(logg N +
(K/B)logy, 5 (K/B)) is already optimal up to a small fac-
tor, which is loglog,,(N/B) for M = Q(B'") where ¢ is
any positive constant.

In RAM, by combining the priority search tree of Mec-
Creight [10] with the algorithm of Frederickson [6] for se-
lecting the K smallest items from a priority queue, one can
obtain a structure for solving the unordered top- K range re-
porting problem that consumes O(N) space, answers a query
in O(log N + K) time, and supports an update in O(log N)
time. Brodal, Fagerberg, Greve and Lopez-Ortiz [5] consid-
ered a special version of the problem where the points of P
take distinct values from the integer set {1,..., N}. In this
case, they gave a static structure that uses O(N) space and
answers a query in O(K) time. Their solution also works for
the ordered variant.

1.3 Our results

We give the first dynamic structure for the top-K range
reporting problem in external memory:

THEOREM 1. For the top-K range reporting problem,
there is a data structure that consumes linear space, an-
swers a query in O(logg N+ K/B) time, and can be updated
in O(logk N) amortized time per insertion and deletion.
The structure can be constructed in O((N/B)log,,5(N/B))
1/0s.

Our construction time improves the result of [1] by a
factor of nearly B (also recall that the structure of [1] is
static). The starting point of our techniques is an obvious
connection between the top-K range reporting problem and
3-sided range searching. In the latter problem, we want to
index a set of 2d points such that, given a 3-sided rectangle
q = [x1,m2] X (—00,y], all the points in ¢ can be reported
efficiently. To see the connection, let us map each point z in
the input dataset P (of the top-K range reporting problem)
to a 2d point (x, score(x)). Denote by S the set of resulting
2d points. Given a top-K range query with search range
[z1,z2], we can answer it by finding all the points in S that
fall in the rectangle ¢ = [z1, z2] X (—o0, 7| for some properly
chosen .

3-sided range searching has been well solved [3]. The chal-
lenge, however, lies in finding a good 7. Ideally, we would
like ¢ to cover exactly K points of S, but as remarked by
Afshani, Brodal and Zeh [1], this “does not seem to be any
easier” than the original problem. They circumvented the
issue by resorting to an interesting method called shallow
cutting. Unfortunately, a shallow cutting is costly to com-
pute, which explains why the structure of [1] is expensive to
construct and update.

Motivated by this, we turned our attention back to the
problem of finding 7. The key to our eventual success is
that, we do not need an ideal 7, but any 7 that makes ¢
cover cK (for some ¢ > 1) points in S is good enough. After
retrieving those O(K) points, we can run an external version
of the K-selection algorithm (e.g., the one by Aggarwal and
Vitter [2]) to find the point having the K-th smallest score
among them. This algorithm requires only linear time, or in
our case, O(K/B) I/Os.

We therefore introduce a new problem:

PROBLEM 1  (APPROXIMATE K-THRESHOLD PROBLEM).
Let P be as defined in the top-K range reporting problem.
Given an interval [z1,x2] in R and an integer K < N, a
query reports a value T € R such that at least K but at most
O(K) points x € P satisfy the condition that © € [x1,22]
and score(x) < 7. If [x1,x2] covers less than K points in
P, the query returns oo.

As a side product that is of independent interest, we prove:

LEMMA 1. For the approximate K-threshold problem,
there is a structure that consumes O(N/B) space, answers a
query in O(logg N) time, and can be updated in O(log% N)
amortized time per insertion and deletion. The structure can
be constructed in O((N/B)logy, 5 (N/B)) I/0s.

The above lemma, combined with the external priority
search tree of Arge, Samoladas and Vitter [3], leads di-
rectly to Theorem 1. An external priority search tree on
N points uses O(N/B) space, answers a 3-sided range query
in O(logz N + K/B) time (where K is the number of points
reported), supports an update in O(logg N) time, and can
be built in O((N/B)logy;/5(N/B)) time. The rest of the
paper will therefore focus on the approximate K-threshold
problem.

From now on, we will consider only that the query range
[x1, 2] contains at least K points in P. Otherwise (i.e.,
PN[z1, z2] has less than K points), there is a simple solution
to answer the query in O(logg N) time. For this purpose,
we only need to create a slightly augmented B-tree (see, for
example, [11]) on the points of P such that, the number
of data points covered by any interval can be retrieved in
O(logg N) 1/Os. If this number for [z1,z2] is below K, we
simply return oco.

1.4 Techniques

It would be natural to index P with a B-tree. Searching
the B-tree with query range [z1, 2] in a standard way yields
h = O(logg N) canonical subsets Pi, ..., P, that partition
the points of P N [z1,z2]. In the approximate K-threshold
problem, one source of difficulty is the lack of a clear de-
composability property that allows us to deal with each P;



individually. We overcome this by precomputing a logarith-
mic sketch for each P;, which is a subset of P; containing the
points with the lowest score, the 2nd lowest, the 4th lowest,
and so on. As it probably has become clearer, by adapting
the algorithm of Frederickson and Johnson [7] for finding the
K smallest elements from multiple sorted lists, we manage
to find a good 7 by using just the sketches of Pi,..., Pj.

Some other technical challenges then arise. First, unlike
RAM, an EM structure typically has a large, non-constant,
node fanout. In this case, care must be exercised in deciding
which sketches to store, so that not many sketches will be
needed by a query, and yet, the overall space can still be kept
linear. Second, updating a sketch is problematic because, as
can be imagined, a single insertion/deletion in a set could
destroy its sketch completely. We managed to achieve the
result in Lemma 1 by (i) replacing a sketch with an approxi-
mate version where the i-th point does not have exactly the
2-th lowest score, but has instead the ©(2%)-th lowest, and
(ii) creating several sets of structures, with each set designed
to update the i-th point of a sketch for a different range of
i.

15 Top-K range reporting without the
distinct-scor e condition

Points have distinct scores in the standard top-K range
reporting problem as defined in [1]. If two points are al-
lowed to have an identical score, the query semantics can
be adapted in two natural ways, depending on how ties are
treated. The first one is to break ties arbitrarily, namely,
if multiple points have the K-th lowest score ¢ (among the
points satisfying the range condition), return K — z of them
arbitrarily, where z is the number of points with scores less
than c. The second adaptation is not to break ties at all,
that is, all the points with scores at most ¢ are reported.

As long as the original top-K range reporting problem
(i.e., with distinct scores) has been solved, both of the above
semantics can be supported easily. In fact, this is trivial for
the first semantics, in which case we can break ties by letting
an object with a smaller id have a lower score, and apply our
distinct-score structure directly. For the second semantics,
we can maintain a separate B-tree where the data points
are sorted first by their scores, and then by their values. In
this way, after we have found score ¢ using our distinct-score
structure, all the points (covered by the query range) with
score ¢ can be retrieved in O(logz N) I/Os, plus the linear
output time. Therefore, for each semantics, we obtain a
linear-size structure that answers a query in O(logg N) time
plus the linear output time, and can be updated with the
same cost as in Theorem 1.

2. A STATIC STRUCTURE

This section will present a static structure, which ex-
plains some ingredients of our dynamic structure in the
next section. Henceforth, we use the term point to refer
to a real value x associated with a score (which is denoted
with score(z), as before). From now on, B would be in-
terpreted as the number of points that can be stored in a
block. Furthermore, we say that two point sets D1, Dy are
score-disjoint if no point in D; has the same score as a point
in Ds. All logarithms have base 2 by default.

scores of D; [10 [ 17 [ 21 [25 [ 28 [32[44 [57 ] ---

scores of Ay [10 [ 17 [ 25 [ 25 [ 57 [ 57 [ 57 [ 57 ] -

Figure 1: Original array and conceptual array in
the proof of Lemma 3 (gray cells represent points in
%(Ds))

Let us start by reviewing a classic result:

Lemma 2 ([7]). Let Ay, ..., An be arrays of values
from a totally ordered set such that (i) each array is sorted,
(i1) the values in each array are distinct, and (iii) the arrays
are mutually disjoint. All arrays are in internal memory.
Given an integer K < Z?:l |As|, there is a comparison-
based algorithm that finds in O(h) CPU time a value T
that is greater than at least K but at most O(K) values in
AU UA,.

As an immediate corollary, when Ai,..., A}, are stored in
the disk, there is an algorithm that solves the same problem
in O(h) I/Os — just a trivial simulation of the in-memory al-
gorithm suffices. Furthermore, this algorithm accesses only
O(h) elements of the arrays (otherwise, the CPU time of the
algorithm in internal memory would not be O(h)).

Given a value 7 € R, define its rank in a point set D,
denoted as rankp (7), to be the number of points in D whose
scores are at most 7.

DEFINITION 1. The logarithmic sketch (D) of a point
set D is a sequence (%o, ...,%|10g|D||), where x (0 <k <
|log |D|]) is the point in D whose score has rank 2F.

For a point set D, we use D[k] (1 < k < |D]) to denote the
point with the k-th lowest score in D. The next lemma shows
that in order to compute a suitable 7, much less information
is needed than is required by Lemma 2.

LEMMA 3. Let D1, ..., Dy be point sets that are mutu-
ally score-disjoint. Given their logarithmic sketches and an
integer K < Z?:l |D;|, we can find in O(h) 1/Os a value T
whose rank in Dy U---UDy, is at least K and at most O(K).

PRrROOF. For each i € [1,h], we construct a conceptual
array A; of size | D;|, based on the logarithmic sketch X (D;).
Suppose 3(D;) = (xo,...,T|5(p,)|-1). The k-th entry of A;
equals? Zlogk)- Figure 1 illustrates an example. It holds
that

score(A;i[[k/2]]) < score(D;[k]) < score(Ai[k]) (1)

for all & = 1,...,|D;|]. Specifically, score(D;lk]) <
score(Ailk]) is because the score of fiog] has rank
2Mos k1 > L in D;, whereas score(A;[[k/2]]) < score(D;[k])
is because the score of x[jog1 /217 has rank 2 log[k/211 < [ in
D;.

Next, given K, we apply Lemma 2 to A1,..., An. Recall
that, in Lemma 2, each input array should be stored in the

'In case [logk] > |2(D;)|, define o4 to be a dummy
point with score oo.



disk. Apparently, we cannot afford to materialize A4, ...,
A}, into the disk because their sizes are large. Interestingly,
we can apply Lemma 2 without disk materialization as fol-
lows. Every time the algorithm asks for a cell in the array,
say A;[k] for some 4, k satisfying 1 < < h,1 < k < |A;], we
probe X(D;) to return the score of its [log k]-th point. As
mentioned earlier, the algorithm finishes in O(h) time in in-
ternal memory, implying that we only need to probe X(D1),
, 2(Dp,) for O(h) times in total. Furthermore, Lemma 2
requires that no two numbers, from either the same array or
different arrays, should be identical. To fulfill this require-
ment, when the scores of two entries A;[k] and A [k'] are
identical, we break the tie by comparing i and i; if there
is still a tie, we compare k and k’. Therefore, when the al-
gorithm of Lemma 2 finishes, we have obtained a 7 whose
rank in A; U---U Ay, falls in [K, cK] for some constant c.

In the sequel, we will show that
ranky, (7) < rankp, (1) < 2ranka, (1)

for every ¢ € [1,h]. This will conclude the proof since it
implies that the rank of 7 in Dy U --- U Dy, is covered by
[K,2¢K].

Set a = ranka, (7). To prove ranka,(7) < rankp,(7),
we point out: (i) score(A;[a]) < 7, by the definition of «,
and (i) score(D;[a]) < score(Ai[a]), by (1). Therefore,
for all k < «, score(D;lk]) < score(D;[a]) < 7. Hence,
rankp, (1) > o = rankg, (7).

To prove rankp, (1) < 2ranka, (), suppose that 241 <
|D;|; otherwise, the statement is trivially true. Observe:
(i) score(Asla + 1]) > 7, by the definition of «, and
(ii) score(D;[2a + 1]) > score(A;[a + 1]), by (1). There-
fore, for all k > 2«, score(D;[k]) > score(D;[2a + 1]) > 7.
This implies that rankp, (7) < 2« = 2ranka, (7). O

Structure. We are ready to describe our structure for the
approximate K-threshold problem. The base tree is a B-tree
on the points of P, where each leaf node contains at least
(most) B/2 (B) points, and each internal node has at least
(most) f/2 (f) children 2. All the points are stored at the
leaf level. Set f = B/®. For every node u of the B-tree,
denote by S(u) the set of points in the subtree rooted at
u. If u is an internal node, define its multi-slabs as follows.
Assuming that the children of u are u1, ..., uy ordered from
left to right, define a multi-slab u[é, j] (1 <i < j < f) as the
union of the subtrees of u;, ..., u;. Use S(uli,j]) to denote
the set of points in u[i, j], i.e., S(ul[i, j]) = S(ui)U- - -US(uy).
We store sketches X(S(uli, j])) at each internal node u, for
all 4, 7 satisfying 1 <i < j < f.

Query. Given an approximate K-threshold query with
search range [z1,z2], first identify, in a standard way, h =
O(logg N) canonical sets D1, . .., Dy, of PN[x1,z2]. For each
D;, its logarithmic sketch is either available in the form of
(S (uli, 7])) for some multi-slab u[z, j], or can be computed
in O(1) I/Os from a leaf node. Then, apply Lemma 3 to
find the result.

Analysis. The query time is O(logz N), noticing that the
canonical sets can be identified in O(loggz N) I/Os, while
applying Lemma 3 takes another O(logz N) time. We now

2Except the root. We ignore such standard details.

bound the space consumption of the structure. The base
tree obviously uses O(N/B) blocks. Next, we analyze the
space occupied by the sketches. Define the level of leaf nodes
to be 0, and in general, the parent of a level-l node is at level

] N
[41. Since there are at most BT nodes at level [, each

node stores f? sketches, and each sketch uses O(% log(Bf"))
space, the total space occupied by level-I sketches is

N 2 1 1
@G ° <E log(Bf )>
s f o B — o (N f*-1ogB
(as f=B77) O( B (772 )
— O(N/B) logB.L l

= =O0O(N/B)———.
5 {2y - O NP Gy
Summing up all levels, overall, the sketches require space:

O(logp N)

O(N/B) - l; e

since B > 64 implies f/2 > 1.

= O(N/B),

3. MAKING THE STRUCTURE DYNAMIC

This section extends our structure to support an update
in O(log% N) amortized time, while retaining the space and
query bounds. We will also show that the new index can be
constructed in O((N/B)log,;,5(N/B)) time.

3.1 Approximate sketch

It is obvious that a single insertion in a point set can inval-
idate its entire logarithmic sketch, thus making the sketch
expensive to maintain. Motivated by this, we resort to a
looser version of the sketch:

DEFINITION 2. An approximate logarithmic sketch
II(D) of point set D is a sequence (Yo,y1,y2,...) whose
length is at least |log | D|] but at most 1+ |log|D||. The rank
of yx (0 <k <|T(D)|—1) in D is in the range [2, 25T —1].

Here is a more intuitive interpretation of the definition.
First, imagine that the real domain R is partitioned into
intervals by the scores of the points in the static sketch
¥(D) = (D[1], D[2],...,D[2*],...) of D. We call these in-
tervals the fragments induced by D. Specifically,

e the first fragment is the interval (—oo, score(D[1]));

e for k between 0 and |log|D|] — 1, the (k+ 2)-nd frag-
ment is [score(D[2"]), score(D[2""'])); and

e the last fragment is [score(D|[2 Liog IDLI]), +00).

Notice that each score in X(D) belongs to the fragment on
its right. Then, except the first fragment and possibly the
last one, every other fragment contributes one number to the
approximate sketch II(D). The last fragment can contribute
either one or no number. More precisely, the (k + 2)-nd
fragment (0 < k < |log|D|]) contributes, if it does, the ys
of II(D). The value of y, can be chosen arbitrarily from
the fragment, i.e., it does not even need to be the score of
a point in D. The first two arrays and the axis in Figure 2
illustrate the computation of an approximate sketch I1(D;)



ke]=2 ~ 3 4~ T 8 ~ 15—

scores of Dy |10 [ 17 [ 21 [25 [ 28 [32 [44 [B7[63 [ 70| ---

10/ 17 25 57

real domain R

sketch TI(D;) [12 [ 22 [ 32 [ 69 | -

scores of A; [12 22 [32[32]69[69[69]69]---

Figure 2: Original array, induced fragments, approx-
imate logarithmic sketch and conceptual array in the
proof of Lemma 4 (gray cells represent scores that
partition the real domain)

for a point set D;. For example, y1 of II(D;), which equals
22, comes from the third fragment [17, 25).

The following lemma indicates that an approximate sketch
serves the purpose of Lemma 3 equally well.

LEMMA 4. Let D1, ..., Dy be point sets that are mutually
score-disjoint. Given their approximate logarithmic sketches
and an integer K < S°" | |D;|, we can find in O(h) I/Os
a value T whose rank in Dy U --- U Dy, is at least K and at
most O(K).

PROOF. For each i € [1,h], we construct a conceptual
array A; of size |D;|, based on the approximate logarithmic
sketch II(D;). Let II(D;) be a sequence (Yo, - - ., Yrn(p,)|—1)
as in Definition 2. The k-th entry of A; is a dummy point
with score® Ylogk]- Figure 2 illustrates an example. In
general, it holds that score(D;[k]) < score(A;[k]) for all k €
[1,]D;]], since the rank of Y10 17 in D; is at least oflog k1 > k.

As in the proof of Lemma 3, with the same tie-breaking
policy, we can apply Lemma 2 on input K and A, ..., Ap,
without materializing the arrays. The algorithm of Lemma 2
returns, in O(h) time, a value 7 whose rank in A; U---U Ay,
falls in [K, ¢K] for some constant ¢. Next, we will show that

ranky, (7) < rankp, (7) < 4ranka, (1)

for every i € [1,h], which will conclude the proof since it
implies that the rank of 7 in Dy U --- U Dy, is covered by
(K, 4cK].

The fact ranka,(7) < rankp,(7) can be established in
exactly the same way as in the proof of Lemma 3. Next,
we will focus on proving rankp, (7) < 4ranka, (7). Set a =
ranka, (7). If |D;| < 4, rankp, (1) < 4ranka, (1) is trivially
true. If @ = 0, 7 < score(A;[1]) = score(D;][1]), leading to
rankp, (1) = 0 < 4ranka, (7). Next, we consider |D;| > 4a
and a > 1. In this case, [log(a+ 1)] < |[II(D;)] since

Mog(a + 1)] < log(2a) < log(|Di]/2) < [log |Dsl].

Therefore, the rank of score(Ai[a +1]) = Yrog(a+1)] in Di,
by Definition 2, is at most

olog(atDIHL g < olos(e)+l 44 1,

®In case [log k] > [II(D;)], define y[iog k] to be co.

This implies score(D;[4a]) > score(Aijac+1]) > 7. As a
result, rankp, (7) < 4a = 4ranka, (7). O

Henceforth, all sketches will refer to approximate logarith-
mic sketches.

3.2 Preliminary: weight-balanced B-tree

We will adopt the weight-balanced B-tree (WBB-tree) of
Arge and Vitter [4] as the base tree of our dynamic structure.
This subsection reviews the part of the WBB-tree that is
sufficient for our discussion.

While an ordinary B-tree determines the balance of a node
by its number of children, a WBB-tree determines the bal-
ance by its weight, namely, the number of points stored in
the subtree rooted at the node. Formally, in a WBB-tree
with leaf capacity b and branching factor f, the weight w(u)
of a level-l node u satisfies

bf'/4 < w(u) < bf'

if it is not the root node (recall that leaf nodes are at level 0).
If, on the other hand, w is the root, it requires that u has at
least two children and w(u) < bf'. A node is unbalanced if
it violates any of these constraints. By definition, the height
of a WBB-tree with N points is O(log;(N/b)); an internal
node has at least f/4 and at most 4f children; and a leaf
node stores b/4 to b points.

A crucial property of the WBB-tree is that to make a
level-I node u unbalanced, Q(bf') updates must have been
performed in its subtree since it was created, if u is not the
root; or Q(bf'~') if it is the root. This provides considerable
convenience in handling the unbalancing of a node u. We
adopt the following simple rebalancing strategy: if u is not
the root, we rebuild the whole subtree rooted at its parent,
whose weight is at most bf'™!; if w is the root, we rebuild
the whole tree, which contains N = O(bf') points in total.
Either way, the strategy guarantees that the cost to recon-
struct a subtree of Z points can be amortized on Q(Z/f)
updates; and an update bears at most one such cost at each
level. It will be clear later that this suffices to establish the
desired bound on the update cost.

3.3 Structure

We are now ready to make our structure dynamic. For
simplicity, let us assume that logz N does not change; the
assumption can be removed by globally rebuilding the whole
structure every time N has been doubled or halved from its
value at the moment when the structure was last rebuilt.
We also assume that the tree has at least two levels. Given
a point set D and an integer k € [1,|D|], define the top-k
points of D as the k points in D with the lowest scores.

The base tree is a WBB-tree with leaf capacity b =
Blogpz N and branching factor f = BY®_ Tts height is thus
O(log;(N/B)) = O(logg N). In each internal node u, we
store the following secondary structures:

e O(f?) sketches. As before, for each multi-slab w[i, j],
we store a sketch of all points in S(ulz, j]).

e a multi-way list. Tt contains the top-(B*/®/4) points
from every child of u. Note that a multi-way list can
be stored in a single block since 4f - B4/5/4 = B.



e a one-way list. It contains the top-(B*/®logg N)
points of S(u), in ascending order of scores.

For each leaf node v, store the points of S(v) in ascending
order of scores. For convenience, sometimes we will refer to
the first B%/® logz N points of this ordering as the one-way
list of w.

Furthermore, we maintain an external priority search tree
[3] on the 2d point set converted from P in the way as ex-
plained in Section 1.3. That is, each point = € S is mapped
to a 2d point (x, score(z)). We refer to the 2d point as the
image of x.

Space. The WBB-tree and the external priority search
tree use O(N/B) space. For sketches, we follow a simi-
lar argument as in the static case: since (i) each internal
node carries O(f?) sketches, (ii) each level-l sketch occu-
pies O((1/B)log(bf")) space, and (iii) the number of level-I
nodes is at most the space consumption of all sketches

DS
is
O(logg N)
> g0 0 (Fleser)
=1
O(logg N) 2 2
_ ffloghb 1 fflogf 1
=O(N/B)- Y ( T 'F>

=1

:O(N/B)~O<f llfgb+f 1ng>:0(N/B)

(as f = B'® > 1 and b = Blogy N).

As the multi-way and one-way lists of an internal node to-
gether consume O(1 + (1/B) - B¥/®log; N) space, and the
number of internal nodes is O(N/(bf)), all the lists occupy

O(1+ (1/B) - B¥*log; N) - O(N/(bf))
N NB*%logy N
=0 (57) +o ()

N N
=808 = 0 (G770 ) + 0 (577
= O(N/B)

space. Therefore, our structure consumes linear space over-
all.

Query. An approximate K-threshold query with search
range [z1,22] can be answered by the same procedure as
in Section 2. First, identify O(logz N) canonical sets of
P N [z1,z2]. Sketches are available for all but at most two
of the canonical sets at the leaf level. Hence in the second
step, for these two canonical sets, we compute their sketches
in O(logz N) time by scanning the corresponding leaf nodes
once. Finally, apply Lemma 4 to obtain the query result. As
each step takes O(log 5 N) time, the query cost is O(log g N).

3.4 Update

This subsection explains how to support insertions and
deletions in our structure. We will first discuss how to mod-
ify sketches before elaborating the entire update algorithm.

Updating sketches. For each number in sketch II(D),
we store a counter to indicate its real rank in D. Next,

we describe how to update a sketch II(S(uli, 7])) if a point
x is inserted in or deleted from a multi-slab w[i, j]. First,
scan the whole sketch to update the counters. Recall that
TI(S(uls, j])) is a sequence (yo,y1, Y2, . ..) of numbers, where
yi comes from the (k4 2)-nd fragment induced by S(ulz, j]).
For each y; in the sequence, increase or decrease its counter
by one if score(x) < yi. Then, if its rank constraint is vio-
lated (i.e., the counter is no longer in the range [2%, 287! —1]),
check if the (k + 2)-nd fragment is the last fragment, i.e.,
k = |log|S(uli, 5])|]. If yes, fix the violation by simply dis-
carding y, since the last fragment is allowed to contribute
no number to the sketch. Otherwise, recompute y, by re-
trieving a super-set of the top-(1.5 x 2%) points® of the multi-
slab. The super-set has size O(2%), with its points fetched
in an arbitrary order. After that, select the point with the
(1.5 x 2%)-th lowest score in the super-set, which can be
done in O(2*/B) time using the algorithm of [2]. The score
of this point becomes the new yx. Assuming that the multi-
way list of node u is already in memory, the aforementioned
super-set can be produced in O(2F/B*/®) 1/Os as follows.

1. If1.5x 2% < B4/5/4, obtain the super-set via accessing
the multi-way list of v with no cost, since the multi-
way list is in memory.

2. If B¥/4 < 1.5x2" < B¥®logy N, fetch the super-set
from the one-way lists of the children of u whose sub-
trees compose multi-slab u[é, j]: First, apply Lemma 2
on those one-way lists to obtain a value 7 whose
rank in S(uli,j]) is at least 1.5 x 2¥ and at most
O(2%).  This can be done in O(f) I/Os. Then,
generate the super-set by collecting all the points of
each one-way list whose scores are at most 7. This
costs O(f 4+ 1.5 x 2¥/B) = O(2F/B3/%) time, since
1.5 x 2%/B%/® > (BY? /4)/ B3/ = Q(f).

3. If 1.5 x 2% > max{B*®/4, B*/®logy N}, issue a 3-
sided range query on the external priority search tree.
This query retrieves all the points in P whose images
fall in [z1,22] X (—00,Ykt1], where [z1,z2] is the x-
range of multi-slab u[i, j]. Here, yx+1 is the number
that succeeds yi in I1(S(u[z, j])); in case yy is the last
number of the sketch, set yr+1 = co. The 3-sided query
returns a super-set as needed because the rank of y;11
in S(uli, 5]) is (i) at least 2871 — 1 (if ypy1 # oo) or at
least 1.5 x 2% (if yr41 = 00), and (ii) at most 2572 — 1.
The cost is O(logz N + 282/ B) = O(2* /B%/°).

We have finished explaining how to recompute existing num-
bers in the sketch. Finally, check if we need to add a
new number to II(S(uli,j])). Specifically, let y, be the
last number in II(S(u[i,j])). If the (k + 3)-rd fragment
is no longer the last fragment induced by S(u[i,j]), ie.,
kE+1 < [log|S(uli,j])|], add a yr4+1 to the sketch. The
value of yx4+1 can also be computed with the above proce-
dure.

Now, we analyze the cost of updating sketches. As will
be clear shortly, inserting/deleting a point can affect the
sketches of O(loggz N) nodes, such that O(f?) sketches at
each node can be modified. There are two types of sketch
updates: counter update and number recomputation. At

4As a special case, when k = 0, we replace 1.5 x 2% with 1.
The same convention is adopted in the sequel.



each node, the counters of the affected sketches can be up-
dated in O((f*log N)/B) = O(logz N) time by scanning
the O(f?) sketches once.

Next, we bound the cost of number recomputation. Re-
call, once again, that a sketch is a sequence (yo,y1,...) of
numbers. Let us focus on one specific number, say yi. Since
the last recomputation of yy, at least 0.5 x 2% updates must
have happened before we need to recompute it again. As
mentioned earlier, each recomputation requires O(2*/B3/%)
I/Os. We amortize this cost over those 0.5 x 2* updates, so
that each update accounts for only O(1/B%°) 1/Os. As a
sketch has O(log N) numbers, each update can be charged
O(log N) times with respect to one sketch. Hence, the up-
date can be charged O(f?log N) times with respect to a
node. Finally, an update needs to bear cost for O(logz N)
nodes. Therefore, overall, the amortized cost of an update
is

O(f*10g N) - O(1/B*®) - O(log 5 N)

log N
=0 ( 315 ) -O(logz N) = O(logy N).
Full update steps. We now give the complete update
algorithm. An insertion/deletion of a point x is carried out
in five steps:

1. Insert/delete z in the WBB-tree. We use the term
update path to refer to the path from the root to the
leaf node containing z.

2. Only nodes on the update path may have become un-
balanced. Find the highest unbalanced node u*, and
follow the rebalancing strategy as in Section 3.2: if u*
is the root, reconstruct the whole tree; otherwise, re-
construct the subtree rooted at the parent of u*. We
defer the construction algorithm to Section 3.5.

If ™ or its parent is the root, the update is complete
because the whole tree has been reconstructed. Oth-
erwise, let U be the set of nodes on the update path
that have not been reconstructed. Specifically, if u*
does not exist, U includes all the nodes on the update
path. If u* exists, U includes all the proper ancestors
of the parent of u*. Perform the following steps on the
nodes u of U in the bottom-up order.

3. Recompute the one-way list of v by merging the one-
way lists of its children.

4. Let v be the child of u on the update path. In the
multi-way list of u, only the B*?® /4 points from the
subtree of v can be affected by the update. Replace
them with the top-(B*/°/4) points in the multi-way
list of v.

5. Load the multi-way list of u into memory. Then, up-
date the sketches of u as described previously.

Analysis. To analyze the update cost, we will use
in advance the fact that we can construct a subtree in
O((Z/B)logy 5(Z/B)) time if the subtree contains Z
points (the fact will be proved in the next subsection).
Steps 1 and 5 consume O(logz N) and O(log% N) amortized
time, respectively. Next, we will show that Steps 2 to 4 in-
cur O(logz N) amortized cost per level. This will establish
that the overall update time is O(log% N) amortized.

e As mentioned in Section 3.2, if the reconstruction of
Step 2 involves Z points, we can amortize the cost over
Q(Z/f) updates, so that each update bears cost

O((%/B)logn/5(2/B)) (10gM/B(Z/B)>
Q2/1) - B/

-0 (10géZéB)) = O(log N).

e As each one-way list contains B%/° log g N points, the
f-way merge of Step 3 can be performed in time

B*%log, N
0O (ngB 1OgM/B f)

logg N
= O( BJIB/E’ logB> = O(logg N).

e Finally, Step 4 takes one 1/0O.

3.5 Construction

This subsection describes an O((Z/B)log, 5(Z/B))-
time algorithm to reconstruct the subtree of a node, where
Z is the number of points in the subtree. Given those Z
points, the algorithm outputs a new subtree 7 in which all
the secondary structures have been properly constructed.
As T is itself a WBB-tree, its nodes can be built in
O((Z/B)logy 5(Z/B)) 1/Os [4]. In the sequel, we focus
on building the secondary structures.

For a node u in T, define the ranked list of u, denoted
as rlist(u), to be the list of points from S(u) in ascending
order of their scores (recall that S(u) is the set of points
in the subtree of ). We first explain the computation of
sketches, which will be used as a building block of the full
construction algorithm.

Computing sketches. Consider u to be an internal node
in 7. Given rlist(u), we next show how to compute the
O(f?) sketches of u in two steps. The first one scans rlist(u)
to generate all the sketch entries of u. At this point, those
entries are not necessarily grouped by the sketches they be-
long to. Then, the second step achieves the grouping by
sorting. Here are the details:

e For the first step, allocate one block of memory as
the output buffer, and another block to keep track of
O(f*) counters, one for each multi-slab ul[i, j] (1 <14 <
j < 4f). The counter of u[i,j] indicates how many
points in the multi-slab have already been scanned in
rlist(u). Every time the counter reaches 1.5 x 2* for
some k > 0, a tuple ((7,7), k,y) is output, where y is
the score of the last point scanned. Reading the ranked
list obviously takes O(|rlist(u)|/B) 1/Os. In addition,
we have to write in total O(f? log Z) tuples to the disk,
whose overhead is

O(1+ (f*log Z)/B) :o<1+ Bi/g) '%) @

= 0(1+ (1/B*®)log Z).

e Given a tuple ((4,7),k,y), refer to (i,7) as its key.
The second step groups the O(f? log Z) tuples by their
keys. Since the number of the distinct keys is O(f?),



this can be done using the distribution sort algorithm
of [2] in time

2
(0] (1 + % 10gM/B(f2)>

= O0(1+ (1/B*®)log, Z).

®3)

The algorithm is stable, i.e., at its termination, the
tuples with the same key are still in ascending order
of their values of k. The sketches can then be created
by reading the sorted list once more.

Therefore, the sketches of u can be computed in
O(|rlist(u)/B|) + O((1/B*®)logy Z) 1/Os. In the sequel,
we will refer to the above algorithm as sketch-build.

Full construction algorithm. We are now ready to ex-
plain the details of building the secondary structures for
a subtree containing Z points. Let us first consider M =
O(B?). In this case, we generate the ranked lists of all the in-
ternal nodes of 7 in a bottom-up manner, where the ranked
list of a node is obtained by an f-way merge which com-
bines the ranked lists of its children. All the f-way merges
that take place at the same level perform O((Z/B) log, 5 f)
I/Os. As there are O(log; Z) levels, all the ranked lists
can be produced in O((Z/B) log;,5(Z/B)) time. Then, for
each internal node u, compute its sketches with sketch-build.
Since |rlist(u)|/B = Q(bf)/B = Q(logg N), the computa-
tion of those sketches requires

O(|rlist(u)/B|) + O((1/B**)1og Z)

= O(|rlist(u)/B]) + O(log g N) = O(|rlist(u)|/B) @

I/Os. The multi-way list of u can be obtained by reading
rlist(u) once — recall that a multi-way list occupies only one
block. The one-way list of u can be generated by another
scan of rlist(u), as it is just a prefix of rlist(u). Thus, the
construction of all the secondary structures is no more ex-
pensive than the generation of all the ranked lists. There-
fore, the algorithm entails in total O((Z/B)log,, 5(Z/B))
I/0s.

Now, consider M = Q(B?). In this case, we cannot afford
to generate the ranked lists of all the internal nodes. This is
because, the height of the subtree, which is Q(log; Z), can
be much greater than log,,,5(Z/B), such that we can no
longer spend O(Z/B) 1/Os at each level. We circumvent
this obstacle by computing the ranked lists for the nodes at
only O(log,;/5(Z/B)) levels, and deploying each ranked list
to build secondary structures for multiple nodes of different
levels. In general, suppose that we have obtained all the
ranked lists at some level [. We will proceed to compute
the ranked lists for the nodes at level [ + A, where A is the
maximum integer satisfying

4f* < % -min{1, f — 1}. (5)
As B > 64, f — 1 =Q(1), meaning that the right hand side
of the above inequality is Q(M/B) = Q(B). This guarantees
the existence of a valid A. For each level-(I + \) node wu, its
ranked list rlist(u) can be obtained by merging the ranked
lists of the descendants of u at level [. Node u has at most
4f* descendants at level | because, a node at level [ has
at least b fl/4 points in its subtree, whereas u has at most
bf't> points in its subtree. As a result, the merge can be

completed in O(|rlist(u)|/B) I/Os by assigning a memory
block to each of the 4f* < M/(2B) descendants. After that,
the secondary structures of u can be created as discussed
before with O(|rlist(u)|/B) I/Os, as shown in (4).

Next, we will explain how to build, simultaneously, the
secondary structures for all the descendants of u at levels
from [ + 1 to l + X\ — 1. Let ¢t be the number of such de-
scendants, denoted as wvi, ..., vs. Since each level-(I + 1)
node has at least bf'*? /4 points in its subtree, the number
of level-(I + i) descendants of u is at most 4%, meaning
that

A—1
t< ST <A (f — 1) < M/@2B).

i=1

Let us first elaborate how to compute the sketches of vy,
.., v at the same time. For any v;, if we had the ranked
list of v;, then we could simply invoke the sketch-build al-
gorithm on wv;. Recall that sketch-build involves two steps.
A crucial observation is that, the first step can still be per-
formed with rlist(u), in replacement of the ranked list of v;.
This is because, as rlist(u) is scanned, we can ignore those
points that do not belong to the subtree of v;, whereas those
that do belong are encountered in ascending order of their
scores. Hence, using only 2 blocks of memory (excluding the
input buffer for rlist(u)), we can carry out the first step on v;
by reading rlist(u) only once. Recall that 2¢ is smaller than
M/B. Thus, we can dedicate 2 blocks of memory for each
of v1, ..., v, so that we can perform the first step for all of
them simultaneously with a single scan of rlist(u). Summing
up the time of reading rlist(u) and that of outputting the
O(f*1og Z) tuples for each v;, we know from (2) that the
total cost is

O(|riist(u)|/B) +t- O (1 +(1/B*®)logp, Z) . (6)

Now, we can carry out the second step of sketch-build for
each v; individually. By (3), doing so for all v; requires

t-0 (1+ (1/B*%)logy Z)

I/Os in total. Therefore, the overall cost of computing the
sketches of v1, ..., v is dominated by (6). Since v, ...,
v¢ are internal nodes in the subtree of v and the subtree
contains |rlist(u)| points, ¢t is bounded by O(|rlist(u)|/(bf)),
meaning that

t-0 (1 +(1/B*%) logp, Z) = t-O(log N)

— O(lrlist(w)|/ (b)) - Oflog; N)
(as b= Blogg N) = O(|rlist(u)|/(Bf)).

Therefore, (6) = O(|rlist(u)|/B).

Finally, by allocating one block of memory for each node
v;, the one-way lists of all v1, ..., v+ can be computed with
one scan of rlist(u). Similarly, the multi-way lists of all vy,
..., v can be computed with another scan (recall that each
multi-way list can be stored in one block). At this point, we
have finished constructing the secondary structures of v1,
..., vy in totally O(|rlist(u)|/B) time.

The above analysis shows that, in O(|rlist(u)|/B) 1/Os,
we can build the secondary structures for u and all of its
descendants at level [ + 1 or above. This implies that the
secondary structures of all the nodes from levels [ 4+ 1 to



[+ X can be computed in O(Z/B) time. As the height of the
subtree 7 we are reconstructing is O(logg Z), we need to
pay the O(Z/B) cost for O(logg Z)/X times. Since A is the
maximum integer satisfying (5), 4f**' = Q(M/B). This
means that A = Q(log,(M/B)) = Q(logz(M/B)), indicat-
ing O(logp Z2)/A = O(logyr/5(Z/B)). Therefore, the total
reconstruction cost of 7T is O((Z/B)log,,,5(Z/B)) for the
case M = Q(B?).

Remark. As a direct corollary, our structure can be built
from scratch in O((N/B) log,,, 5 (IN/B)) time. We thus have
completed the proof of Lemma 1, and hence, Theorem 1.
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