Monotone Classification with Relative Approximations”

YUFEI TAO, The Chinese University of Hong Kong, China

In monotone classification, the input is a multi-set P of points in R, each associated with a hidden label from
{~1,1}. The goal is to identify a monotone function h, which acts as a classifier, mapping from R to {-1, 1} with
a small error, measured as the number of points p € P whose labels differ from the function values A(p). The cost
of an algorithm is defined by the number of points having their labels revealed. This article studies the lowest
cost required to find a monotone classifier whose error is at most (1 + €) - k* where k* is the minimum error
achieved by an optimal monotone classifier and € > 0 is a given real value. Nearly matching upper and lower
bounds are presented for the full range of e.

CCS Concepts: » Theory of computation — Approximation algorithms analysis; Active learning.
Additional Key Words and Phrases: Active Learning; Monotone Classification; Entity Matching

ACM Reference Format:
Yufei Tao. . Monotone Classification with Relative Approximations. J. ACM , , Article 1 (January), 40 pages.

1 Introduction

This article undertakes a systematic study of monotone classification, aiming to determine the minimum
overhead of label discovery to guarantee a classification error that is higher than the optimal error by
at most a multiplicative factor. Next, we will begin by defining the problem, followed by an explanation
of its practical motivations. After that, we will present our findings and discuss their significance in
relation to previous results. Finally, we will provide an overview of our main techniques.

1.1 Problem Definitions

Math Conventions. For any integer x > 1, the notation [x] represents the set {1, 2, ..., x}. Given two
non-negative real values x and y, we use notation x <. y to represent the condition x < (1+ €)y where
€ > 0. Given a real value x > 1, we use Log x as a short form for log, (1 + x). For any real value x, the
expression exp(x) denotes e*. Given a predicate Q, the notation 1o equals 1 if Q holds or 0 otherwise.

Given a point p € R? for some dimensionality d > 1, the notation p|[i] represents the coordinate of
p on dimension i € [d]. A point p € R? is said to dominate a point g € R? if p # g and the condition
pli] > q[i] holds for all i € [d]. We use p > g to indicate “p dominating ¢” and p > q to indicate “p = q
orp > q. If p = g, we may also write g < p.

Monotone Classification. The input is a multi-set P of n points in R for some integer d > 1; note
that P may contain distinct elements p and g satisfying p = q (i.e., they are at the same location). Each
element p € P carries a label from {-1, 1}, which is represented as label(p).

*Preliminary versions of this article appeared in PODS’18 [42] and PODS’21 [43]. This work was supported in part by GRF
projects 14203421, and 14222822 from HKRGC.

Author’s Contact Information: Yufei Tao, The Chinese University of Hong Kong, Hong Kong, China.

ACM 1557-735X//1-ART1
https://doi.org/

J. ACM, Vol. , No. , Article 1. Publication date: January .

https://doi.org/

1:2 « Yufei Tao

® Jabel 1
O label —1

Fig. 1. Aninput set P for Problem 1
A classifier is a function h : R? — {~1,1}. For an element p € P, we say that h correctly classifies p if
h(p) = label(p), or misclassifies p, otherwise. The error of h on P is measured as

errp(h) = Z]lh(p)ilabel(p) (1)
peP

that is, the number of elements in P misclassified by h. A classifier h is monotone if h(p) > h(q) holds
for any two points p, g € R¢ satisfying p > q.

Define
H,... = the set of all monotone classifiers (2)
K = hmin errp(h). (3)
e mon

We will call k* the optimal error of P as this is the lowest error that a monotone classifier can achieve.
A classifier h € H,,,,, is

e optimal on P if errp(h) = k*;

e c-approximate on P if errp(h) < c - k* where ¢ > 1 is the approximation ratio of h.

ExampLE 1.1. Figure 1 shows a 2D input P where a black (resp., white) point has label 1 (resp., —1).
Consider the monotone classifier h that maps (i) all the black points to 1 except p1, and (ii) all the white
points to —1 except p11 and p15. Thus, errp(h) = 3. No other monotone classifier has a smaller error on
P and, hence, k* = 3. Consider the “all-positive” classifier h?* that maps the entire P to 1. Observe that
errp(hP%) =7, because of which h?* is (7/3)-approximate on P.

The goal of an algorithm A is to find a classifier from H,,, whose error on P is as small as possible.
In the beginning, the labels of the elements in P are hidden. There exists an oracle that an algorithm A
can query for labels. Specifically, in each probe, the algorithm selects an element p € P and receives
label(p) from the oracle. The algorithm’s cost is the total number of elements probed.

In one extreme, by probing the whole P, an algorithm pays cost n, after which it can find an optimal
monotone classifier on P with polynomial CPU computation®. In the other extreme, by probing nothing,

1Once all the point labels are available, an optimal monotone classifier can be found in time polynomial in n and d; see [2, 41].

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:3

an algorithm pays cost 0 but will have to return a classifier based purely on the point coordinates; such
a classifier could be very erroneous on P. The intellectual challenge is to understand the lowest cost for
guaranteeing the optimal error k* or an error higher than k* by a small multiplicative factor. This gives
rise to the following problem.

PROBLEM 1. (MONOTONE CLASSIFICATION WITH RELATIVE PRECISION GUARANTEES) Given a real
value € > 0, find a monotone classifier whose error on P is at most (1 + €)k*. The efficiency of an
algorithm is measured by the number of elements probed.

When k* = 0, we say that P is monotone and Problem 1 is realizable; otherwise, P is non-monotone
and the problem is non-realizable.

Every deterministic algorithm Ay, for Problem 1 can be described as a binary decision tree 7 that
is determined by the coordinates of the elements in P. Each internal node of 7 is associated with an
element in P, while each leaf of 7~ is associated with a monotone classifier. The execution of A g
descends a single root-to-leaf path in 7. When Ay, is at an internal node, it probes the element p € P
associated with that node and branches left if label(p) = —1 or right if label(p) = 1. When the algorithm
reaches a leaf of 77, it outputs the monotone classifier associated with the leaf.

Randomized algorithms have access to an infinite bit string where each bit is independently set to 0
or 1 with probability 1/2. Each randomized algorithm A,,, can be modeled as a function that maps the
bit string to a deterministic algorithm (that is, when all the random bits are fixed, A,,, degenerates
into a deterministic algorithm). Suppose that h is the classifier output by A,,, when executed on P,
and X is the number of probes by A,,,. Both X and h are random variables and thus so is errp(h). The
expected cost of A,y is defined as E[X], while the expected error of A,y is defined as E[errp(h)]. We
say that A,,, guarantees error k with high probability (w.h.p.) if Pr[errp(h) < k] > 1 — 1/n° where ¢
can be an arbitrarily large constant specified before running the algorithm.

Although CPU time is not a main concern in this article, all proposed algorithms can be implemented
to run in polynomial time, as will be duly noted in the technical development.

1.2 Practical Motivations

An important application of monotone classification is “entity matching” (also known as “record linkage”
or “duplicate detection” in specific contexts). Given two sets of entities E; and E,, the goal of entity
matching is to decide, for each pair (e, ;) € E; X Ey, whether e; and e, represent the same entity; if
so, they are said to form a “match”. For example, E; (resp., E;) may be a set of advertisements placed
on Amazon (resp., eBay). Each advertisement includes attributes like prod-name, prod-description,
year, price, and so on. The goal is to identify the pairs (e;, e2) € E; X E, where the advertisements e,
and e, describe the same product.

What makes the problem challenging is that decisions cannot rely on comparing attribute values,
because even a pair of matching e; and e, may differ in attributes. This is evident with attributes
like prod-description and price since e; and e, might describe or price the same product differ-
ently. In fact, e; and e, may not even agree on “presumably standard” attributes like prod-name (e.g.,
e;.prod-name = “MS Word” vs. e;.prod-name = “Microsoft Word Processor”). Nevertheless, it would
be reasonable to expect e;.year = e;.year because advertisements are required to be accurate in this

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:4 « Yufei Tao

respect. To attain full precision in entity matching, human experts must manually inspect each pair
(e1,e2) € Eq X E,, which is expensive due to the intensive labor involved, such as reading the adver-
tisements in detail. Therefore, it is crucial to develop an algorithm that can minimize human effort by
automatically rendering verdicts on most pairs, even if it involves a small margin of error.

Towards the above purpose, a dominant methodology behind the existing approaches (e.g., [4, 6, 14,
15, 21, 26, 33, 36, 39, 44]) is to transform the task into a multidimensional classification problem with
the following preprocessing.

(1) First, shrink the set of all possible pairs to a subset S C E; X Ej, by eliminating the pairs that
apparently cannot be matches. This is known as blocking, which is carried out based on application-
dependent heuristics. This step is optional; if skipped, then S = E; X E,. In the Amazon-eBay
example, S may involve only those advertisement pairs (e, e;) with e;.year = e;.year.

(2) For each entity pair (e;,e;) € S, create a multidimensional point p,, ., using several — say d
— similarity functions simy, simy, ..., simg, each of which is evaluated on a certain attribute and
produces a numeric “feature”. The i-th coordinate of p,, ., equals sim;(ey, e;): a greater value
indicates higher similarity between e; and e; under the i-th feature. This creates a d-dimensional
point set P = {pe, ¢, | (e1,€2) € S}. In our example, from a numerical attribute such as price, one
may extract a similarity feature —|e;.price — e;.price|, where the negation is needed to ensure
“the larger the more similar”. From a text attribute (such as prod-name and prod-description)
one may extract a similarity feature by evaluating the relevance between the corresponding texts
of e; and e; using an appropriate metric (e.g., edit distance, jaccard-distance, cosine similarity, etc.).
Multiple features may even be derived on the same attribute; e.g., one can extract two similarity
features by computing the edit-distance and jaccard-distance of e;.prod-name and e;.prod-name
separately.

(3) Every point p,, ., € P inherently carries a label, which is 1 if (ey, e) is a match, or —1 otherwise.
The original entity matching task on E; and E; is now converted to inferring the labels of the
points in P. Human inspection is the ultimate resort for determining the label of each p,, ., with
guaranteed correctness.

Treating P as the input for monotone classification, we can employ an effective algorithm A designed
for Problem 1 to significantly reduce human labor. Specifically, the human plays the role of oracle:
when given a point pe, ¢,, the human “reveals” the label of p,, ., by manually checking whether e; and
ey are about the same entity. After a number of probes (to the human oracle), the algorithm A outputs a
monotone classifier h € H,,,,, which is then used to infer the labels of the un-probed points in P. Such
a classifier is also suitable for performing matching on entities received in the future (assuming that E;
and E; are representative of the underlying data distribution). Demanding monotonicty is important
for explainable learning because it avoids the odd situation of classifying (e;, e;) as a non-match but
(e}, €5) as a match when pe, ¢, > pe: ¢;- Indeed, this oddity is difficult to explain because the former pair
is at least as similar as the latter on every feature.

1.3 Related Work: Active Classification and Monotonicity Testing

Classification is a fundamental topic in machine learning. In the standard settings, we consider a
possibly infinite set P of points in R? and an unknown distribution D over P x {~1, 1}. Given a sample

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:5

(p, 1) drawn from D, we refer to p and ¢ as the sample’s point and label, respectively. A classifier is a
function h : $ — {-1, 1}, whose error rate with respect to D is calculated as

err-ratep(h) = Prop.plh(p) #1].
Let H be the set of classifiers of interest. The optimal error rate among the classifiers in H is given by:

= inf err-ratep (h). 4
v }trelHerrraeg)() 4)

The goal is to ensure the following probabilistically approximately correct (PAC) guarantee:

With probability at least 1 — 8, find a classifier h € H such that err-ratep(h) < v + & where &
and ¢ are problem parameters satisfying 0 < ¢ < 1and 0 < § < 1.

An algorithm A is permitted to sample from D repeatedly until it is ready to produce a classifier
meeting the PAC guarantee. In passive classification, in each sample (p,l) from D, both p and [are
revealed directly. The performance of A is measured by the sample cost, defined as the number of
samples drawn.

In many practical applications, producing the point field of a sample from D requires negligible cost,
but determining its label is expensive. This motivates active classification, which studies how to achieve
the PAC guarantee without acquiring the labels of all samples. In this setup, when an algorithm A
draws a sample (p, [) from D, only the point p is shown to A, but the label / is hidden. The algorithm A
can request [from an oracle, thereby doing a probe. If A does not consider the knowledge of [necessary,
it may skip the probe. The performance of A is now measured by the label cost, defined as the number
of probes performed. The sample cost is no longer a major concern.

Active classification has been extensively studied; see [29, 40] for two excellent surveys. Our subse-
quent discussion will concentrate on agnostic learning where v > 0 (i.e., even the best classifier in H
has a positive, unknown, error rate); this is the branch most relevant to our work. The modern theory
of agnostic active classification is built on two intrinsic parameters

e A: the VC-dimension of H on P;
o 0: the disagreement coefficient of H under D.

We will defer the concrete definitions of A and 6 to Appendix B; for now it suffices to remember that
they are both real values at least 1.

The dominant solution to agnostic active classification is an algorithm named A% Its initial ideas
were developed by Balcan et al. [5] and were subsequently improved in [18, 29]. As shown in [29], the
algorithm achieves the PAC guarantee with a label cost of

2
) 9./1.1/_)
6[o-1-7 ©

where O(.) hides a factor polylogarithmic to 8, 1/¢, and 1/§. On the lower bound side, extending an
earlier result of Kaariainen [32], Beygelzimer et al. [7] proved that the label cost needs to be

v 1

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:6 « Yufei Tao

Note that there is a multiplicative gap of 8 between the upper and lower bounds. When this parameter
is at most a constant, the two bounds match up to polylogarithmic factors. Indeed, most success stories
in active classification concern situations where the value of 8 is very small; see, e.g., [17, 19, 25, 29, 45].

Unfortunately, this is not true when H = H,,,,, the class of monotone classifiers. We will prove that
the disagreement coefficient 8 of H,,,, can be huge even if # has a finite size. This has two consequences.
First, the 6-gap between (5) and (6) becomes significant. This suggests that agnostic active classification
has not been well understood on monotone classifiers. Second, when 6 is large, the A algorithm incurs
an expensive label cost, giving the hope that it could be considerably improved.

A special scenario where monotone classification (i.e., H = H,,,,) has received exceptional attention
is the so-called “hypercube learning” where P = {0, 1}¢, every point p € P carries a label label(p),
and D is the uniform distribution over {(p, label(p) | p € P}. Improving over previous results [9, 34],
Lange and Vasilyan [35] showed that in passive classification the PAC guarantee can be achieved with

a sample cost of 200Vd/&) where O(.) hides a factor polylogarithmic in d and 1/¢.

In Problem 1, we aim at a relative precision guarantee. If, on the other hand, an additive precision
guarantee is desired, the problem can be cast as an instance of active classification. Specifically, let
us set H to H,opn, set P to the input P of Problem 1, and define D as the uniform distribution over
{(p, label(p)) | p € P}. In this case, every monotone classifier h satisfies err-rateqy(h) = errp(h)/n
where n = |P| and errp(h) is given in (1). It follows that v = k*/n, where k* is defined in (3). Thus,
given a specific value of &, the A? algorithm can find w.h.p. a monotone classifier h on P satisfying
errp(h) < k* + én.

Given a multi-set P of n labeled points as defined in Problem 1, monotonicity testing is the problem of
deciding whether P is monotone (i.e., having optimal error k* = 0) or far from being so. Formally, given
an input parameter ¢ > 0, the output must always be “yes” if P is monotone. If k* > &n, the output
should be “no” with probability at least 2/3. In the scenario where 0 < k* < &n, the output can be either
way. In the beginning, all the point labels are hidden. An algorithm A can interact with an oracle in
the same manner as in Problem 1; its performance is measured by the number of probes carried out.

Fischer et al. [24] gave an algorithm to perform monotonicty testing in O(4/n/&) probes. The problem
has also been explored in other settings that are less relevant to this article; the interested readers may
refer to [10, 11, 13, 28] and the references therein.

1.4 OQOur Results

Under € = 0, the goal of Problem 1 is to find an optimal monotone classifier. We prove that any
algorithm achieving the purpose with a nontrivial probability needs to probe Q(n) points in expectation
(Theorem 11 in Section 4). Consequently, the naive strategy of probing all points can no longer be
improved by more than a constant factor. Our lower bound holds even when the dimensionality d is 1
and the optimal error k* defined in (3) is given to the algorithm “for free”.

The above hardness result justifies an investigation of Problem 1 under € > 0. Our findings show that,
in this regime, the probing complexity is determined by the width w of the input P, formally defined as:

w = the size of the largest S C P such that A distinct p, g € S satisfying p = gq. (7)

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:7

(a) A point set of width 1 (b) A point set of width n

Fig. 2. lllustration of the dominance width

Any one-dimensional P has w = 1. Once the dimensionality d reaches 2, the width w can be anywhere
between 1 and n; see Figure 2 for two extreme examples.

ExAMPLE 1.2. Regarding the input P in Figure 1, the set S = {p10, P11, P12> P16> P13> P14} Satisfies the
condition on the right hand side of (7). On the other hand, given any 7 points of P, we can always find two
points where one point dominates the other. The dominance width w of P is 6.

Equipped with w, we can now enhance our understanding of the A% algorithm (reviewed in Section 1.3
as the state of the art in active classification) in the context of Problem 1. As explained in Section 1.3, the
algorithm finds w.h.p. a classifier whose error on P is at most k* + &n. Let us “favor” the algorithm by
telling it the value of k* for free and considering only the non-realizable case k* > 0. Consequently, the
algorithm can set £ to ek*/n and solve Problem 1 w.h.p. at a cost given in (5). As shown in Appendix B,
both A (the VC-dimension) and 8 (the disagreement coefficient) can be bounded by O(w); furthermore,
they can be Q(w) simultaneously. Applying v = k*/n, the best bound that can be derived from (5) is

O(w*/e?) 8)
where O(.) hides a factor polylogarithmic in n = |P| and 1/e.

This article will prove that the “correct” complexity of Problem 1 turns out to be lower than (8) by
roughly a factor of w. We achieve the purpose by establishing nearly-matching upper and lower bounds.
Regarding upper bounds:

e We design in the next subsection an algorithm that, as analyzed in Section 2, guarantees an
expected error at most 2k* with an expected cost of O(w Log =-). When k* = 0 — i.e., Problem 1 is
realizable — the algorithm always finds an optimal monotone classifier.

e We present in Section 3 an algorithm that guarantees an error of (1 + ¢)k* w.h.p. at a cost of
O(Z - Log 1. - logn). When k" = 0, the algorithm finds an optimal monotone classifier w.h.p..

We now turn to our lower bounds:

e For any constant ¢ > 1, we prove in Section 5 that any algorithm ensuring an expected error at

most ck™ must probe Q(w Log m) points in expectation (Theorem 14). Hence, the cost of our

first algorithm (with expected error at most 2k*) is asymptotically optimal when k* < (n/w)!~®
where § > 0 is an arbitrarily small constant.

e For any € > 0, we prove in Section 6 that any algorithm ensuring an expected error at most
(1 + €)k* must probe Q(w/e?) points in expectation (Theorem 15). Hence, the cost of our second
algorithm is asymptotically optimal up to a factor of O(Log 1. - logn).

Table 1 summarizes all the results mentioned earlier.

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:8 « Yufei Tao

€ \ probing cost \ ref \ remarks
any ‘ O(w?/€?) ‘ [5, 18, 29] ‘ k* known, w.h.p. error
1 O(w Log <) expected Thm. 1 expected error
any O(Z - Log + - logn) Thm. 6 + Sec. 1.5 w.h.p. error
0 Q(n) Thm. 11 success probability > 2/3
constant > 0 | Q(w Log m) expected Thm. 14 expected error
any Q(w/e?) expected Thm. 15 expected error

Table 1. A summary of our and previous results on Problem 1

As a side product, our findings also imply a new result for monotonicity testing. Recall from Section 1.3
that the input to monotonicity testing involves a multi-set P of n labeled points and a real-valued
parameter ¢ € (0, 1). In Section 2.3, we solve the problem with an expected cost of O(w Log =) + 2/¢,
where w is the width of P. This provides a meaningful alternative to the solution of [27], which probes
O(\/W) points as mentioned earlier.

1.5 Our Techniques

This subsection will highlight the new techniques developed in this work. Our discussion will focus on
the proposed algorithms for solving Problem 1.

A Simple Algorithm. Our first algorithm — named RPE (random probes with elimination) — is
remarkably elegant:

algorithm RPE (P)

Z=0

while P # 0
probe an element z € P chosen uniformly at random and add z to Z
if label(z) = 1 then remove from P every p € P satisfying p = z (note: this removes z)
else discard from P every p € P satisfying z = p (note: this removes z)

6. return Z

Gk W=

The algorithm outputs the set Z of points probed. Given Z, we define the following classifier:

hrpg (p))

1 if 3z € Z such that label(z) =1and p = z
1 otherwise

The classifier hgpr, must be monotone. Otherwise, there exist p, g € R? such that p > ¢ but hgpe(p) = —1
and hrpg(q) = 1. Let z be an arbitrary element in Z satisfying label(z) = 1 and q = z (such z must exist
by the definition in (9)). It follows that p > z, in which case hgpg(p) should be 1 according to (9), giving
a contradiction.

Another way to understand RPE is to regard it as the following labeling process. After acquiring
the label of a random element z € P from the oracle, we will make sure that hrpg maps z to label(z).
Accordingly, this requires us to finalize many other mappings because of monotonicity. Specifically, if
label(z) = 1, then hgpg assigns label 1 to all the elements p > z; otherwise, hrpp assigns label —1 to all

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:9

the elements p satisfying z = p. The elements that have their labels assigned are removed from P. The
process is then repeated recursively on the remaining elements.

ExaMPLE 1.3. Let us illustrate the algorithm on the input P in Figure 1. Assume that RPE randomly
probes (at Step 3) py first. Acquiring label(p;) = 1, it eliminates the entire P except ps, p7, and ps. Suppose
that RPE then randomly probes ps. Acquiring label(ps) = —1, it removes all the remaining points in P.
With Z = {p1, ps}, the classifier hrpg in (9) maps all the points to label 1 except ps, p7, and pg. Its error on
P is errp(hrpg) = 5.

While RPE is procedurally simple, proving its theoretical guarantees requires nontrivial arguments. It
is unclear why the classifier in (9) ensures an expected error at most 2k* — notably, probing a “wrong”
element of P may immediately force hrpg to misclassify a large number of elements (imagine, e.g., the
consequence if py5 is probed first). Equally intriguing is why RPE ends up probing O(w Log) elements
in expectation, particularly since the algorithm never computes the value of w. In Section 2, we will
unveil the answers to these questions through a novel analysis. The RPE algorithm also serves as the
main step of our proposed method for monotonicity testing.

Relative-Comparison Coresets. Let us now turn our attention to guaranteeing an approximation
ratio of 1 + € where 0 < € < 1. To that aim, we will produce a function F : H,,,, — R that ensures:

The relative e-comparison property: F(h) < F(h’) implies errp(h) <. errp(h’) for any classi-
fiers h, k' € Hon.

For every h € Hop, the function value F(h) can be precisely computed. Given F, we can then focus on
identifying a monotone classifier h® with the lowest F(h®). This classifier must fulfill the condition
errp(h®) < (1+€)k* (noticing that F(h®) < F(h*) where h* is an optimal classifier on P, i.e, errp(h*) =
k*) and thus can be returned as an output of Problem 1.

An inherent barrier in finding such a function F is that we cannot hope to estimate errp(h) of
every monotone classifier & up to a finite relative ratio without Q(n) probes. This is true even if the
dimensionality d of P is 1. To see why, consider the classifier i#* that maps the entire P to 1. It has
error 0 if all the elements of P have label 1, or error 1 if all but one element in P has label 1. Hence,
estimating errp(hP®) up to a relative ratio, say, 1/2 requires identifying the only element in P having
label —1 or declaring the absence of such an element. It is not hard to prove that achieving the purpose
with a constant probability demands Q(n) probes in expectation.

Our method to produce a desired F is to ensure the following inequality for every h € H oy
errp(h) - (1 - Z) +A < F(h) < errp(h) - (1 + Z) +A (10)

where A is an unknown real value common to all h. Indeed, if the exact value of A were available, then
F(h) — A would serve as an estimate of errp(h) with a relative ratio at most €/4, which would require
Q(n) probes as discussed. The key behind our success is to compute F(h) without knowing A, as long
as the existence of A can be assured.

The relative e-comparison property is a corollary of (10) because

errp(h) - (F(h) = A)

1-¢/4

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:10 + Yufei Tao

’ 1 ’
(by F(h) < F(h)) < 1 ~(F(R') = A)

—€/4
1+¢€/4

lying (1 < . ’

(applying (10)) < T~/ errp(h’)
< (1+e€)-errp(h)
where the last inequality used the fact that ;fiéi < 1+e¢forall € € (0,1]. Note that, interestingly, the

existence of A already permits the derivation to proceed — its concrete value is unnecessary.

We will show that a function F meeting the unusual condition in (10) can be obtained using a coreset.
Specifically, a coreset of P is a subset Z C P where each element p € Z
e has its label revealed, and
e is associated with a positive real value weight(p), called the weight of p.

Given a classifier h € H,op, define its weighted error on Z as:

w-errz(h) = Z weight(p) + Ln(p)#label(p)- (11)
pEZ
In Section 3, we show how to perform O(Z; Log <. - log n) probes to obtain w.h.p. a coreset Z of size
O(Log ; - logn), such that every h € Hino, satisfies

errp(h) - (1 - Z) + A < w-errz(h) < errp(h) - (1 + Z) +A (12)

for some unknown A common to all A. The function w-err; readily serves as the desired function F and
can be evaluated for any h € H,,,, based purely on Z. We will refer to Z as a relative-comparison coreset
because its purpose is to enable the relative e-comparison property. The “unknown-A” technique
outlined above is different from all the existing coreset-building methods (see representative works
(1, 8, 12, 16, 22, 23, 30, 31, 38] and their references) to our knowledge.

2 Random Probes with Elimination

This section will prove the theorem below regarding the RPE algorithm in Section 1.5:

THEOREM 1. For Problem 1, the RPE algorithm probes O(w Log) elements in expectation and the
monotone classifier hrpg in (9) has an expected error at most 2k*, where n is the number of elements in the
input P, w is the width of P, and k* is the optimal error of P.

The expected error guarantee implies that when k* = 0 (Problem 1 is realizable), the classifier hrpg
is always optimal (otherwise, the expected error would be strictly positive). Our proof is divided into
two parts: Section 2.1 analyzes the expected error, and Section 2.2 examines the expected cost. The
following proposition states an important property of the classifier hArpg, which establishes symmetry
between labels —1 and 1.

PROPOSITION 1. For any p € P, we have hgpg(p) = —1 if and only if 3z € Z satisfying label(z) = —1
and z = p, where Z is the set of elements probed by RPE.

Proor. We first prove that Z is a monotone set, or specifically:
e Z contains no two (distinct) elements p and g with p = ¢;

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:11

o forany p,q € Z, if p > g, then label(p) > label(q).
The first bullet holds because once an element z € P is probed at Line 3 of the pseudocode in Section 1.5,
then all the elements of P at the same location as z are removed from P at Line 4 or 5. Regarding the
second bullet, assume that there exist p,q € Z such that p > g, label(p) = —1, and label(g) = 1. But
which element was probed earlier by RPE? If it was p, then ¢ should have been removed from P at Line
5 after the probing of p at Line 3, contradicting q € Z. Likewise, probing q first would contradict p € Z.

We are ready to prove that, for any p € P, the condition hgpg(p) = —1 holds if and only if 3z € Z
satisfying label(z) = —1 and z = p. Let us first consider the “only-if direction” (i.e., =). Our argument
proceeds differently in two cases.

o Case p € Z: This implies label(p) = —1 (indeed, if label(p) = 1, then hgpp(p) = 1 because we can
z="Pin(9)). As p € Z and label(p) = —1, we can set z = p to fulfill the only-if statement.

e Case p ¢ Z: From hgpg(p) = —1, we can assert by (9) that no element z’ € Z satisfies label(z) = 1
and p = z’. Thus, RPE must have removed p after probing an element z satisfying label(z) = —1
and z = p. This z completes the only-if direction.

Finally, we consider the “if direction” (i.e., <). The designated element z rules out the existence of any
element z’ € Z satisfying label(z’) = 1 and p = z’; otherwise, z = z’ and the labels of z and 2’ suggest
that Z is not monotone. Hence, hgpg(p) = —1 by (9). O

2.1 The Expected Error of RPE

Fix an arbitrary classifier h € H,,,,. An element p € P is said to be h-good if h(p) = label(p) or h-bad
otherwise. We will prove:

LEMMA 2. The number of h-good elements misclassified by the classifier hgpg, from (9) is at most errp(h)
in expectation.

The lemma implies E[errp(hgpe)] < 2k*. To understand why, set h to an optimal monotone classifier
h* on P. By Lemma 2, the number of h*-good elements misclassified by hrpg is at most errp(h*) = k* in
expectation. Because exactly k* elements of P are h*-bad, the total number of elements misclassified by
hrpg is at most 2k™ in expectation.

The rest of this subsection serves as a proof of Lemma 2. Our proof works by induction on the size
n of P. When n = 1, the classifier hgpg has error 0 on P, and the claim holds. Next, assuming that the
claim holds for n < m — 1 (where m > 2), we will establish its correctness for n = m. Define

X = the number of h-good elements in P misclassified by hgrpg, (13)
Our goal is to show that E[X] < errp(h).

For each h-bad element p, we define its influence set Ip,q(p) as follows:

o If label(p) = —1, then Ip,4(p) consists of all the h-good elements g € P satisfying p > g and
label(q) = 1;

o If label(p) = 1, then Ip,4(p) consists of all the h-good elements ¢ € P satisfying ¢ = p and
label(q) = —1.

For each h-good element p € P, define its influence set Io0q(p) as follows:
o If label(p) = —1, then Ig,04(p) consists of all the h-bad elements g € P satisfying p > q.

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:12 « Yufei Tao

o If label(p) = 1, then Iy,,q4(p) consists of all the h-bad elements q € P satisfying q > p.

LEMMA 3. Both of the statements below are true:

(1) If p € P is h-good, then label(p) # label(q) for every q € Iyooa(p).
(2) For any h-good p € P and any h-bad q € P, we have p € Iy,04(q) © q € Ipaa(p).

PRrROOF. Let us start with statement (1). Suppose that label(p) = —1. Because p is h-good, we know
h(p) = —1. As q € Iy50q(p), we must have p > q. By monotonicity, h(q) must be —1 as well. Since g
is h-bad, it follows that label(q) = 1. A symmetric argument proves the statement in the case where
label(p) = 1. Statement (2) follows directly from statement (1) and the influence set definitions. O

Statement (2) of Lemma 3 leads to
Do led®l = D haa(p)l. (14)
h-good p € P h-bad p € P

ExAMPLE 2.1. Let P be the set of points in Figure 1, and h be the classifier that maps all the black points
to 1 except p; and all the white points to —1 except p11 and p1s. Thus, p1, p11, and p1s are h-bad, while the
other points of P are h-good. The following are some representative influence sets.

Inaa(p1s) = {pa po. P10, P12, P13, P14> P16}

Ipad(p1) = {p2 ps ps}
Igood (pS) = {pl}
Igood(p9) = {Pll,Pls}-

Recall from its pseudocode in Section 1.5 that RPE is an iterative algorithm. We will refer to Lines
3-5 as an iteration. Let z be the point probed (at Line 3) in the first iteration. The revelation of label(z)
instructs the algorithm to remove z and possibly some other elements from P (at Line 4 or 5). Define

P, = the set of remaining elements at the end of the first iteration. (15)

The next proposition relates the error of h on P, to the error of h on P.

ProrosiTION 2.
errp(h) — 1 ifz is h-bad
errpz(h) = { errp(h) — |1g00d(z)| ifz is h-good

Proor. If z is h-bad, the inequality errp, (h) < errp(h) — 1 follows trivially from the fact that P, has
lost at least one h-bad element (i.e., z) compared to P.

Consider instead that z is h-good. Assume first label(z) = 1. In the first iteration, an element p € P
is removed by Line 4 if and only if p > z. Thus, by definition of Ig,q(2), an element p removed by
Line 4 is h-bad if and only if p € Ige0a(2). Hence, P, loses exactly |Ig,04(2)| h-bad elements compared
to P, giving errp,(h) = errp(h) — |Igo0a(z)|. A symmetric argument applies to the other case where
label(z) = —1.]

Define

Y, = the number of h-good elements in P, misclassified by hrpg

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:13

Under the event that the first element probed is z, we have
X = Y, + the number of h-good elements in P \ P, misclassified by hrpg (16)
where X is defined in (13).

PRrROPOSITION 3. The number of h-good elements in P \ P, misclassified by hgp is
o |Ipaqa(2)| if z is h-bad;
e 0ifz is h-good.
ProoF. Let us first discuss the scenario where label(z) = 1. The set P \ P, consists of every point
p € P satisfying p = z. The classifier hgpg maps every point p € P \ P, to 1. Hence, the number of

h-good points in P \ P, misclassified by hgpg is exactly the number — let it be x — of h-good points in
P\ P, whose labels are —1.

Next, we analyze the number x. If z is h-bad, then x is exactly |Ipo4(2)| by definition of Iy,4(2).
Consider the case where z is h-good. By monotonicity of h, we have h(p) = 1 for all p = z (recall that
label(z) = 1). Hence, if p is h-good, then label(p) = h(p) = 1. The number of x is thus 0 in this case.

A symmetric argument applies to the scenario where label(z) = —1, using Proposition 1.]

Combining (16) and Proposition 3 yields

X - {Yz+|1bad(z)| if z is h-bad

Y, if z is h-good (17)

under the event that z is the first point probed.

The subsequent execution of RPE on P, can be regarded as invoking RPE directly on P,. We utilize
this recursive view to proceed in the analysis. As P, has at least one less element than P (because z is
removed), the inductive assumption tells us:

E[Y,] < errp,(h). (18)

We can now derive

E[X] = Z E[X | z is probed first] - Pr[z is probed first]
zeP
1
= — Z E[X | z is probed first]
m zeP
1
= —(Z E[X | z is probed first] + Z E[X | z is probed ﬁrst])
h-good z € P h-bad z € P
1 1
bya7) = (= > BN +(= D) B+ a2
m h-good z € P m h-bad z € P
1 1
byg) < (— D emn®)+(— 3 emn(h)+hal2))
m h-good z € P m h-bad z € P
(Proposition 2) < (i Z errp(h) —|I 0od(z)l) + (l Z errp(h) — 1+ |Ibad(2)|)
T \m § m

h-good z € P h-bad z € P

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:14 «+ Yufei Tao

o ® Jabel 1
o O label —1

Fig. 3. Approximation ratio 2 is tight for RPE

S (= Y emt) - l@l) (= Y e + ()
m h-good z € P m h-bad z € P
= e (Y M@= Y)]
h-bad z € P h-good z € P
(by (14)) = errp(h).

This completes the inductive step of the proof of Lemma 2.

Remark. As explained, Lemma 2 implies that RPE guarantees an expected error at most 2k*. The
approximation ratio 2 is the best possible for this algorithm. To see this, consider the input P in Figure 3,
where n — 1 white points have label —1 and the only black point has label 1. The optimal error k* is 1
(achieved by the monotone classifier that maps all points to —1). If RPE probes the black point first —
which happens with probability 1/n — then hrpg misclassifies all the white points and, thus, incurs an
error n — 1. On the other hand, if the first point probed is white, then hrpr misclassies only the black
point and incurs an error 1. The expected error of hgpg is therefore % -(n—-1)+(Q1- %) -1=2- %,
which gets arbitrarily close to 2 as n increases.

2.2 The Expected Cost of RPE

Chains. Let us review a fundamental property of the width w of P defined in (7). Call a subset S C P
a chain if it is possible to linearize the points of S into a sequence p; X p; =X ... 2 ps|. A chain
decomposition of P is a collection of disjoint chains Cy, Cy, ..., C; (for some ¢t > 1) whose union is P.
Dilworth’s Theorem [20] states that there must exist a chain decomposition of P containing w chains.

ExAMPLE 2.2. The input P in Figure 1 can be decomposed into 6 chains: C; = {p1, p2, P3, P4> P10}, C2 =
{p11}, C3 = {ps, po, p12}, Ca = {p1s}, Cs = {p13}, and Cs = {ps, p7, ps, p14, p15}. The points p1o, p11, P12,
P16 P13, and p1a indicate the absence of any chain decomposition of P having less than 6 chains. This serves
as evidence that the width w of P is 6.

Attrition and Elimination. Before discussing the cost of RPE, let us take a detour to discuss a relevant
problem. Consider the following attrition-and-elimination (A&E) game between Alice and Bob. The
input to the game is a chain C of m > 1 points in R%. In each round:

e Bob performs “attrition” by either doing nothing or arbitrarily deleting some points from C;

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:15

e Alice then carries out “elimination” by picking a point p € C uniformly at random, and deleting
from C all the points g = p.

The game ends when C becomes empty. The number of rounds is a random variable depending on
Bob’s strategy. The question is how Bob should play to maximize the expectation of this variable.

LEMMA 4. Regardless of Bob’s strategy, the game has O(Log m) rounds in expectation.

PrOOF. Let X be the number of elements left in C after the first round. We will show Pr[X < m/2] >
1/2. Let C’ be the content of C after Bob’s attrition in the first round. Set m’ = |C’|. Let us arrange the
points of C’ such that p; X p, X ... 2 ppy. If Alice picks p = p; (i € [m’]), then at most i — 1 points
are left after her elimination because such points must be among py, ps, ..., pi—1. Hence, X < m’/2 as
long as i < 1+ m’/2, which occurs with probability greater than 1/2. The fact Pr[X < m/2] > 1/2 now
follows from m’ < m.

We call a round successful if it reduces the number of elements in C by at least a factor of 2. The total
number of successful rounds cannot be more than log,(1 + m). Let Y be the total number of rounds.
IfY > 2log,(1 + m), there must be at least log,(1 + m) unsuccessful rounds; as all the rounds are
independent, this can happen with probability less than (1/2)!°82(1*™) < 1/m.Because Y is trivially
bounded by m, we have E[Y] < 2log,(1 + m) + m - Pr[at least 2log,(1 + m) rounds] = O(Logm). O

Cost Analysis of RPE. Returning to RPE, let {Cy, Cy, ..., C,,} be an arbitrary chain decomposition of P
with w chains. Note that RPE is unaware of these chains. For each i € [w], break the chain C; into two
disjoint subsets:

o C?” = {p € C; | label(p) = 1}, and

. Cl.neg ={p € C; | label(p) = —-1}.

LEMMA 5. RPE probes O(Log |CI™|) points from C'** in expectation.

Proor. The operations that RPE performs on Cf % can be modeled as an A&E game on an initial input
C= Cf * as explained next.

In each round (of the A&E game), Bob formulates his strategy according to the execution of RPE.
Suppose that RPE probes an element outside Cf * at Line 3 (of the pseudocode in Section 1.5); recall that
the algorithm removes some elements from P at Line 4 or 5. Accordingly, Bob carries out attrition by
deleting from C all the elements of Cf * that have been removed by RPE. After that, Bob observes the
next probe of RPE and performs attrition in the same way as long as the element probed is outside C;.
If, on the other hand, RPE probes an element z € Cf * he passes the turn to Alice.

From Alice’s perspective, conditioned on z € Cf %, RPE must have chosen z uniformly at random from
the current C, namely, the set of elements from Cf % still in P. Hence, Alice can take z as her choice in
the A&E game to perform elimination. Because z has label 1, after probing z at Line 3, RPE shrinks P by
removing at Line 4 every element p > z. As far as C is concerned, the shrinking deletes elements from
C in exactly the way Alice should do in her elimination. This completes a round of the A&E game. The
next round starts and proceeds in the same fashion.

By Lemma 4, the A&E game lasts for O(Log |Cf7 |) rounds in expectation regardless of Bob’s strategy.
Hence, RPE probes O(Log |CfJ ”|) elements from Cf * in expectation. O

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:16 + Yufei Tao

By a symmetric argument, RPE probes O(Log |C; #|) elements from C;® in expectation. Therefore,
the expected number of elements probed by RPE in total is given by

Z:Log |cl-|) =0 (wLog %)

where the last step used the fact }}}?, |C;| = w. This completes the proof of Theorem 1.

0| > Log|cl”| +Log|C/®|| =0

i=1

2.3 Application to Monotonicity Testing

We will finish this section with a remark on monotonicity testing. As reviewed in Section 1.3, given a
multi-set P of n points in R? and a parameter & € (0, 1), the output of monotonicity testing should be

e always “yes” if P is monotone;
e “no” with probability at least 2/3 if k* > én where k* is the optimal error of P (see (3));
e cither “yes” or “no” if 0 < k* < én.

Consider the following simple algorithm:

1. run RPE on P and obtain hgpg from (9)

2. take a set S of 2/& uniform samples of P with replacement and obtain their labels
3. if hgpg misclassifies any element in S then return “no”

4. else return “yes”

By Theorem 1, the algorithm probes O(w Log -) + 2/& elements of P in expectation. Next, we will
explain why it fulfills the output requirements of monotonicity testing. First, if P is monotone, then
the algorithm definitely outputs “yes” because, as mentioned before, hgpg, is guaranteed to classify all
elements of P correctly in this case. On other hand hand, assume that k* > &n. Because errp(hrpp) > k¥,
the probability for hrpg to misclassify a uniformly random element of P is at least k*/n > £. Hence, the
probability for hgpg to be correct on all the elements in S is at most (1 —£)%/¢ < 1/e? < 1/3. This means
that the algorithm outputs “no” with probability at least 2/3.

3 Relative-Comparison Coresets

This section will solve Problem 1 up to an approximation ratio 1 + € w.h.p. assuming € < 1 (for € > 1,
reset it to 1). The central step is to find a relative-comparison coreset of the input P. Recall from
Section 1.5 that this is a subset Z C P where every element p € Z has its label revealed and is associated
with a positive weight such that the weighted error of every monotone classifier # on Z — namely,
w-errz(h) defined in (11) — satisfies the condition in (12), where A is some unknown value common to
all h € H,op. Formally, we will establish:

THEOREM 6. Let n be the size of the input P of Problem 1 and w be the width of P. In O(2; Log . -log %)
probes, we can obtain a subset Z of P with |Z| = O(Z Log - log %) such that Z is a relative-comparison
€ n
coreset of P with probability at least 1 — 6.

As explained in Section 1.5, given the coreset Z in Theorem 6, the remaining task to solve Problem 1
is to find a monotone classifier h® minimizing w-errz(h®). The task requires no more probing and can
be done in CPU time polynomial in |Z| and d (see [2, 41]). This leads us to:

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:17

COROLLARY 7. For Problem 1, there is an algorithm that guarantees an error of (1 + €)k* w.h.p. by
probing O(Z; Log 1+ - logn) elements, where n is the size of the input P, w is the width of P, and k* is the
optimal error of P.

The rest of the section serves as a proof of Theorem 6. The main difficulty arises from establishing its
correctness for d = 1. Indeed, most of our discussion will revolve around the following problem.

ProBLEM 2. Let P be a multi-set of 1D labeled points as defined in Problem 1 (underd = 1), and € be
a value in (0, 1]. Find a function F : H,,,, — R such that every h € H,,,, satisfies (19) and (20):

|F(h) — errp(h)| < €|P|/64 (19)
€ €
errp(h) - (1 - 4_1) +A < F(h) < errp(h) - (1 + 4_1) +A (20)
where A is a possibly unknown value with
|Al < €|P|/64. (21)

The efficiency of an algorithm is measured by the number of elements probed.

Two remarks are in order:

e The value A in (20) is the same for all A € H,,,y,.
o Before returning a function F, we must make sure that F(h) is computable for every h € H,,op.

Sections 3.1-3.4 will settle Problem 2 with probability at least 1 — § by performing O(Log 5 - log)
probes. Section 3.5 will then utilize our solution to build a relative-comparison coreset that meets the
requirements of Theorem 6 for d = 1. Section 3.6 will extend the argument to d > 1.

3.1 Warm Up: A Special Case

Solving Problem 2 requires demonstrating the existence of A even when its actual value remains
undetermined. This subsection will illustrate this principle in the specific case where all elements of P
have identical values (i.e., all the points in P are located at the same position). In this case, any monotone
classifier h maps the entire P to 1 or —1. We denote by h?* (resp., h"%) the monotone classifier that
always outputs 1 (resp., —1). It suffices to construct a function F : {h?*, h"¢} — R such that (19)-(21)
hold for h € {hP*, h"%}.

As it turns out, in this special instance, we can simply return an arbitrary function F : {h?% h"%€} — R
satisfying (19). It is standard to build such a function with random sampling, the details of which will be
given in Section 3.4. What is less standard, however, is to argue for the availability of a A value to meet
the requirements in (20) and (21). W.l.o.g., let us assume that the optimal error k* is achieved by A%,
namely, k* = errp(hP%). Our argument distinguishes two scenarios depending on whether k* is large.

When k* > |P|/16. This is a simple scenario and can be dealt with by setting A = 0. This choice of
A trivially satisfies (21). To see why (20) holds as well, recall that the value F(h) estimates errp(h) up
to an absolute offset of €|P|/64 for h € {hP°, h"€}. As errp(h) > |P|/16, the offset is at most errp(h).
This yields errp(h) - (1 - %) < F(h) < errp(h) - (1+ 7).

When k* < |P|/16. In this scenario, we set

A = F(h") -k (22)

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:18 «+ Yufei Tao

Even though we cannot compute A (because k* is unknown), we are certain that it exists. Furthermore,
as F satisfies (19) for h = h?%, we have |A| < €|P|/64; hence, (21) holds.

Next, we will explain why (20) holds for h € {h?*, h"€}. This is easy for h = h?*, in which case (20)
becomes k*(1 — €/4) < k™ < k*(1 + ¢/4), which is true. Regarding h"®, first note that as k* < |P|/16,

we have errp(h"%) = |P| — errp(hP%) > %|P|. Thus, from (19):

P
|F(A™E) — errp(h"™E)| < —€(|)4| < = - emp(h™).
On the other hand, as explained earlier,
€|P| €
Al —< —- h"¢8
81 < S0 < = emp(h)

Hence
€ € €
|F(h"8) — errp(h"®) — A| < < errp(h"8) + o errp(h™®) < 7 errp(h"8).
We thus conclude that (20) holds for h = h"¢.

3.2 A Recursive Framework for Problem 2

This subsection discusses Problem 2 in its generic settings. If |P| = 1, we probe the only element in P
and return F(h) = errp(h) for any h € H,,,,. Our subsequent discussion assumes |P| > 2.

When d = 1, a monotone classifier s has the form

hp) = {1 ifp>r (23)

—1 otherwise

which is parameterized by a value 7; we will sometimes make the parameter explicit by representing
the classifier in (23) as h”.

We will construct (in Section 3.4) a function Gy : H,,,, — R that approximates errp up to absolute
error €|P|/64, namely,

|G1(h) —errp(h)| < €|P|/64 (24)

for all h € H,p,. The function is said to be consistently large if

1 e
Gl(l’lr) > |P| (Z_L - a) for all r € R. (25)

Our subsequent development depends on whether (25) is true.

3.2.1 When Gy Is Consistently Large. In this case, we decide the target function F to be
F(h) = Gi(h). (26)

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:19

3.2.2 When Gy Is Not Consistently Large. Define:

1
a = the smallest 7 € R with G{(h*) < |P| - (— — i)
4 64
1
p = thelargest r € R with G;(h") < |P| - (Z — 6_64)

Our construction of G; in Section 3.4 makes « and f well defined when G is not consistently large.
Now, break P into:

Po = {pePlp=a} (27)
Pmia = {pePla<p<f} (28)
Press = (P \ Pa) \ Pria (29)

Note that these are multi-sets where each (1D) point inherits its label in P.
PROPOSITION 4. |Pniq| < |P|/2.

ProoF. We argue that P,y has less than |P|/4 elements of label 1. To see why, assume that P has at
least |P|/4 elements in (e,] having label 1. Thus, errp(h?) > |P|/4, which together with (24) tells us

G1(hP) > |P| (i - &), contradicting the definition of j.

Similarly, we argue that Py,;; has less than |P|/4 elements of label —1. To see why, assume that P has
at least |P|/4 elements in (a, f] having label —1. Thus, errp(h*) > |P|/4, which together with (24) tells
us Gy (h%) > |P| (i — ¢7) contradicting the definition of a. O

We will construct (again in Section 3.4) another function G, : H,p,, — R fulfilling two requirements:

e G2-1: G, approximates errp,, up to absolute error €|Pys|/64, namely, for any h € H,op

|G2(h) — errPrest(h)l < €|Prest|/64; (30)
e G2-2: for any 7 € [a, f], it holds that
Gz (h") = Gy (K). (31)

By solving Problem 2 on P, using the solution in Section 3.1 and on P,,;4 recursively, we obtain functions
Fy : Hpmon — R and Fpq : Hpon — R such that every h € H,,,, satisfies (32)-(35):

|Fo(h) — errp, (h)| < €|Py|/64 (32)
|Fmia(h) — errp,,(h)| < €|Ppial/64 (33)

€ €
errp, (h) - (1 - Z) + Ay < Fy(h) < errp, (h) - (1 + Z) + A, (34)

€ €
errp, ,(h) - (1 - 4_1) + Amig < Frig(h) < errp, . (h) - (1 + Z) + Apmid (35)
where A, and A,,;;y are (unknown) real values such that

|Ae| < €|Pg|/64 (36)
|Amid| < elpmid|/64 (37)

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:20 + Yufei Tao

The target function F for Problem 2 can now be finalized as

F(h) = Gz(h) + Fa(h) + Fria(h). (38)

3.3 Correctness of the Framework
Next, we prove that the above framework always produces a function F obeying (19)-(21).

3.3.1 When G Is Consistently Large. In this scenario, the constructed F is given in (26). We will show

that F satisfies (19) and (20) with A = 0. Note that this choice of A trivially fulfills (21).

Proof of (19). This directly follows from (24) and (26).

Proof of (20). As G is consistently large, we can first apply (24) and then (25) to derive
errp(h)ZGl(h)—%Z %—%—%2 %

where the last step used € < 1. Applying (24) and then (39) yields

€|P| € 64-errp(h) €-errp(h)
_ < < .
Gi(h) = errp()] < S0 < = SR L S

(39)

which leads to
errp(h) - (1 —€/4) < F(h) < errp(h) - (1+€/4).
Thus, (20) holds with A = 0.

3.3.2 When Gy Is Not Consistently Large. Inductively, assuming that (33), (35), and (37) hold on P,;q4,
we will show that the function F produced in (38) satisfies (19)-(21) with

A = Ag+Apig+Go(hP) —errp_, (). (40)
Proof of (19). For any h € H,,,,, it holds that
errp(h) = errp,(h) +errp ,(h) +errp,, (h). (41)

Combining the above with (38) gives:

|F(h) —errp(h)| < |Fo(h) — errp,(h)| + |Fpnia(h) — errp,,(h)| +|G2(h) — errp,,(h)|
€|Px| €|Pmigl €lPrest| €lP|
2 < L}
(by (30), (32), and (33)) < o T e T e S e

where the last step used the fact that Py, Pp;4, and Py, decompose P; see (27)-(29).
Proof of (21). From (30), (36), (37), and (40), we know

€|Pa| + 6|Pmia'| " elprestl < €|P|.

()] < =
64 64 64 64

IA] = |Ag + Apig + Go(P) — errp (42)

rest

Proof of (20). We will prove that F(h") satisfies (20) for all 7 € R in two separate lemmas.

LEmMA 8. The requirement (20) is fulfilled when t < a ort > .

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:21

PRrOOF. By the definitions of a and f, we have G;(h") > |P|(i — ¢7) when 7 < a or 7 > 8. Hence, by
the same derivation in (39), we obtain errp(h*) > §|P |. Combining this with (42) yields

€-errp(h™) AL 14|P| B ﬂ _ 10¢|P|

4 4 64 64 256
As proved earlier, F satisfies (19), which tells us

€|P| 10€|P| € errp(h™) .

F(h") - h) < — < A. 43
() = ermp(h?) < S < 220 ; (@3)
Similarly, from errp(h") > é—ilPl and (42), we know
€ - errp(h”) A€ 14|P| €|P| _ 10€|P|
4 T4 64 64 256
Hence, (19) tells us
€|P| 10e|P| €-errp(h")
h*) -F(h") < — < < -A. 44
errp () = F(h") < S < 22 - (1)
The correctness of (20) now follows from (43) and (44). O

LEMMA 9. (20) holds whena < 7 < J5.
Proor. For any 7 € [a, f], we have
errp,,(h") = errprest(hﬁ) (45)

because Py has no element in [a, f]. By requirement G2-2 (see Section 3.2.2), G;(h7) = G,(hP) for all
T € [a, B]. This, together with (38), yields

F(h") = Fu(h") + Fpia(h") + Go (). (46)
We can thus derive
errp(h")(1+€/4) + A

(by (41) and (45)) = (errp,(h") +errp, (A7) + errprest(hﬁ))(l +e/4)+A
> (errp,(h") +errp ,(h"))(1+€/4)+ errprest(hﬁ) +A
(by (40)) = (errp, (k") +errp,,(h"))(1+€/4) + Ag + Apig + G2 (hP)
(by (34) and (35)) > Fu(h") + Fpig(h") + Go(hP)
(by (46)) = F(h").
Similarly,
errp(h")(1—€/4) + A
(by (41) and (45)) = (errp (h") +errp, (h") + errpm[(hﬁ))(l —€e/4)+A
< (errp,(h") +errp , (h"))(1—€/4) + errprm(hﬁ) +A
(by (40)) = (errp, (h") +errp_,(h"))(1 = €/4) + Ag + A pig + Go (hP)
(by (34) and (35)) < Fu (") + Fpig(h7) + Gy (hP) = F(hY).
This completes the proof.]

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:22 + Yufei Tao

3.4 A Concrete Algorithm for Problem 2

Instantiating our framework in Section 3.2 into an actual algorithm requires constructing the function
F in Section 3.1, the function G; in Section 3.2, and the function G, in Section 3.2.2. We will explain how
to achieve those purposes in this subsection. In doing so, we will factor in the consideration that the
whole framework needs to succeed with probability at least 1 — §. Denote by ¢ the number of recursion
levels in our framework; the value of £ is O(log n) due to Proposition 4.

Constructing G; and G;. Recall that both G, and G, map H,,,, to R. Although H,,,, has an infinite
size, there exists a finite set of “effective” classifiers:

Hpuon(P) = {h" |7 € Porr=—oo}.

The size of |H o, (P)| is at most |P| + 1. Every monotone classifier has the same error on P as one of the
classifiers in H,,,, (P).

1pie
5

To build Gy, uniformly sample with replacement a set S; of O(é log -) elements from P. For each

h € H,,on, define G;(h) as

p
Gi(h) = Ly errs, (h). (47)
|51
By the discussion in Appendix A, for each h € H,,,,(P), the value G; (h) satisfies (24) with probability at
least 1 - m. As |Hpon(P)| = |P| + 1, the function G, given in (47) satisfies (24) for all h € H,,0,(P)

— also for all h € H,,,, — with probability at least 1 — §/(3¢).

To build G,, uniformly sample with replacement a set S, of O(ﬁ log %) elements from P,.s, where
Pt 1s given in (29). For each h € H,,,,, define
PFES
Ga(h) | 5 |f| - errs, (h). (48)
2

An argument analogous to the one used earlier for G; shows that G, obeys (30) for all h € H,,,, with
probability at least 1 — §/(3¢). G, fulfills requirement G2-2 because S, has no element in [a, §].

Constructing the Function F in Section 3.1. In our framework, the method in Section 3.1 is applied
is to solve Problem 2 on P, — defined in (27) — whose goal is to obtain a function F, satisfying (32). To
build F, (i.e., the function F in Section 3.1 when P = P,), uniformly sample with replacement a set S,

of O(é log %) elements from P,. For each h € H,,,,, define
| Py |

Fy(h) = @ ~errs, (h). (49)

It satisfies (32) for all h € H,,,, with probability at least 1 — §/(3¢).

Putting All Levels Together. In summary, at each recursion level, by probing O(ﬁ log %) elements
we can build the desired functions Gy, G, and F, with probability at least 1 — §/¢. As there are ¢ levels,

the overall cost is O(EL2 log %) = o(loﬁ

€2

-log %) and we solve Problem 2 with probability at least 1 — 6.

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:23

3.5 A One-Dimensional Relative-Comparison Coreset

We are now ready to prove Theorem 6 for d = 1. Let us examine our algorithm (combining Sections 3.1,
3.2, and 3.4) again and construct a coreset Z along the way.

If |P| = 1, our algorithm probes the only element p € P. Accordingly, we set Z = P and define
weight(p) = 1. When |P| > 2, our algorithm acts differently in two scenarios.

o If function G; is consistently large, the target function F is decided in (26). In this case, we
add to Z the entire sample set S; described in Section 3.4; for each element p € S;, define
weight(p) = |P|/|S4].

e Otherwise, the function F is decided in (38), where function F, is obtained from P, and function
Fouiq 1s recursively obtained from P,;4. In this case, we first add to Z the entire sample set S,
described in Section 3.4; for each element p € S,, define weight(p) = |Prest|/|S2|- Then, we
add to Z the entire sample set S, described in Section 3.4; for each element p € S,, define
weight(p) = |Py|/|Sq|. The recursion on P,y returns a coreset Z,,;g C Pyiq. We finish by adding
Zmid to Z.

The following pseudocode summarizes the above steps.

algorithm Build-Coreset (P)
1. if |P| = 1 then probe the only element p € P and set Z = P with weight(p) =1
2. else probe the sample set S; described in Section 3.4 /* this defines Gy; see (47) */
3. if G, is consistently large then
4, set Z = S; with weight(p) = |P|/|S;]| for each p € §;
else
probe the sample set S, described in Section 3.4 /* this defines G,; see (48) */
set Z = S; with weight(p) = |Prest|/|S2| for each p € S,
probe the sample set S, described in Section 3.4 /* this defines F; see (49) */
set weight(p) = |Py|/|S«| for each p € S, and then add S, to Z
Zmia =Build-Coreset (P,q) and add Z,,;4 to Z
10. return Z

0N w

logn
€2

The discussion in Section 3.4 asserts that Build-Coreset returns a set Z of O(-log %) elements.

LEMMA 10. The function F we return for Problem 2 satisfies F(h) = w-errz(h) for every h € H,,op.

ProoF. The claim obviously holds when |P| = 1. Assuming that the claim is true for all P with at
most m > 1 elements, next we prove the correctness for |P| = m + 1. When G is consistently large,
F(h) = G1(h) and Z is simply the set S; in Section 3.4. Hence:

F(h) =Gy(h) = % - errs, (h) = w-errs, (h) = w-errz(h).

When G; is not consistently large, the algorithm recursively processes P,,;; whose size is strictly
smaller than |P| (Proposition 4). Suppose that the recursion returns a function Fp,;y and a coreset Z ;.
By the inductive assumption, Fp;s(h) = w-errz, ., (h). Recall that F(h) = Gy(h) + Fy(h) + Fpia(h) (see
(38)) and the coreset constructed for Pis Z = S, U Sy U Z;4 (review S,, and S, from Section 3.4). Hence:

Pres PO(
F(B) = Galh)+ Fulh) + Fpia(h) = [0 e () 2L rrs, () + Foa(h)
2 a

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:24 + Yufei Tao

= w-errs,(h) + w-errs, (h) + w-errz . (h) = w-errz(h).
This completes the proof. O

We therefore conclude that Theorem 6 holds for d = 1.

3.6 Arbitrary Dimensionalities

This subsection will prove Theorem 6 for any d > 2. As before, denote by n and w the size and the
width of the input P, respectively. We start by computing a chain decomposition of P with w chains:
Cy, Cy, ..., Cy,; as explained in Section 2.2, such a chain decomposition definitely exists. It can be computed
in time polynomial in d and n (see [43]) without any probing.

For every i € [w], we will compute a subset Z; C C; where every element p € Z; has its label revealed
and carries a weight weight(p) > 0. The set Z; ensures

errc,(h) - (1 - Z) — A < w-errz,(h) < errc,(h) - (1 - Z) +A; (50)

for every h € Hyon, where A; is some unknown real value common to all & € H,,,,. Once this is done,
we can obtain

Z;. (51)

N
Il
.Cg

Il
—_

It must hold for every h € H,,, that
€ €
errp(h) - (1 - Z) — A < w-errz(h) < errp(h) - (1 - Z) +A (52)

where

A=A

i=1
remains unknown.

Finding Z; for an arbitrary i € [w] is a 1D problem. To explain, let us sort the elements of C; in
“ascending” order (i.e., if p precedes g in the ordering, then p < ¢). A monotone classifier h maps only a
prefix of the ordering to —1; hence, as far as C; is concerned, we can regard h as a 1D classifier of the
form (23). Earlier, we have proved that Theorem 6 is correct for d = 1. We can thus apply the theorem
to produce the desired Z; with probability at least 1 — % by probing O(é - Log|C;i| - log(wn/d)) =
O(bg(e# Log |C;|) elements from C;. This Z; has size O(bgiﬂ Log |Ci]).

Therefore, with probability at least 1 — 1/6, the aforementioned Zi, ..., Z,, can be produced with a
total probing cost of

log(n/8) « 3 log(n/d) n
o(- ;10g|c,|) = o(o wlog —

where the derivation used the fact };*; |C;| = n. The same bound also applies to the size of Z in (51).
This completes the whole proof of Theorem 6.

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:25

4 Optimal Monotone Classification Needs Q(n) Probes

This section will focus on Problem 1 under € = 0, namely, the objective is to find an optimal monotone
classifier. Naively, we can achieve the objective by probing all the elements in the input P. We will
prove that this is already the best approach up to a constant factor, as stated in the theorem below.

THEOREM 11. For Problem 1, any algorithm promising to find an optimal classifier with probability over
2/3 must probe Q(n) labels in expectation, where n is the number of elements in the input P. This is true
even if the dimensionality d is 1, and the algorithm knows the optimal error k* of P.

The rest of the section serves as a proof of the theorem. Assuming n to be an even number, we
construct a family P of n one-dimensional inputs. Every input of P has n elements, which are 1, 2, ...,
n (every number represents a 1D point). The inputs of P, however, differ in their label assignments.
Specifically, every integer i € [n/2] defines two inputs in P:

e P_y(i), where every odd (resp., even) number in [n] carries label 1 (resp., —1). The only exception
is the number 2i — 1, which is assigned label —1;
e P;(i), where every odd (resp., even) number in [n] carries label 1 (resp., —1). The only exception
is the number 2i, which is assigned label 1.
We will refer to P_;(i) and P; (i) as a (—1)-input and a 1-input, respectively.

The constructed family P = {P_;(1), P-1(2), ..., P_1(n/2), P1(1), P1(2), ..., P1(n/2)} can also be under-
stood in an alternative manner. Chop the elements 1, 2, ..., n into n/2 pairs (1, 2), (3,4), ..., (n — 1,n). In
a normal pair (x — 1,x), elements x — 1 and x carry labels 1 and —1, respectively. Each input P € P
contains exactly one anomaly pair (x — 1,x). If P is a (—1)-input, both x — 1 and x are assigned label
—1; otherwise, they are assigned label 1.

For each input P € PP, an optimal monotone classifier has error k* = n/2 — 1. Indeed, every monotone
classifier has to misclassify at least one element in each normal pair of P. On the other hand, the error
n/2 — 1 is attainable by mapping all the elements to 1 for a 1-input or —1 for a (—1)-input.

We say that an algorithm A for Problem 1 errs on an input P € P if (A fails to find an optimal classifier
for P. Denote by costp(A) the number of probes performed by A when executed on P; note that this is
a random variable if A is randomized. Define

family-err(A) = Z Pr[A errs on P]
PeP

Z costp(A).

PeP

family-cost(A)

If A is a deterministic algorithm, then Pr[A errs on P] is either 0 or 1 for each P € P. Section 4.1 will
prove the following lemma for such algorithms.

LEMMA 12. Fix any non-negative constant ¢ < 1. When n > max{4, 2/c}, the following holds for any
deterministic algorithm Age;: if family-err(Age;) < cn/2, then family-cost(Agy) = Q(n?).

We can utilize the lemma to a hardness result for randomized algorithms.

COROLLARY 13. When n > 4, the following holds for any randomized algorithm A: if family-err(A) <
n/3, then E[family-cost(A)] = Q(n?).

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:26 + Yufei Tao

Proor. A randomized algorithm degenerates into a deterministic algorithm when all the random
bits are fixed. Hence, we can treat A as a random variable sampled from a family A of deterministic
algorithms, each sampled possibly with a different probability. We call an algorithm Ay € A accurate
if family-err(Age) < (2/5)n. Define A, as the set of accurate algorithms in A.

We argue that Pr[A € Ay.] > 1/6. Indeed, if Pr[A ¢ A,] > 5/6, then
Z family-err(Age) - Pr(A = Ager]

family-err(A)

ﬂdeteA
> Z family-err(Aget) - Pr[A = Ages]
ﬂdeteAacc
2n
> T) PrlA=Au
ﬂdeteAacc
2n 2n 5
= ?Pr[ﬂeﬂacc]z?g:n/3

contradicting the definition of A.
By Lemma 12, every accurate A 4.; must satisfy family-cost(Age) = Q(n?). Thus, E[family-cost(A)] >
Q(n?) - Pr[A € Agc] = Q(n?). |

The corollary implies Theorem 11. Indeed, if A guarantees finding an optimal classifier with prob-
ability over 2/3 on any input, then family-err(A) < |P|/3 = n/3. Thus, Corollary 13 tells us that
E[family-cost(A)] = Q(n?) when n > 4. This means that the expected cost of A is Q(n) on at least
one input in P (recall that P has n inputs).

4.1 Proof of Lemma 12
We start with a crucial property of the family P constructed.

PRrRoPOSITION 5. For each i € [n/2], no monotone classifier can be optimal for both P_,(i) and P; (i).

Proor. As mentioned, the optimal error is n/2 — 1 for each input of P. Recall that a 1D monotone
classifier h has the form (23), which is parameterized by a value r; next, we will denote the classifier as
h*. We argue that no A’ is optimal for both P_ (i) and P; (i). For this purpose, we examine all possible
scenarios.

e Case 7 < 2i — 1: on P_;(i), h™ misclassifies both 2i — 1 and 2i and has error n/2 + 1.
e Case 7 = 2i — 1: on P_;(i), h" misclassifies 2i and has error n/2.
e Case 7 > 2i: on P;(i), h™ misclassifies both 2i — 1 and 2i and has error n/2 + 1.

Thus, regardless of z, the error of h” is non-optimal on either P_; (i) or P;(i). O

To simplify the proof of Lemma 12, we strengthen the power of Ay, by giving it certain “free” labels.
Specifically, every time A4, probes an element of some pair (2i — 1, 2i), where i € [n/2], we reveal the
label for the other element (of the pair) voluntarily. Henceforth, Ay, is said to “probe pair i” if A ge;
probes either 2i — 1 or 2i. If Lemma 12 holds even on such an “empowered” A 4, it must hold on the
original A because an empowered algorithm can choose to ignore the free information.

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:27

We consider, w.l.o.g., that Ay, terminates immediately after probing an anomaly pair, i.e., catching
the only pair where the two elements share the same label. Once the anomaly pair is found, Ay can
output an optimal classifier immediately because the labels in all the normal pairs are fixed. As a result,
we can model Ag,; as a procedure that performs probing according to a pre-determined sequence: pair
X1, pair xy, ..., pair x; up to some integer t € [0,n/2]. Specifically, for each j € [t — 1], if pair x; is an
anomaly, the algorithm terminates after the probing of x;; otherwise, it moves on to pair x;4;. If all the ¢
pairs have been probed but no anomaly is found, A, always outputs a fixed classifier, denoted as h 4.

As A e never probes pair i for

ie{1,2,..,n/2} \ {x1, %0, ..., x; } (53)
the output of Ay, must be hy, on both P_;(i) and P;(i). Proposition 5 asserts that hy,; cannot be
optimal for both P_; (i) and P; (i), meaning that Ay, has to err on either P_; (i) or P; (i), which gives

family-err(Agey) > nj2-—t. (54)

Regarding its cost, observe that Ay, performs t probes for P_; (i) and P; (i) of every i satisfying (53),
but j € [t] probes for P_;(x;) and P; (x;). Hence

t
family-cost(Ager) = 2t - (n/2 —t) + 2 Zj =nt—t*—t. (55)
=

If family-err(Age;) needs to be at most cn/2 (as demanded in Lemma 12), then by (54) ¢t must be at
least 7 (1 — ¢). On the other hand, for ¢ > 7(1 —¢) and n > 2/c, we have

2
(55) > %(1 —?) - 2(1 — o)
which is at least n(1 — ¢?)/8 for n > 4. This completes the proof of Lemma 12.

5 A Lower Bound for Constant Approximation Ratios

We now proceed to study the hardness of approximation for Problem 1. This section’s main result is:

THEOREM 14. Letn’, w’, k, and c be arbitrary integers satisfyingn’ > 2,w’ > 1,k > 0,c > 1, and n’ is
a multiple of w’. Set

n = n'+2k+2ckn’ (56)
w = W+ . (57)

For Problem 1, we can construct a family P of inputs where each input has size n, width w, and optimal
error k* = k, such that any randomized algorithm, which guarantees an expected error at most ck*, must
entail expected cost Q(w’ Log fv—,,) on at least one input of P. Here, Q(.) hides a constant that does not
depend onn’, w’, k, and c. The claim holds true even if the algorithm knows the value of k™.

The theorem is particularly useful when the approximation ratio c is a constant. To see this, first note
that when k = 0 (the realizable case), the theorem gives a lower bound of Q(w Log 1) on the expected
cost. For k > 1 (the non-realizable case), we always have n’ + 2k < n/2, because of which

! —(n" +2k
n n-—(n) .

w’ 2ckw’ " dckw’

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:28 «+ Yufei Tao

Fig. 4. A hard realizable input for Problem 1: w boxes each with n/w points

In this case, Theorem 14 implies a lower bound of Q(w Log) on the expected cost when w is
sufficiently large.

We will first prove the theorem for k = 0 in Section 5.1 and then for k > 1 in Section 5.2.

5.1 The Realizable Case

We use the term box to refer to an axis-parallel rectangle with a positive area in R%. The main diagonal
of the box is the segment connecting its bottom-left and top-right corners. We say that two boxes B;
and B, are independent from each other if no point in B; dominates any point in B, and vice versa.

When k = 0, an algorithm that guarantees an expected error at most ck* = 0 must always find an
optimal classifier. To prove Theorem 14 in this case, we construct hard inputs as follows. Let n’ > 2 and
w’ > 1 be integers such that n’ is a multiple of w’. Let By, B, ..., B,,» be arbitrary mutually independent
boxes. For each i € [w’], place n’ /w’ points on the main diagonal of B;, making sure that they are at
distinct locations and no point lies at a corner of B;. This yields a set P of n’ points that has width
w’; see Figure 4 for an illustration. Label assignment is done for each box independently, subject to
the constraint that P is monotone. In each box, there are 1 + "L—l, ways to do the assignment: for each
i€ lo, %] assign label —1 to the i lowest points in the box and 1 to the rest. This gives a family P, .,/
of (1+ Z)—i)“” labeled point sets, each of which serves as an input to Problem 1.

Recall from Section 1.1 that a deterministic algorithm Ay, is a binary decision tree 7. If Ay, is
always correct for k = 0, it must be able to distinguish all the inputs in P,y ,,» by returning a different
classifier for each input (no classifier is optimal for two inputs in P, ,,»). The number of leaves in 7" is
thus at least (1 + "L—/,)W/. The average cost of Aye; — defined as the average of its costs on all the inputs
of P,y.,» — equals the average depth of the leaves in 7. A binary tree with at least (1 + fv—l,)w, leaves
must have an average depth of Q(w’ Log 1’;—) Hence, A4, must have average cost Q(w Log -).

By Yao’s minimax theorem [37], any randomized algorithm that is always correct for k = 0 must
entail Q(w’ Log fv—,,) expected cost on at least one input of P, ,,/, as claimed in Theorem 14 (for k = 0).

5.2 The Non-Realizable Case

This subsection serves as a proof of Theorem 14 for k > 1.

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:29

. " pjs1 (label 1) o
. . .. // - . I \\
- / o _ :’ .00/ k ploints with label —1
x . N K \ /
x o N : NV
ck dummy points with label 1 < A ':/ k points with label 1
x T Zoom-11y S~ -7
% ck dummy points with label —1 K - -
x tL \/1 dummy box
° p; (label —1) T
(a) Dummy points in a non-dummy box (b) Dummy points in the dummy box

Fig. 5. Adding dummy points for a Las Vegas lower bound

Algorithms with Guessing Power. We first strengthen the power of a deterministic algorithm A g;.
As before, Ay, is described by a binary decision tree 7~ determined by the point locations in the input
P. Different from the decision tree in Section 1.1, however, there are two types of internal nodes:

o Probe node. This is the (only) type of internal nodes allowed in Section 1.1.

e Guess node. At such a node, Ay, proposes a monotone classifier h and asks an almighty guru
whether errp(h) is at most a certain value fixed at this node. On a “yes” answer from the guru,
A ger descends to the left child, which must be a leaf returning h. On a “no” answer, A4, branches
right and continues.

We charge one unit of cost to every probe or guess node. A randomized algorithm is still modeled as a
function that maps a random-bit sequence to a deterministic algorithm. Almighty gurus do not exist in
reality. However, a lower bound on such empowered algorithms must also hold on algorithms that use
probe nodes only.

Letn’ > 2and w’ > 1be arbitrary integers such that n’ is a multiple of w’. The argument in Section 5.1
has essentially proved that any deterministic algorithm in the form of a binary decision tree must have
an average cost of Q(w’ Log fv—,,) over the inputs of P, . Hence, this is also true for a deterministic
algorithm with guess nodes. By Yao’s minimax theorem, any randomized algorithm with guess nodes
must incur Q(w’ Log fv—l,) expected cost on at least one input of P(n’, w’) if it always returns an optimal
classifier on the inputs of P(n’, w’).

A Las Vegas Lower Bound. Let n’, k', k, ¢, n, and w be as described in the statement of Theorem 14.
Denote by A a randomized algorithm (with guessing power) that, when executed on an input having
size n, width w, and optimal error k* = k, guarantees

e returning a monotone classifier whose error on the input is at most ck*, and
® an expected cost at most Jy.

We will show that Jiy = Q(w’ Log "4’)—,,)
Given an input P’ € P, ,,, we construct a set P of labeled points in several steps. As the first step, add

all the points of P’ to P. Recall that the points of P’ are inside w’ boxes By, By, ..., By, each of which has
n’/w’ points; see Figure 4. For each i € [w'], let py, py, ..., pp' /2 be the points already in B;, sorted in

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:30 + Yufei Tao

ascending order of y-coordinate. For each j € ["L—,, — 1], place 2ck dummy points on the main diagonal
of B; between p; and pj,;. Assign labels to those dummy points as follows:

o If label(p;) = label(pj.1), set the labels of all 2ck dummy points to label(p;).

e Otherwise, we must have label(p;) = —1 and label(pj+1) = 1 (because P’ is monotone); set the
labels of the ck lowest dummy points to —1 and the labels of the other dummy points to 1; see
Figure 5a.

Furthermore, add ck dummy points to P between the bottom-left corner of B; and p;. Set their labels to
—1if label(p1) = —1, or 1 otherwise. Symmetrically, add to P another ck dummy points between pp/../
and the top-right corner of B;. Set their labels to 1 if label(p,/.s) = 1, or —1 otherwise. Finally, create
a dummy box that is independent from all of B, ..., B,/,. Add 2k points to P on the main diagonal
of this box, setting the labels of the k lowest (resp., highest) points to 1 (resp., —1); see Figure 5b. This
finishes the construction of P.

The set P has n = n’ + 2k + 2ckn’ points (all at distinct locations) and width w = w” + 1. Furthermore,
the optimal error k* of P is k because (i) any monotone classifier must misclassify at least k points in
the dummy box, and (ii) error k is attainable by the classifier that classifies all the points in By, ..., By
correctly and maps all the points in the dummy box to 1.

Let us apply the given algorithm A on P and obtain its output classifier h. We argue that h must
correctly classify every non-dummy point p € P (remember that such p originated from P’). Otherwise,
suppose that label(p) = —1 but h(p) = 1 for some non-dummy p € P. By our construction, p is
dominated by at least ck points of label —1. As h maps all those ck points to 1, we know errp(h) > ck+1,
contradicting the fact that A guarantees an error at most ck*. A symmetric argument rules out the
possibility that label(p) = 1 but h(p) = —1. We can thus return h as an optimal classifier for P’.

It follows from our earlier lower bound on P(n’, w’) that Jiy must be Q(w’ Log "L—’,)

A Monte-Carlo Lower Bound. Again, let n’, k', k, ¢, n, and w be as described in Theorem 14. Let A be
a randomized algorithm (with guessing power) that, when executed on an input P with size n, width w,
and optimal error k* = k, always guarantees

e an expected error at most ck on P and

e an expected cost at most Jyc.
We will show that Jyc = Q(w’ Log :}_,,), which will complete the proof of Theorem 14.

With probability at least 1/2, the algorithm A must (i) return a monotone classifier whose error on

P is at most 4ck and (ii) probe at most 4Jj;c points. Otherwise, one of the following two events must
occur with probability at least 1/4:

e A outputs a classifier whose error on P is over 4ck*, or

e A probes more than 4/yc points of P.
However, this means that A either has an expected error higher than ck* or incurs an expected cost
higher than Jjc, contradicting its guarantees.

We can deploy A as a black box to design a randomized algorithm that probes O(Jyc) points in
expectation and always returns a monotone classifier with an error at most 4ck™ on P. For this purpose,
run A until either it returns a monotone classifier 4 or has probed 4/y;c points. In the former situation,
we ask the almighty guru whether errp(h) < 4ck*. If so, return h. In all other situations (i.e., the guru

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:31

answers “no” or A does not terminate after 4/yc probes), we declare “failure” and start all over again.
After having failed [log, n] times, we simply probe the entire P and return an optimal monotone
classifier. Since each time we fail with probability at most 1/2, the expected probing cost is bounded by

[logy n1 U

Z 4fmc - (i+1) (5) toon= O(Jmc)

i=0
noticing that the probability of failing [log, n] times is at most 1/n. By our earlier Las Vegas lower
bound, we conclude that Jy;c = Q(w’ Log fv—/,).

6 A Lower Bound for Arbitrary Approximation Ratios

We now continue our study on the approximation hardness of Problem 1 in the regime where € can be
arbitrarily small. Our main result in this section is:

THEOREM 15. Let € be an arbitrary value satisfying 0 < € < 1/10. Fix any integersn > 1 and w > 1
such that n is a multiple of w, and n > max{90, 2; Inn}. Suppose that A is an algorithm for Problem 1
under d = 2 that guarantees an expected error of (1 + €)k* on any input P of size n where k* is the optimal
error of P. Then, the expected cost of A must be Q(w/€?) on at least one input where w is the width of P,
and Q(.) hides a constant that does not depend on €, n, w, and c.

The rest of the section serves as a proof of the theorem. Define

y = 9 (58)
po= (1-y)/2 (59)
p = (1+y)/2 (60)
M = In(9/8)-(1-y")/y" (61)

Let A be an algorithm ensuring an expected cost at most wM/6 when executed on an input P of size n
and width k. Careful calculation shows that when € < 1/10,

wM S 1 w (62)
6 4200 €%
Let r(P) represent the approximation ratio of the classifier h.# output by A, namely,
r(P) = errp(ha)/k". (63)

Our goal is to prove that E[r(P)] > 1 + ¢, which along with (62) will then imply that Q(w/e?) probes
are needed in expectation to guarantee an expected error of (1 + €)k”.

Let x1, X, .., X,y be w distinct locations in R? such that no location dominates another. Henceforth,
we will fix P to be a multi-set of n points where

e exactly n/w points are placed at location x;, for each i € [w];
e every element of P has a distinct ID.

The elements in P do not carry labels yet. The random process described below stochastically generates
their labels and measures the cost and inaccuracy of A over the resulting P:

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:32 « Yufei Tao

RP-1

1. p =a w-dimensional vector sampled from {y;, 2 }™ uniformly at random

2. for every element p € P do /* suppose that p is at x; */

3. assign p label 1 with probability u[i] or —1 with probability 1 — p[i]

4. hg = the monotone classifier output by algorithm A when executed on P;
A1 = the number of probes A performed

5. Ry = errp(hg)/k™ where k* is the optimal error of P

6. return (A, Ry)

Recall that A ensures E[A;] < wM/6. Our objective is to argue that R; has a large expectation. We
will achieve the purpose by relating RP-1 to another random process:

RP-2

1. p = a w-dimensional vector sampled from {y;, i }™ uniformly at random

/* now run A on P */

while algorithm A still needs to perform a probe do
p = the element probed by A (identified by ID) /* suppose that p is at x; */
assign p label 1 with probability u[i] or —1 with probability 1 — u[i]

h# = the monotone classifier output by A;

A, = the number of probes A performed

for every element g € P that has not been probed by A do /* suppose that q is at x; */
assign q label 1 with probability u[i] or —1 with probability 1 — p[i]

Ry = errp(h#)/k* where k* is the optimal error of P

return (A, R;)

SANE I S

A S

Lemma 16. E[A1] = E[As] and E[Ry] = E[R.].

Proor. We will prove only E[R;] = E[R;] because an analogous (and simpler) argument shows
E[A] = E[A;]. Let us first consider that A is a deterministic algorithm, i.e., a binary decision tree 7 .
Recall that each internal node of 7 is associated with an element (identified by ID) in P that should be
probed when A is at this node. Each leaf of 7 is associated with a classifier that should be returned
when A is at this node. For each leaf node v, denote by 7, the path from the root of 7 to v.

We have for each j € {1,2}:

E[R;] = Z Pr[A finishes at v in RP-j] - E[R; | A finishes at v in RP-].
leaf v of T~

Let us concentrate on an arbitrary leaf v. Let pq, pa, ..., p; be the elements associated with the internal
nodes of 7, in the top-down order. The algorithm A arrives at v if and only if each element p; (i € [t])
takes a specific label, denoted as [;. The probability of the event “label(p;) = I; foralli € [t]”is identical in
RP-1 and RP-2. Hence, A has the same probability of reaching v in each random process. Conditioned on
the aforementioned event, R; = errp(h#)/k* is determined by the labels of the elements in P\ {p, ..., p; },
whose distributions are the same in RP-1 and RP-2. Hence, E[R; | A finishes at v in RP-j] is identical
for j = 1 and 2. It thus follows that E[R;] = E[R;].

As a randomized algorithm is a distribution over a family of deterministic algorithms, our above
deterministic analysis implies that E[R;] = E[R;] holds for a randomized A as well.]

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:33

Because E[A;] < wM/6, we immediately have
E[A;] < wM/6. (64)
The next subsection will utilize (64) to prove:
Lemma 17. E[Ry] > 1+ € when e < 1/10 and n > max{90, z; Inn}.

The above lemma indicates that, when n meets the stated condition, the algorithm A cannot guarantee
E[r(P)] £ 1+ € on every input P, where r(P) is defined in (63). Otherwise, R, defined at Line 5 of
RP-1, must have an expectation at most 1 + €, which by Lemma 16 tells us E[R;] < 1+ ¢, giving a
contradiction. This concludes the proof of Theorem 15.

6.1 Proof of Lemma 17

Our proof was inspred by an argument in [7] for establishing the lower bound (6) on agnostic active
learning. The main technicality arises from adapting the argument to the scenario where precision is
measured on a finite number of points (in [7], precision is measured over a distribution). The following
fundamental result from [3] will be useful later.

LeEMmMA 18. Define p to be a random variable that equals y; or py — see (59) and (60) — each with
probability 1/2. Let 3 = (Xy, ..., Xi) be a sequence of i.i.d. samples such that Pr[X; = 1] = p and
Pr[X; = —-1] =1 — p. If m < M where M is given in (61), then no (deterministic or randomized) algorithm
can correctly infer u from ¥ with probability over 2/3.

Proor. Every algorithm that aims to infer y from X can be regarded as a distribution over a family of
functions mapping {—1, 1}™ to {y1, pi2}. By [3, Lemma 5.1], under the condition m < M no function
{=1,1}™ to {ju, 2} can correctly output y with a probability over 2/3. The lemma then follows from
the law of total probability. i

For each i € [w], define a random variable according to RP-2:
L { 1 if A probes less than M points at location x; in RP-2
i

0 otherwise

We say that the value i is light if Pr[L; = 1] > 2/3 or heavy otherwise.
LEMMA 19. There are more than w/2 light values of i.

Proor. For each i € [w], let M; be the number of points at x; probed by A in RP-2. For every heavy
i € [w],Pr[L; =0] > 1/3 and hence E[M;] > M; - Pr[L; = 0] > M/3.If at least w/2 heavy values exist
in [w], then }}”, E[M;] > %% = wM/6, meaning that in RP-2 the algorithm A probes over wM/6
elements in expectation, which contradicts (64). Hence, [w] must have less than w/2 heavy values, thus

establishing the claim.]
Take the classifier hz output by A at Line 5 of RP-2. For each i € [w], set K; = 1 if one of the
following events occurs:
® ha(x;) =1and pli] = pi;
® ha(xi) = —1and p[i] = .
Otherwise, K; = 0. Note that K; is a random variable decided by RP-2.

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:34 «+ Yufei Tao

LemMA 20. Ifi € [w] is light, then E[K;] > 1/3.

Proor. Recall that p[i] is taken from {uy, u,} uniformly at random. We can view h#(x;) as the
guess of algorithm A about u[i] based on the labels of the points probed at location x; (the labels of
points at other locations provides no information about u[i]). Specifically, we consider that A guesses
uli]l = pp it hg(x;) = 1or uli] = py if hg(x;) = —1. Thus, K; = 1 if and only if the guess of (A is wrong.
Lemma 18 indicates that, when L; = 1 (i.e., A probes less than M points at x;), the guess A is wrong
with probability over 1/3. Thus:

Pr[K;=1] > Pr[K;=1|L;=1] -Pr[L; = 1] >

4
5

[SSR T
[OSH N)

The claim in the lemma now follows. |

Recall that RP-2 randomly chooses a vector p at Line 1. Accordingly, for each i € [w], we define its

good i-label to be

o 1if uli] = py;

e —1 otherwise.
We use the term bad i-label to refer to the label in {—1, 1} different from the good i-label. To each of
the n/w points at location x;, RP-2 assigns label 1 with probability p[i] and label —1 with probability
1 — p[i]. At location x;, the expected number of points receiving the good i-label is £ (3 + £). We say
that the labeled multi-set P created by RP-2 is intended if, for every i € [w], at least

n (1

ni,y

w (2 4)
points at location x; receive the good i-label.

LemMA 21. Let ¢ be a sufficiently large constant. When n > 2 Inn, the probability for P to be intended
is at least 1 — 1/n.

ProOF. Let us focus on an arbitrary i € [w]. Denote by X;, X, ..., X,/ the labels of the n/w elements
of P at location x;. For each j € [n/w], Pr[X; = bad i-label] = ; - %. Let Y; be how many elements
of P at location x; actually receive the bad i-label; hence, E[Y;] %(% - g) Sett = % such that

(1-y)
E[Y;] - (1+1) = 3 — X. By Chernoff bound (68),
t2 y’n\ _ 81€n
<exp|- E[Y;]] < exp T e
w

1
2

1
Pr[YiZ——)—/
2 4

2+t 16w
which is at most 1/n* when n > % Inn. As w < n, the probability of Y; > 31— foratleast onei € [w]”
is at most 1/n. It thus follows that P is intended with probability at least 1 — 1/n. O

LEMMA 22. Whenn > 9,E[}.Y; K; | P intended] > w/8.
Proor. For each light i € [w], we argue that E[K; | P intended] > 1/4 when n > 9. Otherwise,
E[K] = E[K;| P intended] - Pr[P intended] + E[K; | P not intended] - Pr[P not intended]
< (1/9)-(1-1/n)+1-(1/n)
which is at most 1/3 when n > 9. This, however, contradicts Lemma 20. The target claim then follows

from the fact that [w] has more than w/2 light values of i € [w] (see Lemma 19). O

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:35

Unless otherwise stated, the subsequent discussion assumes that P is intended. For each i € [w],
define I; as the number of points at location x; receiving the good i-label; thus, n/w — I; points at x;
receive the bad i-label. The optimal classifier h* for P should map x; to the good label. As P is intended,
we have I; > %(% + %) for all i € [w]. Therefore:

kz(;l)z(;;(;g))(gz) (65)

For each i € [w], by how K; and the good i-label are defined, h*(x;) = ha(x;) if and only if K; = 0.
Furthermore, if h*(x;) # h(x;), then h(x;) misclassifies I; points, which is 2I; — \- more than the number
+ — I; of points misclassified by h* at x;. Hence:

errp(h) = k™ + ZW:Ki . (ZIi - %) .

i=1

Thus
. . n . nf(l vy n ny .
h—-k'=Y Ki-(2-—)> Y K -[2-=[=+%]-=] ==L) K 66
erre(h) ; (w) ; (w(2+4) w) ZW; (66)
Therefore
E[R, | Pintended] = E[errp(h)/k" | P intended]
= 1+E[errp(k# Pintended]
(by (65) and (66)) > 1+E Mifq}pimended
8 n(1/2 - y/4) &
y/16
(by Lemma 22) > 1+ 2y
> 1+y/8=1+(9/8)e.

We now conclude that E[R;] > E[R; | P intended] - Pr[P intended] > (1 + %e) - (1 = 1/n) which is
greater than 1+ € for n > 90 and € < 1/10. This completes the proof of Lemma 17.

7 Conclusions

This article has provided a comprehensive study of monotone classification in R? with relative error
guarantees, where the objective is to minimize the label-probing cost while finding a classifier whose
error can be higher than the optimal error k* by at most a 1 + € multiplicative factor. Our findings
delinerate the complexity landscape across the spectrum of €. For the exact case (e = 0), we established
a lower bound of Q(n) probes even in 1D space, where n is the size of the input P, underscoring the
hardness of achieving optimality. In the approximate regime (¢ > 0), we introduced two algorithms:
the simple RPE algorithm, which achieves an expected error of at most 2k* with O(w Log 1) probes
where w is the width of P, and an algorithm powered by a new “relative-comparison coreset” technique,
which ensures (1 + €)k" error w.h.p. at a cost of O(Z; Log - - log n). These are complemented by lower

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:36 + Yufei Tao

bounds of Q(w Log m) for constant € > 1 and Q(w/€?) for arbitrary € > 0, demonstrating that

our algorithms are near-optimal asymptotically.

For future work, it would be an intriguing challenge to shave off an O(log n) factor in the cost of our
coreset-based algorithm. Equally challenging would be the task of proving a lower bound that grows
strictly faster than Q(w/e?) for arbitrary € > 0.

Appendix
A Concentration Bounds

Let X3, X5, ..., X; be t independent Bernoulli random variables with Pr[X; = 1] = p for each i € [¢] (and
hence Pr[X; = 0] = 1 — p). The following are two standard forms of Chernoff bounds [37]:

e forany y € (0,1]:

2

t
Pr < 2exp (—%) ; (67)

IJ—%ZXi 2 yp

e forany y > 0:

Pr

yz
< exp (—2 N yt,u) . (68)

~ | =

t
DXz (1+y)p
i=1

In addition, we prove:

LEMMA 23. For any ¢ € (0,1] and 6 € (0, 1], it holds that

Pr ’y—%gxi|z¢] < 6 (69)

as long ast > [max{%, é} -31n %]

Proor. If y > ¢, we can derive

v
-
e
I
w
-

which is at most § when t = [% In %'l.

If p < ¢, we can derive

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:37
(¢/p)° tg’
(by (68)) < ex (——-t = ex
Y PU%v g) " g

which is at most § when ¢ = [2‘;;45 In %-l < [% In (—13'| O

Consider the settings of Problem 1. Suppose that we want to estimate the number x of elements in the
input P satisfying an arbitrary predicate Q. We can draw with replacement a set S of t = O(# log (15)
elements from P uniformly at random. If y is the number of elements in S satisfying Q, Lemma 23
assures us that (y/t) - n approximates x up to absolute error ¢n with probability at least 1 — §. As
a further corollary, given any h € H,,,,, we can utilize the aforementioned S to estimate errp(h) —
defined in (1) — up to absolute error ¢n by formulating Q as follows: an element p € P satisfies Q if and
only if label(p) # h(p).

B VC-Dimension and Disagreement Coefficient of Monotone Classifiers

This section will discuss the VC-dimension and disagree coefficient of the class H,,,, of monotone
classifiers. We will focus on the context of Problem 1, in which P is a multi-set of points in RY where
each element p € P is associated with a label from {-1, 1}. The VC-dimension of H,,,, on P is defined
as the size of the largest subset S C P that can be shattered by H,,,,, meaning that for any function
f:S — {—1,1}, there exists a classifier h € H,,,, such that h(p) = f(p) for every p € S.

LeEMMA 24. The VC-dimension of H,,,, on P is the width w of P.

Proor. By Dilworth’s Theorem [20], there exists a subset S C P such that |S| = w and there are
no two distinct elements p, g € S such that p = q. It is clear that S can be shattered by H,,,,. On the
other hand, Dilworth’s Theorem also shows that, among any w + 1 elements from P, we can always
find two elements p, q such that p = g. The subset of P comprising those w + 1 elements cannot be
shattered because no monotone classifier h can satisfy h(p) = —1 but h(q) = 1. It thus follows that the
VC-dimension of H,,, on P is exactly w. O

The rest of the section will focus on disagreement coefficients. Given a set H C H,,, of monotone
classifiers, the disagreement region of H — denoted as DIS(H) — is the set of elements p € P such
that hy(p) # ha(p) for some hy, h; € H. Fix h* to be an optimal monotone classifier on P, namely,
errp(h*) = k*. Given a real value p € (0,1], define the ball — denoted as B(h*, p) — as the set of
classifiers h € H,,,, such that [{p € P | h(p) # h*(p)}| < pn, namely, h disagrees with h* on at most
pn elements of P. The disagreement coefficient 6 [29] of H,,,, under the uniform distribution over P is
defined as:

DIS(B(h*,
0 = max{1, sup M . (70)
pe(ka] pon

LeEMmMA 25. The value of 0 is at most 2w.

Proor. Consider any p € (k*/n, 1]. We will prove that |DIS(B(h* p))| < 2wpn. The claim then
follows from the definition of 8 in (70).

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:38 «+ Yufei Tao

As defined in Section 2.2, a subset S C P is a chain if we can arrange the elements of S into a sequence
p1 2 p2 X ... 2 pis|. By Dilworth’s Theorem [20], we can decompose P into w disjoint chains Cy, Cy, ...,
C.. For each i € [w], use the optimal classifier h* to break the chain C; into two disjoint subsets:

e Cl={peCi|h(p) =1} and
« C:l={peC|hp) =1}

We will prove that DIS(B(h*, p)) can contain at most pn elements from each of C} and C; . This will
then establish the fact [DIS(B(h*, p))| < 2wpn. Next, we will explain why DIS(B(h*, p)) N C} has at
most pn elements; a symmetric argument works on Cr L

Set m = |C}| and linearize the elements of C} as p; X p, =X ... 2 pm. If a monotone classifier h
maps p; to —1 for some i € [m], then it must also map p; to —1 for every j € [i]. Hence, h and
h* can only differ on a prefix of the sequence py, pz, ..., pm. Furthermore, as h € B(h", p), the prefix
must have a length at most pn. It thus follows that every classifier in B(h*, p) must map the whose
sequence to 1 except possibly for the first pn elements. By definition of DIS(B(h*, p)), we can assert
that [DIS(B(h*, p)) N C}| < pn. O

We close the section by giving a multi-set P, whose 6 value is at least its width w. Choose arbitrary
integers n and w such that w > 2, n > w?, and n is a multiple of w. Identify w distinct locations
X1, X2, ..., X,y in R? where no location dominates another. Place n/w points at each x; (i € [w]), assign
label 1 to all of them except for exactly one point, which is assigned label —1. This yields n labeled
points, which constitute P. It is clear that P has width w and optimal error k* = w. Define h* to be the
optimal classifier that maps the entire R? to 1.

Set p = 1/w, which is greater than k*/n = w/n because n > w?. Accordingly, B(h*, p) includes
every classifier h € H,,,, that differs from A* in at most n/w elements of P. For each i € [w], define
h; as the classifier that maps the entire P to 1 except the n/w elements at x;, which are mapped to —1.
Thus, h; € B(h*, p). For every point p € P, there exist two different i, j € [w] such that h;(p) # h;(p).
Specifically, suppose that p is at location x;; then h;(p) = =1 but hj(p) = 1 forany j € [w] \ {i}. It

follows that DIS(B(h*, p)) = P; and hence, 6 > w =w.
pn

References

[1] Meysam Alishahi and Jeff M. Phillips. 2024. No Dimensional Sampling Coresets for Classification. In Proceedings of
International Conference on Machine Learning (ICML).

[2] Stanislav Angelov, Boulos Harb, Sampath Kannan, and Li-San Wang. 2006. Weighted isotonic regression under the L
norm. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM Press, 783-791.

[3] Martin Anthony and Peter L. Bartlett. 1999. Neural Network Learning: Theoretical Foundations. Cambridge University
Press.

[4] Arvind Arasu, Michaela G6tz, and Raghav Kaushik. 2010. On active learning of record matching packages. In Proceedings
of ACM Management of Data (SIGMOD). 783-794.

[5] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. 2009. Agnostic active learning. Journal of Computer and
System Sciences (FCSS) 75, 1 (2009), 78-89.

[6] Kedar Bellare, Suresh Iyengar, Aditya G. Parameswaran, and Vibhor Rastogi. 2013. Active Sampling for Entity Matching
with Guarantees. ACM Transactions on Knowledge Discovery from Data (TKDD) 7, 3 (2013), 12:1-12:24.

[7] Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. 2009. Importance weighted active learning. In Proceedings of
International Conference on Machine Learning (ICML). 49-56.

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations « 1:39

[8] Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. 2021. Efficient Coreset Constructions
via Sensitivity Sampling. In Asian Conference on Machine Learning (ACML), Vol. 157. 948-963.

[9] Nader H. Bshouty and Christino Tamon. 1996. On the Fourier Spectrum of Monotone Functions. Journal of the ACM
(JACM) 43, 4 (1996), 747-770.

[10] Deeparnab Chakrabarty and C. Seshadhri. 2013. Optimal bounds for monotonicity and lipschitz testing over hypercubes
and hypergrids. In Proceedings of ACM Symposium on Theory of Computing (STOC). 419-428.

[11] Deeparnab Chakrabarty and C. Seshadhri. 2014. An Optimal Lower Bound for Monotonicity Testing over Hypergrids.
Theory of Computing 10 (2014), 453-464.

[12] Ke Chen. 2009. On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces and Their Applications.
SIAM Journal of Computing 39, 3 (2009), 923-947.

[13] XiChen, Anindya De, Yizhi Huang, Yuhao Li, Shivam Nadimpalli, Rocco A. Servedio, and Tianqi Yang. 2025. Relative-error
monotonicity testing. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 373-402.

[14] Peter Christen, Dinusha Vatsalan, and Qing Wang. 2015. Efficient Entity Resolution with Adaptive and Interactive
Training Data Selection. In Proceedings of International Conference on Management of Data (ICDM). 727-732.

[15] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. 2016. Distributed Data Deduplication. Proceedings of the VLDB Endowment
(PVLDB) 9, 11 (2016), 864-875.

[16] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Mahoney. 2009. Sampling Algorithms and
Coresets for $\ellp Regression. SIAM Journal of Computing 38, 5 (2009), 2060-2078.

[17] Sanjoy Dasgupta. 2005. Coarse sample complexity bounds for active learning. In Proceedings of Neural Information
Processing Systems (NIPS). 235-242.

[18] Sanjoy Dasgupta, Daniel J. Hsu, and Claire Monteleoni. 2007. A general agnostic active learning algorithm. In Proceedings
of Neural Information Processing Systems (NIPS). 353-360.

[19] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. 2009. Analysis of Perceptron-Based Active Learning.
Journal of Machine Learning Research (JMLR) 10 (2009), 281-299.

[20] Robert P. Dilworth. 1950. A Decomposition Theorem for Partially Ordered Sets. The Annals of Mathematics 51, 1 (1950),
161-166.

[21] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis, and Themis Palpanas. 2017. Parallel
meta-blocking for scaling entity resolution over big heterogeneous data. Information Systems 65 (2017), 137-157.

[22] Dan Feldman and Michael Langberg. 2011. A unified framework for approximating and clustering data. In Proceedings of
ACM Symposium on Theory of Computing (STOC). 569-578.

[23] Dan Feldman, Melanie Schmidt, and Christian Sohler. 2020. Turning Big Data Into Tiny Data: Constant-Size Coresets for
k-Means, PCA, and Projective Clustering. SIAM Journal of Computing 49, 3 (2020), 601-657.

[24] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex Samorodnitsky. 2002.
Monotonicity testing over general poset domains. In Proceedings of ACM Symposium on Theory of Computing (STOC).
474-483.

[25] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. 1997. Selective Sampling Using the Query by Committee
Algorithm. Machine Learning 28, 2-3 (1997), 133-168.

[26] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan Rampalli, Jude W. Shavlik, and Xiaojin
Zhu. 2014. Corleone: hands-off crowdsourcing for entity matching. In Proceedings of ACM Management of Data (SIGMOD).
601-612.

[27] Oded Goldreich, Shafi Goldwasser, Eric Lehman, and Dana Ron. 1998. Testing Monotonicity. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 426—435.

[28] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. 2000. Testing Monotonicity.
Combinatorica 20, 3 (2000), 301-337.

[29] Steve Hanneke. 2014. Theory of Disagreement-Based Active Learning. Foundations and Trends in Machine Learning 7,
2-3 (2014), 131-309.

[30] Sariel Har-Peled and Akash Kushal. 2007. Smaller Coresets for k-Median and k-Means Clustering. Discrete & Computa-
tional Geometry 37, 1 (2007), 3—19.

[31] Sariel Har-Peled and Micha Sharir. 2011. Relative (p, €)-Approximations in Geometry. Discrete & Computational Geometry
45, 3 (2011), 462-496.

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:40 «+ Yufei Tao

[32] Matti Kaaridinen. 2006. Active Learning in the Non-realizable Case. In Proceedings of International Conference on
Algorithmic Learning Theory (ALT). 63-717.

[33] Hanna Kopcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity resolution approaches on real-world match
problems. Proceedings of the VLDB Endowment (PVLDB) 3, 1 (2010), 484-493.

[34] Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. 2022. Properly learning monotone functions via local correction. In
Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS). 75-86.

[35] Jane Lange and Arsen Vasilyan. 2023. Agnostic proper learning of monotone functions: beyond the black-box correction
barrier. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS). 1149-1170.

[36] Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj Sen, and Mohamed Sarwat. 2020. A Comprehensive Benchmark
Framework for Active Learning Methods in Entity Matching. In Proceedings of ACM Management of Data (SIGMOD).
1133-1147.

[37] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press.

[38] Jeff M. Phillips. 2016. Coresets and Sketches. CRC Press, Chapter 49.

[39] Sunita Sarawagi and Anuradha Bhamidipaty. 2002. Interactive deduplication using active learning. In Proceedings of
ACM Knowledge Discovery and Data Mining (SIGKDD). 269-278.

[40] Burr Settles. 2010. Active learning Literature Survey. Technical Report, University of Wisconsin-Madison (2010).

[41] Quentin F. Stout. 2013. Isotonic Regression via Partitioning. Algorithmica 66, 1 (2013), 93-112.

[42] Yufei Tao. 2018. Entity Matching with Active Monotone Classification. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS). 49-62.

[43] Yufei Tao and Yu Wang. 2021. New Algorithms for Monotone Classification. In Proceedings of ACM Symposium on
Principles of Database Systems (PODS). 260-272.

[44] Andreas Thor and Erhard Rahm. 2007. MOMA - A Mapping-based Object Matching System. In Proceedings of Biennial
Conference on Innovative Data Systems Research (CIDR). 247-258.

[45] Liwei Wang. 2011. Smoothness, Disagreement Coefficient, and the Label Complexity of Agnostic Active Learning.
Journal of Machine Learning Research (JMLR) 12 (2011), 2269-2292.

J. ACM, Vol. , No. , Article 1. Publication date: January .

	Abstract
	1 Introduction
	1.1 Problem Definitions
	1.2 Practical Motivations
	1.3 Related Work: Active Classification and Monotonicity Testing
	1.4 Our Results
	1.5 Our Techniques

	2 Random Probes with Elimination
	2.1 The Expected Error of RPE
	2.2 The Expected Cost of RPE
	2.3 Application to Monotonicity Testing

	3 Relative-Comparison Coresets
	3.1 Warm Up: A Special Case
	3.2 A Recursive Framework for Problem 2
	3.3 Correctness of the Framework
	3.4 A Concrete Algorithm for Problem 2
	3.5 A One-Dimensional Relative-Comparison Coreset
	3.6 Arbitrary Dimensionalities

	4 Optimal Monotone Classification Needs (n) Probes
	4.1 Proof of Lemma 12

	5 A Lower Bound for Constant Approximation Ratios
	5.1 The Realizable Case
	5.2 The Non-Realizable Case

	6 A Lower Bound for Arbitrary Approximation Ratios
	6.1 Proof of Lemma 17

	7 Conclusions
	A Concentration Bounds
	B VC-Dimension and Disagreement Coefficient of Monotone Classifiers
	References

