
Monotone Classification with Relative Approximations∗

YUFEI TAO, The Chinese University of Hong Kong, China

In monotone classification, the input is a multi-set 𝑃 of points in R𝑑
, each associated with a hidden label from

{−1, 1}. The goal is to identify a monotone function ℎ, which acts as a classifier, mapping from R𝑑
to {−1, 1} with

a small error, measured as the number of points 𝑝 ∈ 𝑃 whose labels differ from the function values ℎ(𝑝). The cost
of an algorithm is defined by the number of points having their labels revealed. This article studies the lowest

cost required to find a monotone classifier whose error is at most (1 + 𝜖) · 𝑘∗ where 𝑘∗ is the minimum error

achieved by an optimal monotone classifier and 𝜖 ≥ 0 is a given real value. Nearly matching upper and lower

bounds are presented for the full range of 𝜖 .

CCS Concepts: • Theory of computation → Approximation algorithms analysis; Active learning.

Additional Key Words and Phrases: Active Learning; Monotone Classification; Entity Matching

ACM Reference Format:
Yufei Tao. . Monotone Classification with Relative Approximations. J. ACM , , Article 1 (January), 40 pages.

1 Introduction
This article undertakes a systematic study of monotone classification, aiming to determine the minimum

overhead of label discovery to guarantee a classification error that is higher than the optimal error by

at most a multiplicative factor. Next, we will begin by defining the problem, followed by an explanation

of its practical motivations. After that, we will present our findings and discuss their significance in

relation to previous results. Finally, we will provide an overview of our main techniques.

1.1 Problem Definitions
Math Conventions. For any integer 𝑥 ≥ 1, the notation [𝑥] represents the set {1, 2, ..., 𝑥}. Given two

non-negative real values 𝑥 and 𝑦, we use notation 𝑥 ≤𝜖 𝑦 to represent the condition 𝑥 ≤ (1 + 𝜖)𝑦 where

𝜖 ≥ 0. Given a real value 𝑥 ≥ 1, we use Log𝑥 as a short form for log
2
(1 + 𝑥). For any real value 𝑥 , the

expression exp(𝑥) denotes 𝑒𝑥 . Given a predicate 𝑄 , the notation 1𝑄 equals 1 if 𝑄 holds or 0 otherwise.

Given a point 𝑝 ∈ R𝑑
for some dimensionality 𝑑 ≥ 1, the notation 𝑝 [𝑖] represents the coordinate of

𝑝 on dimension 𝑖 ∈ [𝑑]. A point 𝑝 ∈ R𝑑
is said to dominate a point 𝑞 ∈ R𝑑

if 𝑝 ≠ 𝑞 and the condition

𝑝 [𝑖] ≥ 𝑞 [𝑖] holds for all 𝑖 ∈ [𝑑]. We use 𝑝 ≻ 𝑞 to indicate “𝑝 dominating 𝑞” and 𝑝 ⪰ 𝑞 to indicate “𝑝 = 𝑞

or 𝑝 ≻ 𝑞”. If 𝑝 ⪰ 𝑞, we may also write 𝑞 ⪯ 𝑝 .

Monotone Classification. The input is a multi-set 𝑃 of 𝑛 points in R𝑑
for some integer 𝑑 ≥ 1; note

that 𝑃 may contain distinct elements 𝑝 and 𝑞 satisfying 𝑝 = 𝑞 (i.e., they are at the same location). Each

element 𝑝 ∈ 𝑃 carries a label from {−1, 1}, which is represented as label(𝑝).
∗
Preliminary versions of this article appeared in PODS’18 [42] and PODS’21 [43]. This work was supported in part by GRF

projects 14203421, and 14222822 from HKRGC.

Author’s Contact Information: Yufei Tao, The Chinese University of Hong Kong, Hong Kong, China.

ACM 1557-735X//1-ART1

https://doi.org/

J. ACM, Vol. , No. , Article 1. Publication date: January .

https://doi.org/

1:2 • Yufei Tao

p1

p2

p3

p4

p5

p6 p7

p8

p9

p10
p11

p12
p13

p14

p15

p16

label 1

label −1

Fig. 1. An input set 𝑃 for Problem 1

A classifier is a function ℎ : R𝑑 → {−1, 1}. For an element 𝑝 ∈ 𝑃 , we say that ℎ correctly classifies 𝑝 if

ℎ(𝑝) = label(𝑝), or misclassifies 𝑝 , otherwise. The error of ℎ on 𝑃 is measured as

err𝑃 (ℎ) =
∑︁
𝑝∈𝑃

1ℎ (𝑝)≠label (𝑝) (1)

that is, the number of elements in 𝑃 misclassified by ℎ. A classifier ℎ is monotone if ℎ(𝑝) ≥ ℎ(𝑞) holds
for any two points 𝑝, 𝑞 ∈ R𝑑

satisfying 𝑝 ≻ 𝑞.
Define

Hmon = the set of all monotone classifiers (2)

𝑘∗ = min

ℎ∈Hmon
err𝑃 (ℎ) . (3)

We will call 𝑘∗ the optimal error of 𝑃 as this is the lowest error that a monotone classifier can achieve.

A classifier ℎ ∈ Hmon is

• optimal on 𝑃 if err𝑃 (ℎ) = 𝑘∗;
• 𝑐-approximate on 𝑃 if err𝑃 (ℎ) ≤ 𝑐 · 𝑘∗ where 𝑐 ≥ 1 is the approximation ratio of ℎ.

Example 1.1. Figure 1 shows a 2D input 𝑃 where a black (resp., white) point has label 1 (resp., −1).
Consider the monotone classifier ℎ that maps (i) all the black points to 1 except 𝑝1, and (ii) all the white
points to −1 except 𝑝11 and 𝑝15. Thus, err𝑃 (ℎ) = 3. No other monotone classifier has a smaller error on
𝑃 and, hence, 𝑘∗ = 3. Consider the “all-positive” classifier ℎpos that maps the entire 𝑃 to 1. Observe that
err𝑃 (ℎpos) = 7, because of which ℎpos is (7/3)-approximate on 𝑃 .

The goal of an algorithm A is to find a classifier from Hmon whose error on 𝑃 is as small as possible.

In the beginning, the labels of the elements in 𝑃 are hidden. There exists an oracle that an algorithm A
can query for labels. Specifically, in each probe, the algorithm selects an element 𝑝 ∈ 𝑃 and receives

label(𝑝) from the oracle. The algorithm’s cost is the total number of elements probed.

In one extreme, by probing the whole 𝑃 , an algorithm pays cost 𝑛, after which it can find an optimal

monotone classifier on 𝑃 with polynomial CPU computation
1
. In the other extreme, by probing nothing,

1
Once all the point labels are available, an optimal monotone classifier can be found in time polynomial in 𝑛 and 𝑑 ; see [2, 41].

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:3

an algorithm pays cost 0 but will have to return a classifier based purely on the point coordinates; such

a classifier could be very erroneous on 𝑃 . The intellectual challenge is to understand the lowest cost for

guaranteeing the optimal error 𝑘∗ or an error higher than 𝑘∗ by a small multiplicative factor. This gives

rise to the following problem.

Problem 1. (Monotone Classification with Relative Precision Guarantees) Given a real
value 𝜖 ≥ 0, find a monotone classifier whose error on 𝑃 is at most (1 + 𝜖)𝑘∗. The efficiency of an
algorithm is measured by the number of elements probed.

When 𝑘∗ = 0, we say that 𝑃 is monotone and Problem 1 is realizable; otherwise, 𝑃 is non-monotone
and the problem is non-realizable.
Every deterministic algorithm Adet for Problem 1 can be described as a binary decision tree T that

is determined by the coordinates of the elements in 𝑃 . Each internal node of T is associated with an

element in 𝑃 , while each leaf of T is associated with a monotone classifier. The execution of Adet
descends a single root-to-leaf path in T . When Adet is at an internal node, it probes the element 𝑝 ∈ 𝑃
associated with that node and branches left if label(𝑝) = −1 or right if label(𝑝) = 1. When the algorithm

reaches a leaf of T , it outputs the monotone classifier associated with the leaf.

Randomized algorithms have access to an infinite bit string where each bit is independently set to 0

or 1 with probability 1/2. Each randomized algorithm Aran can be modeled as a function that maps the

bit string to a deterministic algorithm (that is, when all the random bits are fixed, Aran degenerates

into a deterministic algorithm). Suppose that ℎ is the classifier output by Aran when executed on 𝑃 ,

and 𝑋 is the number of probes by Aran. Both 𝑋 and ℎ are random variables and thus so is err𝑃 (ℎ). The
expected cost of Aran is defined as E[𝑋], while the expected error of Aran is defined as E[err𝑃 (ℎ)]. We

say that Aran guarantees error 𝑘 with high probability (w.h.p.) if Pr[err𝑃 (ℎ) ≤ 𝑘] ≥ 1 − 1/𝑛𝑐 where 𝑐
can be an arbitrarily large constant specified before running the algorithm.

Although CPU time is not a main concern in this article, all proposed algorithms can be implemented

to run in polynomial time, as will be duly noted in the technical development.

1.2 Practical Motivations
An important application of monotone classification is “entity matching” (also known as “record linkage”

or “duplicate detection” in specific contexts). Given two sets of entities 𝐸1 and 𝐸2, the goal of entity

matching is to decide, for each pair (𝑒1, 𝑒2) ∈ 𝐸1 × 𝐸2, whether 𝑒1 and 𝑒2 represent the same entity; if

so, they are said to form a “match”. For example, 𝐸1 (resp., 𝐸2) may be a set of advertisements placed

on Amazon (resp., eBay). Each advertisement includes attributes like prod-name, prod-description,
year, price, and so on. The goal is to identify the pairs (𝑒1, 𝑒2) ∈ 𝐸1 × 𝐸2 where the advertisements 𝑒1
and 𝑒2 describe the same product.

What makes the problem challenging is that decisions cannot rely on comparing attribute values,

because even a pair of matching 𝑒1 and 𝑒2 may differ in attributes. This is evident with attributes

like prod-description and price since 𝑒1 and 𝑒2 might describe or price the same product differ-

ently. In fact, 𝑒1 and 𝑒2 may not even agree on “presumably standard” attributes like prod-name (e.g.,
𝑒1.prod-name = “MS Word” vs. 𝑒2.prod-name = “Microsoft Word Processor”). Nevertheless, it would

be reasonable to expect 𝑒1.year = 𝑒2.year because advertisements are required to be accurate in this

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:4 • Yufei Tao

respect. To attain full precision in entity matching, human experts must manually inspect each pair

(𝑒1, 𝑒2) ∈ 𝐸1 × 𝐸2, which is expensive due to the intensive labor involved, such as reading the adver-

tisements in detail. Therefore, it is crucial to develop an algorithm that can minimize human effort by

automatically rendering verdicts on most pairs, even if it involves a small margin of error.

Towards the above purpose, a dominant methodology behind the existing approaches (e.g., [4, 6, 14,

15, 21, 26, 33, 36, 39, 44]) is to transform the task into a multidimensional classification problem with

the following preprocessing.

(1) First, shrink the set of all possible pairs to a subset 𝑆 ⊆ 𝐸1 × 𝐸2, by eliminating the pairs that

apparently cannot be matches. This is known as blocking, which is carried out based on application-
dependent heuristics. This step is optional; if skipped, then 𝑆 = 𝐸1 × 𝐸2. In the Amazon-eBay

example, 𝑆 may involve only those advertisement pairs (𝑒1, 𝑒2) with 𝑒1.year = 𝑒2.year.

(2) For each entity pair (𝑒1, 𝑒2) ∈ 𝑆 , create a multidimensional point 𝑝𝑒1,𝑒2 using several — say 𝑑

— similarity functions sim1, sim2, ..., sim𝑑 , each of which is evaluated on a certain attribute and

produces a numeric “feature”. The 𝑖-th coordinate of 𝑝𝑒1,𝑒2 equals sim𝑖 (𝑒1, 𝑒2): a greater value

indicates higher similarity between 𝑒1 and 𝑒2 under the 𝑖-th feature. This creates a 𝑑-dimensional

point set 𝑃 = {𝑝𝑒1,𝑒2 | (𝑒1, 𝑒2) ∈ 𝑆}. In our example, from a numerical attribute such as price, one
may extract a similarity feature −|𝑒1.price − 𝑒2.price|, where the negation is needed to ensure

“the larger the more similar”. From a text attribute (such as prod-name and prod-description)
one may extract a similarity feature by evaluating the relevance between the corresponding texts

of 𝑒1 and 𝑒2 using an appropriate metric (e.g., edit distance, jaccard-distance, cosine similarity, etc.).

Multiple features may even be derived on the same attribute; e.g., one can extract two similarity

features by computing the edit-distance and jaccard-distance of 𝑒1.prod-name and 𝑒2.prod-name
separately.

(3) Every point 𝑝𝑒1,𝑒2 ∈ 𝑃 inherently carries a label, which is 1 if (𝑒1, 𝑒2) is a match, or −1 otherwise.
The original entity matching task on 𝐸1 and 𝐸2 is now converted to inferring the labels of the

points in 𝑃 . Human inspection is the ultimate resort for determining the label of each 𝑝𝑒1,𝑒2 with

guaranteed correctness.

Treating 𝑃 as the input for monotone classification, we can employ an effective algorithmA designed

for Problem 1 to significantly reduce human labor. Specifically, the human plays the role of oracle:

when given a point 𝑝𝑒1,𝑒2 , the human “reveals” the label of 𝑝𝑒1,𝑒2 by manually checking whether 𝑒1 and

𝑒2 are about the same entity. After a number of probes (to the human oracle), the algorithmA outputs a

monotone classifier ℎ ∈ Hmon, which is then used to infer the labels of the un-probed points in 𝑃 . Such

a classifier is also suitable for performing matching on entities received in the future (assuming that 𝐸1
and 𝐸2 are representative of the underlying data distribution). Demanding monotonicty is important

for explainable learning because it avoids the odd situation of classifying (𝑒1, 𝑒2) as a non-match but

(𝑒′
1
, 𝑒′

2
) as a match when 𝑝𝑒1,𝑒2 ≻ 𝑝𝑒′

1
,𝑒′
2

. Indeed, this oddity is difficult to explain because the former pair

is at least as similar as the latter on every feature.

1.3 Related Work: Active Classification and Monotonicity Testing
Classification is a fundamental topic in machine learning. In the standard settings, we consider a

possibly infinite set P of points in R𝑑
and an unknown distributionD over P × {−1, 1}. Given a sample

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:5

(𝑝, 𝑙) drawn from D, we refer to 𝑝 and ℓ as the sample’s point and label, respectively. A classifier is a
function ℎ : P → {−1, 1}, whose error rate with respect to D is calculated as

err-rateD (ℎ) = Pr(𝑝,𝑙)∼D [ℎ(𝑝) ≠ 𝑙] .

Let H be the set of classifiers of interest. The optimal error rate among the classifiers in H is given by:

𝜈 = inf

ℎ∈H
err-rateD (ℎ). (4)

The goal is to ensure the following probabilistically approximately correct (PAC) guarantee:

With probability at least 1 − 𝛿 , find a classifier ℎ ∈ H such that err-rateD (ℎ) ≤ 𝜈 + 𝜉 where 𝜉
and 𝛿 are problem parameters satisfying 0 < 𝜉 < 1 and 0 < 𝛿 < 1.

An algorithm A is permitted to sample from D repeatedly until it is ready to produce a classifier

meeting the PAC guarantee. In passive classification, in each sample (𝑝, 𝑙) from D, both 𝑝 and 𝑙 are

revealed directly. The performance of A is measured by the sample cost, defined as the number of

samples drawn.

In many practical applications, producing the point field of a sample from D requires negligible cost,

but determining its label is expensive. This motivates active classification, which studies how to achieve

the PAC guarantee without acquiring the labels of all samples. In this setup, when an algorithm A
draws a sample (𝑝, 𝑙) fromD, only the point 𝑝 is shown toA, but the label 𝑙 is hidden. The algorithmA
can request 𝑙 from an oracle, thereby doing a probe. IfA does not consider the knowledge of 𝑙 necessary,

it may skip the probe. The performance of A is now measured by the label cost, defined as the number

of probes performed. The sample cost is no longer a major concern.

Active classification has been extensively studied; see [29, 40] for two excellent surveys. Our subse-

quent discussion will concentrate on agnostic learning where 𝜈 > 0 (i.e., even the best classifier in H
has a positive, unknown, error rate); this is the branch most relevant to our work. The modern theory

of agnostic active classification is built on two intrinsic parameters

• 𝜆: the VC-dimension of H on P;

• 𝜃 : the disagreement coefficient of H under D.

We will defer the concrete definitions of 𝜆 and 𝜃 to Appendix B; for now it suffices to remember that

they are both real values at least 1.

The dominant solution to agnostic active classification is an algorithm named A2. Its initial ideas
were developed by Balcan et al. [5] and were subsequently improved in [18, 29]. As shown in [29], the

algorithm achieves the PAC guarantee with a label cost of

𝑂̃

(
𝜃 · 𝜆 · 𝜈

2

𝜉2

)
(5)

where 𝑂̃ (.) hides a factor polylogarithmic to 𝜃, 1/𝜉 , and 1/𝛿 . On the lower bound side, extending an

earlier result of Kaariainen [32], Beygelzimer et al. [7] proved that the label cost needs to be

Ω

(
𝜈2

𝜉2
·
(
𝜆 + log

1

𝛿

))
. (6)

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:6 • Yufei Tao

Note that there is a multiplicative gap of 𝜃 between the upper and lower bounds. When this parameter

is at most a constant, the two bounds match up to polylogarithmic factors. Indeed, most success stories

in active classification concern situations where the value of 𝜃 is very small; see, e.g., [17, 19, 25, 29, 45].

Unfortunately, this is not true when H = Hmon, the class of monotone classifiers. We will prove that

the disagreement coefficient 𝜃 ofHmon can be huge even if P has a finite size. This has two consequences.

First, the 𝜃 -gap between (5) and (6) becomes significant. This suggests that agnostic active classification

has not been well understood on monotone classifiers. Second, when 𝜃 is large, the A2 algorithm incurs

an expensive label cost, giving the hope that it could be considerably improved.

A special scenario where monotone classification (i.e., H = Hmon) has received exceptional attention

is the so-called “hypercube learning” where P = {0, 1}𝑑 , every point 𝑝 ∈ P carries a label label(𝑝),
and D is the uniform distribution over {(𝑝, label(𝑝) | 𝑝 ∈ 𝑃}. Improving over previous results [9, 34],

Lange and Vasilyan [35] showed that in passive classification the PAC guarantee can be achieved with

a sample cost of 2
𝑂̃ (

√
𝑑/𝜉)

, where 𝑂̃ (.) hides a factor polylogarithmic in 𝑑 and 1/𝜉 .
In Problem 1, we aim at a relative precision guarantee. If, on the other hand, an additive precision

guarantee is desired, the problem can be cast as an instance of active classification. Specifically, let

us set H to Hmon, set P to the input 𝑃 of Problem 1, and define D as the uniform distribution over

{(𝑝, label(𝑝)) | 𝑝 ∈ 𝑃}. In this case, every monotone classifier ℎ satisfies err-rateD (ℎ) = err𝑃 (ℎ)/𝑛
where 𝑛 = |𝑃 | and err𝑃 (ℎ) is given in (1). It follows that 𝜈 = 𝑘∗/𝑛, where 𝑘∗ is defined in (3). Thus,

given a specific value of 𝜉 , the A2 algorithm can find w.h.p. a monotone classifier ℎ on 𝑃 satisfying

err𝑃 (ℎ) ≤ 𝑘∗ + 𝜉𝑛.
Given a multi-set 𝑃 of 𝑛 labeled points as defined in Problem 1, monotonicity testing is the problem of

deciding whether 𝑃 is monotone (i.e., having optimal error 𝑘∗ = 0) or far from being so. Formally, given

an input parameter 𝜉 > 0, the output must always be “yes” if 𝑃 is monotone. If 𝑘∗ ≥ 𝜉𝑛, the output

should be “no” with probability at least 2/3. In the scenario where 0 < 𝑘∗ < 𝜉𝑛, the output can be either

way. In the beginning, all the point labels are hidden. An algorithm A can interact with an oracle in

the same manner as in Problem 1; its performance is measured by the number of probes carried out.

Fischer et al. [24] gave an algorithm to perform monotonicty testing in 𝑂 (
√︁
𝑛/𝜉) probes. The problem

has also been explored in other settings that are less relevant to this article; the interested readers may

refer to [10, 11, 13, 28] and the references therein.

1.4 Our Results
Under 𝜖 = 0, the goal of Problem 1 is to find an optimal monotone classifier. We prove that any

algorithm achieving the purpose with a nontrivial probability needs to probe Ω(𝑛) points in expectation

(Theorem 11 in Section 4). Consequently, the naive strategy of probing all points can no longer be

improved by more than a constant factor. Our lower bound holds even when the dimensionality 𝑑 is 1

and the optimal error 𝑘∗ defined in (3) is given to the algorithm “for free”.

The above hardness result justifies an investigation of Problem 1 under 𝜖 > 0. Our findings show that,

in this regime, the probing complexity is determined by the width𝑤 of the input 𝑃 , formally defined as:

𝑤 = the size of the largest 𝑆 ⊆ 𝑃 such that � distinct 𝑝, 𝑞 ∈ 𝑆 satisfying 𝑝 ⪰ 𝑞. (7)

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:7

(a) A point set of width 1 (b) A point set of width 𝑛

Fig. 2. Illustration of the dominance width

Any one-dimensional 𝑃 has𝑤 = 1. Once the dimensionality 𝑑 reaches 2, the width𝑤 can be anywhere

between 1 and 𝑛; see Figure 2 for two extreme examples.

Example 1.2. Regarding the input 𝑃 in Figure 1, the set 𝑆 = {𝑝10, 𝑝11, 𝑝12, 𝑝16, 𝑝13, 𝑝14} satisfies the
condition on the right hand side of (7). On the other hand, given any 7 points of 𝑃 , we can always find two
points where one point dominates the other. The dominance width𝑤 of 𝑃 is 6.

Equipped with𝑤 , we can now enhance our understanding of the A2 algorithm (reviewed in Section 1.3

as the state of the art in active classification) in the context of Problem 1. As explained in Section 1.3, the

algorithm finds w.h.p. a classifier whose error on 𝑃 is at most 𝑘∗ + 𝜉𝑛. Let us “favor” the algorithm by

telling it the value of 𝑘∗ for free and considering only the non-realizable case 𝑘∗ > 0. Consequently, the

algorithm can set 𝜉 to 𝜖𝑘∗/𝑛 and solve Problem 1 w.h.p. at a cost given in (5). As shown in Appendix B,

both 𝜆 (the VC-dimension) and 𝜃 (the disagreement coefficient) can be bounded by 𝑂 (𝑤); furthermore,

they can be Ω(𝑤) simultaneously. Applying 𝜈 = 𝑘∗/𝑛, the best bound that can be derived from (5) is

𝑂̃ (𝑤2/𝜖2) (8)

where 𝑂̃ (.) hides a factor polylogarithmic in 𝑛 = |𝑃 | and 1/𝜖 .
This article will prove that the “correct” complexity of Problem 1 turns out to be lower than (8) by

roughly a factor of𝑤 . We achieve the purpose by establishing nearly-matching upper and lower bounds.

Regarding upper bounds:

• We design in the next subsection an algorithm that, as analyzed in Section 2, guarantees an

expected error at most 2𝑘∗ with an expected cost of𝑂 (𝑤 Log
𝑛
𝑤
). When 𝑘∗ = 0 — i.e., Problem 1 is

realizable — the algorithm always finds an optimal monotone classifier.

• We present in Section 3 an algorithm that guarantees an error of (1 + 𝜖)𝑘∗ w.h.p. at a cost of

𝑂 (𝑤
𝜖2

· Log 𝑛
𝑤
· log𝑛). When 𝑘∗ = 0, the algorithm finds an optimal monotone classifier w.h.p..

We now turn to our lower bounds:

• For any constant 𝑐 > 1, we prove in Section 5 that any algorithm ensuring an expected error at

most 𝑐𝑘∗ must probe Ω(𝑤 Log
𝑛

(𝑘∗+1)𝑤) points in expectation (Theorem 14). Hence, the cost of our

first algorithm (with expected error at most 2𝑘∗) is asymptotically optimal when 𝑘∗ ≤ (𝑛/𝑤)1−𝛿
where 𝛿 > 0 is an arbitrarily small constant.

• For any 𝜖 > 0, we prove in Section 6 that any algorithm ensuring an expected error at most

(1 + 𝜖)𝑘∗ must probe Ω(𝑤/𝜖2) points in expectation (Theorem 15). Hence, the cost of our second

algorithm is asymptotically optimal up to a factor of 𝑂 (Log 𝑛
𝑤
· log𝑛).

Table 1 summarizes all the results mentioned earlier.

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:8 • Yufei Tao

𝝐 probing cost ref remarks
any 𝑂̃ (𝑤2/𝜖2) [5, 18, 29] 𝑘∗ known, w.h.p. error

1 𝑂 (𝑤 Log
𝑛
𝑤
) expected Thm. 1 expected error

any 𝑂 (𝑤
𝜖2

· Log 𝑛
𝑤
· log𝑛) Thm. 6 + Sec. 1.5 w.h.p. error

0 Ω(𝑛) Thm. 11 success probability > 2/3
constant > 0 Ω(𝑤 Log

𝑛
(𝑘∗+1)𝑤) expected Thm. 14 expected error

any Ω(𝑤/𝜖2) expected Thm. 15 expected error

Table 1. A summary of our and previous results on Problem 1

As a side product, our findings also imply a new result for monotonicity testing. Recall from Section 1.3

that the input to monotonicity testing involves a multi-set 𝑃 of 𝑛 labeled points and a real-valued

parameter 𝜉 ∈ (0, 1). In Section 2.3, we solve the problem with an expected cost of 𝑂 (𝑤 Log
𝑛
𝑤
) + 2/𝜉 ,

where𝑤 is the width of 𝑃 . This provides a meaningful alternative to the solution of [27], which probes

𝑂 (
√︁
𝑛/𝜉) points as mentioned earlier.

1.5 Our Techniques
This subsection will highlight the new techniques developed in this work. Our discussion will focus on

the proposed algorithms for solving Problem 1.

A Simple Algorithm. Our first algorithm — named RPE (random probes with elimination) — is

remarkably elegant:

algorithm RPE (𝑃)
1. 𝑍 = ∅
2. while 𝑃 ≠ ∅
3. probe an element 𝑧 ∈ 𝑃 chosen uniformly at random and add 𝑧 to 𝑍

4. if label(𝑧) = 1 then remove from 𝑃 every 𝑝 ∈ 𝑃 satisfying 𝑝 ⪰ 𝑧 (note: this removes 𝑧)

5. else discard from 𝑃 every 𝑝 ∈ 𝑃 satisfying 𝑧 ⪰ 𝑝 (note: this removes 𝑧)

6. return 𝑍
The algorithm outputs the set 𝑍 of points probed. Given 𝑍 , we define the following classifier:

ℎRPE(𝑝) =

{
1 if ∃𝑧 ∈ 𝑍 such that label(𝑧) = 1 and 𝑝 ⪰ 𝑧
−1 otherwise

(9)

The classifier ℎRPE must be monotone. Otherwise, there exist 𝑝, 𝑞 ∈ R𝑑
such that 𝑝 ≻ 𝑞 but ℎRPE(𝑝) = −1

and ℎRPE(𝑞) = 1. Let 𝑧 be an arbitrary element in 𝑍 satisfying label(𝑧) = 1 and 𝑞 ⪰ 𝑧 (such 𝑧 must exist

by the definition in (9)). It follows that 𝑝 ≻ 𝑧, in which case ℎRPE(𝑝) should be 1 according to (9), giving

a contradiction.

Another way to understand RPE is to regard it as the following labeling process. After acquiring

the label of a random element 𝑧 ∈ 𝑃 from the oracle, we will make sure that ℎRPE maps 𝑧 to label(𝑧).
Accordingly, this requires us to finalize many other mappings because of monotonicity. Specifically, if

label(𝑧) = 1, then ℎRPE assigns label 1 to all the elements 𝑝 ⪰ 𝑧; otherwise, ℎRPE assigns label −1 to all

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:9

the elements 𝑝 satisfying 𝑧 ⪰ 𝑝 . The elements that have their labels assigned are removed from 𝑃 . The

process is then repeated recursively on the remaining elements.

Example 1.3. Let us illustrate the algorithm on the input 𝑃 in Figure 1. Assume that RPE randomly
probes (at Step 3) 𝑝1 first. Acquiring label(𝑝1) = 1, it eliminates the entire 𝑃 except 𝑝6, 𝑝7, and 𝑝8. Suppose
that RPE then randomly probes 𝑝8. Acquiring label(𝑝8) = −1, it removes all the remaining points in 𝑃 .
With 𝑍 = {𝑝1, 𝑝8}, the classifier ℎRPE in (9) maps all the points to label 1 except 𝑝6, 𝑝7, and 𝑝8. Its error on
𝑃 is err𝑃 (ℎRPE) = 5.

While RPE is procedurally simple, proving its theoretical guarantees requires nontrivial arguments. It

is unclear why the classifier in (9) ensures an expected error at most 2𝑘∗ — notably, probing a “wrong”

element of 𝑃 may immediately force ℎRPE to misclassify a large number of elements (imagine, e.g., the

consequence if 𝑝15 is probed first). Equally intriguing is why RPE ends up probing𝑂 (𝑤 Log
𝑛
𝑤
) elements

in expectation, particularly since the algorithm never computes the value of𝑤 . In Section 2, we will

unveil the answers to these questions through a novel analysis. The RPE algorithm also serves as the

main step of our proposed method for monotonicity testing.

Relative-Comparison Coresets. Let us now turn our attention to guaranteeing an approximation

ratio of 1 + 𝜖 where 0 < 𝜖 ≤ 1. To that aim, we will produce a function 𝐹 : Hmon → R that ensures:

The relative 𝜖-comparison property: 𝐹 (ℎ) ≤ 𝐹 (ℎ′) implies err𝑃 (ℎ) ≤𝜖 err𝑃 (ℎ′) for any classi-

fiers ℎ,ℎ′ ∈ Hmon.

For every ℎ ∈ Hmon, the function value 𝐹 (ℎ) can be precisely computed. Given 𝐹 , we can then focus on

identifying a monotone classifier ℎ⊛ with the lowest 𝐹 (ℎ⊛). This classifier must fulfill the condition

err𝑃 (ℎ⊛) ≤ (1 + 𝜖)𝑘∗ (noticing that 𝐹 (ℎ⊛) ≤ 𝐹 (ℎ∗) where ℎ∗ is an optimal classifier on 𝑃 , i.e, err𝑃 (ℎ∗) =
𝑘∗) and thus can be returned as an output of Problem 1.

An inherent barrier in finding such a function 𝐹 is that we cannot hope to estimate err𝑃 (ℎ) of
every monotone classifier ℎ up to a finite relative ratio without Ω(𝑛) probes. This is true even if the

dimensionality 𝑑 of 𝑃 is 1. To see why, consider the classifier ℎpos that maps the entire 𝑃 to 1. It has

error 0 if all the elements of 𝑃 have label 1, or error 1 if all but one element in 𝑃 has label 1. Hence,

estimating err𝑃 (ℎpos) up to a relative ratio, say, 1/2 requires identifying the only element in 𝑃 having

label −1 or declaring the absence of such an element. It is not hard to prove that achieving the purpose

with a constant probability demands Ω(𝑛) probes in expectation.

Our method to produce a desired 𝐹 is to ensure the following inequality for every ℎ ∈ Hmon:

err𝑃 (ℎ) ·
(
1 − 𝜖

4

)
+ Δ ≤ 𝐹 (ℎ) ≤ err𝑃 (ℎ) ·

(
1 + 𝜖

4

)
+ Δ (10)

where Δ is an unknown real value common to all ℎ. Indeed, if the exact value of Δ were available, then
𝐹 (ℎ) − Δ would serve as an estimate of err𝑃 (ℎ) with a relative ratio at most 𝜖/4, which would require

Ω(𝑛) probes as discussed. The key behind our success is to compute 𝐹 (ℎ) without knowing Δ, as long
as the existence of Δ can be assured.

The relative 𝜖-comparison property is a corollary of (10) because

err𝑃 (ℎ) ≤ 1

1 − 𝜖/4 · (𝐹 (ℎ) − Δ)

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:10 • Yufei Tao

(by 𝐹 (ℎ) ≤ 𝐹 (ℎ′)) ≤ 1

1 − 𝜖/4 · (𝐹 (ℎ′) − Δ)

(applying (10)) ≤ 1 + 𝜖/4
1 − 𝜖/4 · 𝑒𝑟𝑟𝑃 (ℎ′)

≤ (1 + 𝜖) · 𝑒𝑟𝑟𝑃 (ℎ′)
where the last inequality used the fact that

1+𝜖/4
1−𝜖/4 ≤ 1 + 𝜖 for all 𝜖 ∈ (0, 1]. Note that, interestingly, the

existence of Δ already permits the derivation to proceed — its concrete value is unnecessary.

We will show that a function 𝐹 meeting the unusual condition in (10) can be obtained using a coreset.

Specifically, a coreset of 𝑃 is a subset 𝑍 ⊆ 𝑃 where each element 𝑝 ∈ 𝑍
• has its label revealed, and

• is associated with a positive real value weight (𝑝), called the weight of 𝑝 .
Given a classifier ℎ ∈ Hmon, define its weighted error on 𝑍 as:

w-err𝑍 (ℎ) =
∑︁
𝑝∈𝑍

weight (𝑝) · 1ℎ (𝑝)≠label (𝑝) . (11)

In Section 3, we show how to perform 𝑂 (𝑤
𝜖2
Log

𝑛
𝑤
· log𝑛) probes to obtain w.h.p. a coreset 𝑍 of size

𝑂 (𝑤
𝜖2
Log

𝑛
𝑤
· log𝑛), such that every ℎ ∈ Hmon satisfies

err𝑃 (ℎ) ·
(
1 − 𝜖

4

)
+ Δ ≤ w-err𝑍 (ℎ) ≤ err𝑃 (ℎ) ·

(
1 + 𝜖

4

)
+ Δ (12)

for some unknown Δ common to all ℎ. The function w-err𝑍 readily serves as the desired function 𝐹 and

can be evaluated for any ℎ ∈ Hmon based purely on 𝑍 . We will refer to 𝑍 as a relative-comparison coreset
because its purpose is to enable the relative 𝜖-comparison property. The “unknown-Δ” technique
outlined above is different from all the existing coreset-building methods (see representative works

[1, 8, 12, 16, 22, 23, 30, 31, 38] and their references) to our knowledge.

2 Random Probes with Elimination
This section will prove the theorem below regarding the RPE algorithm in Section 1.5:

Theorem 1. For Problem 1, the RPE algorithm probes 𝑂 (𝑤 Log
𝑛
𝑤
) elements in expectation and the

monotone classifier ℎRPE in (9) has an expected error at most 2𝑘∗, where 𝑛 is the number of elements in the
input 𝑃 ,𝑤 is the width of 𝑃 , and 𝑘∗ is the optimal error of 𝑃 .

The expected error guarantee implies that when 𝑘∗ = 0 (Problem 1 is realizable), the classifier ℎRPE
is always optimal (otherwise, the expected error would be strictly positive). Our proof is divided into

two parts: Section 2.1 analyzes the expected error, and Section 2.2 examines the expected cost. The

following proposition states an important property of the classifier ℎRPE, which establishes symmetry

between labels −1 and 1.

Proposition 1. For any 𝑝 ∈ 𝑃 , we have ℎRPE(𝑝) = −1 if and only if ∃𝑧 ∈ 𝑍 satisfying label(𝑧) = −1
and 𝑧 ⪰ 𝑝 , where 𝑍 is the set of elements probed by RPE.

Proof. We first prove that 𝑍 is a monotone set, or specifically:

• 𝑍 contains no two (distinct) elements 𝑝 and 𝑞 with 𝑝 = 𝑞;

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:11

• for any 𝑝, 𝑞 ∈ 𝑍 , if 𝑝 ≻ 𝑞, then label(𝑝) ≥ label(𝑞).
The first bullet holds because once an element 𝑧 ∈ 𝑃 is probed at Line 3 of the pseudocode in Section 1.5,

then all the elements of 𝑃 at the same location as 𝑧 are removed from 𝑃 at Line 4 or 5. Regarding the

second bullet, assume that there exist 𝑝, 𝑞 ∈ 𝑍 such that 𝑝 ≻ 𝑞, label(𝑝) = −1, and label(𝑞) = 1. But

which element was probed earlier by RPE? If it was 𝑝 , then 𝑞 should have been removed from 𝑃 at Line

5 after the probing of 𝑝 at Line 3, contradicting 𝑞 ∈ 𝑍 . Likewise, probing 𝑞 first would contradict 𝑝 ∈ 𝑍 .
We are ready to prove that, for any 𝑝 ∈ 𝑃 , the condition ℎRPE(𝑝) = −1 holds if and only if ∃𝑧 ∈ 𝑍

satisfying label(𝑧) = −1 and 𝑧 ⪰ 𝑝 . Let us first consider the “only-if direction” (i.e., ⇒). Our argument

proceeds differently in two cases.

• Case 𝑝 ∈ 𝑍 : This implies label(𝑝) = −1 (indeed, if label(𝑝) = 1, then ℎRPE(𝑝) = 1 because we can

𝑧 = 𝑃 in (9)). As 𝑝 ∈ 𝑍 and label(𝑝) = −1, we can set 𝑧 = 𝑝 to fulfill the only-if statement.

• Case 𝑝 ∉ 𝑍 : From ℎRPE(𝑝) = −1, we can assert by (9) that no element 𝑧′ ∈ 𝑍 satisfies label(𝑧′) = 1

and 𝑝 ⪰ 𝑧′. Thus, RPE must have removed 𝑝 after probing an element 𝑧 satisfying label(𝑧) = −1
and 𝑧 ⪰ 𝑝 . This 𝑧 completes the only-if direction.

Finally, we consider the “if direction” (i.e., ⇐). The designated element 𝑧 rules out the existence of any

element 𝑧′ ∈ 𝑍 satisfying label(𝑧′) = 1 and 𝑝 ⪰ 𝑧′; otherwise, 𝑧 ⪰ 𝑧′ and the labels of 𝑧 and 𝑧′ suggest
that 𝑍 is not monotone. Hence, ℎRPE(𝑝) = −1 by (9). □

2.1 The Expected Error of RPE
Fix an arbitrary classifier ℎ ∈ Hmon. An element 𝑝 ∈ 𝑃 is said to be ℎ-good if ℎ(𝑝) = label(𝑝) or ℎ-bad
otherwise. We will prove:

Lemma 2. The number of ℎ-good elements misclassified by the classifier ℎRPE from (9) is at most err𝑃 (ℎ)
in expectation.

The lemma implies E[err𝑃 (ℎRPE)] ≤ 2𝑘∗. To understand why, set ℎ to an optimal monotone classifier

ℎ∗ on 𝑃 . By Lemma 2, the number of ℎ∗-good elements misclassified by ℎRPE is at most err𝑃 (ℎ∗) = 𝑘∗ in
expectation. Because exactly 𝑘∗ elements of 𝑃 are ℎ∗-bad, the total number of elements misclassified by

ℎRPE is at most 2𝑘∗ in expectation.

The rest of this subsection serves as a proof of Lemma 2. Our proof works by induction on the size

𝑛 of 𝑃 . When 𝑛 = 1, the classifier ℎRPE has error 0 on 𝑃 , and the claim holds. Next, assuming that the

claim holds for 𝑛 ≤ 𝑚 − 1 (where𝑚 ≥ 2), we will establish its correctness for 𝑛 =𝑚. Define

𝑋 = the number of ℎ-good elements in 𝑃 misclassified by ℎRPE, (13)

Our goal is to show that E[𝑋] ≤ err𝑃 (ℎ).
For each ℎ-bad element 𝑝 , we define its influence set 𝐼bad (𝑝) as follows:
• If label(𝑝) = −1, then 𝐼bad (𝑝) consists of all the ℎ-good elements 𝑞 ∈ 𝑃 satisfying 𝑝 ⪰ 𝑞 and

label(𝑞) = 1;

• If label(𝑝) = 1, then 𝐼bad (𝑝) consists of all the ℎ-good elements 𝑞 ∈ 𝑃 satisfying 𝑞 ⪰ 𝑝 and

label(𝑞) = −1.
For each ℎ-good element 𝑝 ∈ 𝑃 , define its influence set 𝐼good (𝑝) as follows:

• If label(𝑝) = −1, then 𝐼good (𝑝) consists of all the ℎ-bad elements 𝑞 ∈ 𝑃 satisfying 𝑝 ⪰ 𝑞.

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:12 • Yufei Tao

• If label(𝑝) = 1, then 𝐼good (𝑝) consists of all the ℎ-bad elements 𝑞 ∈ 𝑃 satisfying 𝑞 ⪰ 𝑝 .

Lemma 3. Both of the statements below are true:
(1) If 𝑝 ∈ 𝑃 is ℎ-good, then label(𝑝) ≠ label(𝑞) for every 𝑞 ∈ 𝐼good (𝑝).
(2) For any ℎ-good 𝑝 ∈ 𝑃 and any ℎ-bad 𝑞 ∈ 𝑃 , we have 𝑝 ∈ 𝐼good (𝑞) ⇔ 𝑞 ∈ 𝐼bad (𝑝).

Proof. Let us start with statement (1). Suppose that label(𝑝) = −1. Because 𝑝 is ℎ-good, we know

ℎ(𝑝) = −1. As 𝑞 ∈ 𝐼good (𝑝), we must have 𝑝 ⪰ 𝑞. By monotonicity, ℎ(𝑞) must be −1 as well. Since 𝑞
is ℎ-bad, it follows that label(𝑞) = 1. A symmetric argument proves the statement in the case where

label(𝑝) = 1. Statement (2) follows directly from statement (1) and the influence set definitions. □

Statement (2) of Lemma 3 leads to∑︁
ℎ-good 𝑝 ∈ 𝑃

|𝐼good (𝑝) | =
∑︁

ℎ-bad 𝑝 ∈ 𝑃

|𝐼bad (𝑝) |. (14)

Example 2.1. Let 𝑃 be the set of points in Figure 1, and ℎ be the classifier that maps all the black points
to 1 except 𝑝1 and all the white points to −1 except 𝑝11 and 𝑝15. Thus, 𝑝1, 𝑝11, and 𝑝15 are ℎ-bad, while the
other points of 𝑃 are ℎ-good. The following are some representative influence sets.

𝐼bad (𝑝15) = {𝑝4, 𝑝9, 𝑝10, 𝑝12, 𝑝13, 𝑝14, 𝑝16}
𝐼bad (𝑝1) = {𝑝2, 𝑝3, 𝑝5}
𝐼good (𝑝3) = {𝑝1}
𝐼good (𝑝9) = {𝑝11, 𝑝15}.

Recall from its pseudocode in Section 1.5 that RPE is an iterative algorithm. We will refer to Lines

3-5 as an iteration. Let 𝑧 be the point probed (at Line 3) in the first iteration. The revelation of label(𝑧)
instructs the algorithm to remove 𝑧 and possibly some other elements from 𝑃 (at Line 4 or 5). Define

𝑃𝑧 = the set of remaining elements at the end of the first iteration. (15)

The next proposition relates the error of ℎ on 𝑃𝑧 to the error of ℎ on 𝑃 .

Proposition 2.

err𝑃𝑧 (ℎ) ≤
{
err𝑃 (ℎ) − 1 if 𝑧 is ℎ-bad
err𝑃 (ℎ) − |𝐼good (𝑧) | if 𝑧 is ℎ-good

Proof. If 𝑧 is ℎ-bad, the inequality err𝑃𝑧 (ℎ) ≤ err𝑃 (ℎ) − 1 follows trivially from the fact that 𝑃𝑧 has

lost at least one ℎ-bad element (i.e., 𝑧) compared to 𝑃 .

Consider instead that 𝑧 is ℎ-good. Assume first label(𝑧) = 1. In the first iteration, an element 𝑝 ∈ 𝑃
is removed by Line 4 if and only if 𝑝 ⪰ 𝑧. Thus, by definition of 𝐼good (𝑧), an element 𝑝 removed by

Line 4 is ℎ-bad if and only if 𝑝 ∈ 𝐼good (𝑧). Hence, 𝑃𝑧 loses exactly |𝐼good (𝑧) | ℎ-bad elements compared

to 𝑃 , giving err𝑃𝑧 (ℎ) = err𝑃 (ℎ) − |𝐼good (𝑧) |. A symmetric argument applies to the other case where

label(𝑧) = −1. □

Define

𝑌𝑧 = the number of ℎ-good elements in 𝑃𝑧 misclassified by ℎRPE

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:13

Under the event that the first element probed is 𝑧, we have

𝑋 = 𝑌𝑧 + the number of ℎ-good elements in 𝑃 \ 𝑃𝑧 misclassified by ℎRPE (16)

where 𝑋 is defined in (13).

Proposition 3. The number of ℎ-good elements in 𝑃 \ 𝑃𝑧 misclassified by ℎRPE is
• |𝐼bad (𝑧) | if 𝑧 is ℎ-bad;
• 0 if 𝑧 is ℎ-good.

Proof. Let us first discuss the scenario where label(𝑧) = 1. The set 𝑃 \ 𝑃𝑧 consists of every point

𝑝 ∈ 𝑃 satisfying 𝑝 ⪰ 𝑧. The classifier ℎRPE maps every point 𝑝 ∈ 𝑃 \ 𝑃𝑧 to 1. Hence, the number of

ℎ-good points in 𝑃 \ 𝑃𝑧 misclassified by ℎRPE is exactly the number — let it be 𝑥 — of ℎ-good points in

𝑃 \ 𝑃𝑧 whose labels are −1.
Next, we analyze the number 𝑥 . If 𝑧 is ℎ-bad, then 𝑥 is exactly |𝐼bad (𝑧) | by definition of 𝐼bad (𝑧).

Consider the case where 𝑧 is ℎ-good. By monotonicity of ℎ, we have ℎ(𝑝) = 1 for all 𝑝 ⪰ 𝑧 (recall that
label(𝑧) = 1). Hence, if 𝑝 is ℎ-good, then label(𝑝) = ℎ(𝑝) = 1. The number of 𝑥 is thus 0 in this case.

A symmetric argument applies to the scenario where label(𝑧) = −1, using Proposition 1. □

Combining (16) and Proposition 3 yields

𝑋 =

{
𝑌𝑧 + |𝐼bad (𝑧) | if 𝑧 is ℎ-bad

𝑌𝑧 if 𝑧 is ℎ-good
(17)

under the event that 𝑧 is the first point probed.

The subsequent execution of RPE on 𝑃𝑧 can be regarded as invoking RPE directly on 𝑃𝑧 . We utilize

this recursive view to proceed in the analysis. As 𝑃𝑧 has at least one less element than 𝑃 (because 𝑧 is

removed), the inductive assumption tells us:

E[𝑌𝑧] ≤ err𝑃𝑧 (ℎ). (18)

We can now derive

E[𝑋] =
∑︁
𝑧∈𝑃

E[𝑋 | 𝑧 is probed first] · Pr[𝑧 is probed first]

=
1

𝑚

∑︁
𝑧∈𝑃

E[𝑋 | 𝑧 is probed first]

=
1

𝑚

(∑︁
ℎ-good 𝑧 ∈ 𝑃

E[𝑋 | 𝑧 is probed first] +
∑︁

ℎ-bad 𝑧 ∈ 𝑃

E[𝑋 | 𝑧 is probed first]
)

(by (17)) =

(
1

𝑚

∑︁
ℎ-good 𝑧 ∈ 𝑃

E[𝑌𝑧]
)
+

(
1

𝑚

∑︁
ℎ-bad 𝑧 ∈ 𝑃

E[𝑌𝑧] + |𝐼bad (𝑧) |
)

(by (18)) ≤
(
1

𝑚

∑︁
ℎ-good 𝑧 ∈ 𝑃

𝑒𝑟𝑟𝑃𝑧 (ℎ)
)
+

(
1

𝑚

∑︁
ℎ-bad 𝑧 ∈ 𝑃

err𝑃𝑧 (ℎ) + |𝐼bad (𝑧) |
)

(Proposition 2) ≤
(
1

𝑚

∑︁
ℎ-good 𝑧 ∈ 𝑃

𝑒𝑟𝑟𝑃 (ℎ) − |𝐼good (𝑧) |
)
+

(
1

𝑚

∑︁
ℎ-bad 𝑧 ∈ 𝑃

err𝑃 (ℎ) − 1 + |𝐼bad (𝑧) |
)

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:14 • Yufei Tao

label 1

label −1

Fig. 3. Approximation ratio 2 is tight for RPE

≤
(
1

𝑚

∑︁
ℎ-good 𝑧 ∈ 𝑃

𝑒𝑟𝑟𝑃 (ℎ) − |𝐼good (𝑧) |
)
+

(
1

𝑚

∑︁
ℎ-bad 𝑧 ∈ 𝑃

err𝑃 (ℎ) + |𝐼bad (𝑧) |
)

= err𝑃 (ℎ) +
1

𝑚

(∑︁
ℎ-bad 𝑧 ∈ 𝑃

|𝐼bad (𝑧) | −
∑︁

ℎ-good 𝑧 ∈ 𝑃

|𝐼good (𝑧) |
)

(by (14)) = err𝑃 (ℎ).

This completes the inductive step of the proof of Lemma 2.

Remark. As explained, Lemma 2 implies that RPE guarantees an expected error at most 2𝑘∗. The
approximation ratio 2 is the best possible for this algorithm. To see this, consider the input 𝑃 in Figure 3,

where 𝑛 − 1 white points have label −1 and the only black point has label 1. The optimal error 𝑘∗ is 1
(achieved by the monotone classifier that maps all points to −1). If RPE probes the black point first —

which happens with probability 1/𝑛 — then ℎRPE misclassifies all the white points and, thus, incurs an

error 𝑛 − 1. On the other hand, if the first point probed is white, then ℎRPE misclassies only the black

point and incurs an error 1. The expected error of ℎRPE is therefore
1

𝑛
· (𝑛 − 1) + (1 − 1

𝑛
) · 1 = 2 − 2

𝑛
,

which gets arbitrarily close to 2 as 𝑛 increases.

2.2 The Expected Cost of RPE

Chains. Let us review a fundamental property of the width𝑤 of 𝑃 defined in (7). Call a subset 𝑆 ⊆ 𝑃

a chain if it is possible to linearize the points of 𝑆 into a sequence 𝑝1 ⪯ 𝑝2 ⪯ ... ⪯ 𝑝 |𝑆 | . A chain
decomposition of 𝑃 is a collection of disjoint chains 𝐶1, 𝐶2, ..., 𝐶𝑡 (for some 𝑡 ≥ 1) whose union is 𝑃 .

Dilworth’s Theorem [20] states that there must exist a chain decomposition of 𝑃 containing𝑤 chains.

Example 2.2. The input 𝑃 in Figure 1 can be decomposed into 6 chains: 𝐶1 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝10}, 𝐶2 =

{𝑝11}, 𝐶3 = {𝑝5, 𝑝9, 𝑝12}, 𝐶4 = {𝑝16}, 𝐶5 = {𝑝13}, and 𝐶6 = {𝑝6, 𝑝7, 𝑝8, 𝑝14, 𝑝15}. The points 𝑝10, 𝑝11, 𝑝12,
𝑝16, 𝑝13, and 𝑝14 indicate the absence of any chain decomposition of 𝑃 having less than 6 chains. This serves
as evidence that the width𝑤 of 𝑃 is 6.

Attrition and Elimination. Before discussing the cost of RPE, let us take a detour to discuss a relevant
problem. Consider the following attrition-and-elimination (A&E) game between Alice and Bob. The

input to the game is a chain 𝐶 of𝑚 ≥ 1 points in R𝑑
. In each round:

• Bob performs “attrition” by either doing nothing or arbitrarily deleting some points from 𝐶;

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:15

• Alice then carries out “elimination” by picking a point 𝑝 ∈ 𝐶 uniformly at random, and deleting

from 𝐶 all the points 𝑞 ⪰ 𝑝 .

The game ends when 𝐶 becomes empty. The number of rounds is a random variable depending on

Bob’s strategy. The question is how Bob should play to maximize the expectation of this variable.

Lemma 4. Regardless of Bob’s strategy, the game has 𝑂 (Log𝑚) rounds in expectation.

Proof. Let 𝑋 be the number of elements left in𝐶 after the first round. We will show Pr[𝑋 ≤ 𝑚/2] >
1/2. Let 𝐶′

be the content of 𝐶 after Bob’s attrition in the first round. Set𝑚′ = |𝐶′ |. Let us arrange the
points of 𝐶′

such that 𝑝1 ⪯ 𝑝2 ⪯ ... ⪯ 𝑝𝑚′ . If Alice picks 𝑝 = 𝑝𝑖 (𝑖 ∈ [𝑚′]), then at most 𝑖 − 1 points

are left after her elimination because such points must be among 𝑝1, 𝑝2, ..., 𝑝𝑖−1. Hence, 𝑋 ≤ 𝑚′/2 as
long as 𝑖 ≤ 1 +𝑚′/2, which occurs with probability greater than 1/2. The fact Pr[𝑋 ≤ 𝑚/2] > 1/2 now
follows from𝑚′ ≤ 𝑚.

We call a round successful if it reduces the number of elements in 𝐶 by at least a factor of 2. The total

number of successful rounds cannot be more than log
2
(1 +𝑚). Let 𝑌 be the total number of rounds.

If 𝑌 ≥ 2 log
2
(1 +𝑚), there must be at least log

2
(1 +𝑚) unsuccessful rounds; as all the rounds are

independent, this can happen with probability less than (1/2)log2 (1+𝑚) < 1/𝑚. Because 𝑌 is trivially

bounded by𝑚, we have E[𝑌] ≤ 2 log
2
(1 +𝑚) +𝑚 · Pr[at least 2 log

2
(1 +𝑚) rounds] = 𝑂 (Log𝑚). □

Cost Analysis of RPE. Returning to RPE, let {𝐶1,𝐶2, ...,𝐶𝑤} be an arbitrary chain decomposition of 𝑃

with𝑤 chains. Note that RPE is unaware of these chains. For each 𝑖 ∈ [𝑤], break the chain 𝐶𝑖 into two

disjoint subsets:

• 𝐶pos
𝑖

= {𝑝 ∈ 𝐶𝑖 | label(𝑝) = 1}, and
• 𝐶neg

𝑖
= {𝑝 ∈ 𝐶𝑖 | label(𝑝) = −1}.

Lemma 5. RPE probes 𝑂 (Log |𝐶pos
𝑖

|) points from 𝐶
pos
𝑖

in expectation.

Proof. The operations that RPE performs on𝐶
pos
𝑖

can be modeled as an A&E game on an initial input

𝐶 = 𝐶
pos
𝑖

, as explained next.

In each round (of the A&E game), Bob formulates his strategy according to the execution of RPE.
Suppose that RPE probes an element outside𝐶

pos
𝑖

at Line 3 (of the pseudocode in Section 1.5); recall that

the algorithm removes some elements from 𝑃 at Line 4 or 5. Accordingly, Bob carries out attrition by

deleting from 𝐶 all the elements of 𝐶
pos
𝑖

that have been removed by RPE. After that, Bob observes the
next probe of RPE and performs attrition in the same way as long as the element probed is outside 𝐶𝑖 .

If, on the other hand, RPE probes an element 𝑧 ∈ 𝐶pos
𝑖

, he passes the turn to Alice.

From Alice’s perspective, conditioned on 𝑧 ∈ 𝐶pos
𝑖

, RPEmust have chosen 𝑧 uniformly at random from

the current 𝐶 , namely, the set of elements from 𝐶
pos
𝑖

still in 𝑃 . Hence, Alice can take 𝑧 as her choice in

the A&E game to perform elimination. Because 𝑧 has label 1, after probing 𝑧 at Line 3, RPE shrinks 𝑃 by

removing at Line 4 every element 𝑝 ⪰ 𝑧. As far as 𝐶 is concerned, the shrinking deletes elements from

𝐶 in exactly the way Alice should do in her elimination. This completes a round of the A&E game. The

next round starts and proceeds in the same fashion.

By Lemma 4, the A&E game lasts for𝑂 (Log |𝐶pos
𝑖

|) rounds in expectation regardless of Bob’s strategy.

Hence, RPE probes 𝑂 (Log |𝐶pos
𝑖

|) elements from 𝐶
pos
𝑖

in expectation. □

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:16 • Yufei Tao

By a symmetric argument, RPE probes 𝑂 (Log |𝐶neg
𝑖

|) elements from 𝐶
neg
𝑖

in expectation. Therefore,

the expected number of elements probed by RPE in total is given by

𝑂

(
𝑤∑︁
𝑖=1

Log |𝐶pos
𝑖

| + Log |𝐶neg
𝑖

|
)
= 𝑂

(
𝑤∑︁
𝑖=1

Log |𝐶𝑖 |
)
= 𝑂

(
𝑤 Log

𝑛

𝑤

)
where the last step used the fact

∑𝑤
𝑖=1 |𝐶𝑖 | = 𝑤 . This completes the proof of Theorem 1.

2.3 Application to Monotonicity Testing
We will finish this section with a remark on monotonicity testing. As reviewed in Section 1.3, given a

multi-set 𝑃 of 𝑛 points in R𝑑
and a parameter 𝜉 ∈ (0, 1), the output of monotonicity testing should be

• always “yes” if 𝑃 is monotone;

• “no” with probability at least 2/3 if 𝑘∗ ≥ 𝜉𝑛 where 𝑘∗ is the optimal error of 𝑃 (see (3));

• either “yes” or “no” if 0 < 𝑘∗ < 𝜉𝑛.

Consider the following simple algorithm:

1. run RPE on 𝑃 and obtain ℎRPE from (9)

2. take a set 𝑆 of 2/𝜉 uniform samples of 𝑃 with replacement and obtain their labels

3. if ℎRPE misclassifies any element in 𝑆 then return “no”

4. else return “yes”

By Theorem 1, the algorithm probes 𝑂 (𝑤 Log
𝑛
𝑤
) + 2/𝜉 elements of 𝑃 in expectation. Next, we will

explain why it fulfills the output requirements of monotonicity testing. First, if 𝑃 is monotone, then

the algorithm definitely outputs “yes” because, as mentioned before, ℎRPE is guaranteed to classify all

elements of 𝑃 correctly in this case. On other hand hand, assume that 𝑘∗ ≥ 𝜉𝑛. Because err𝑃 (ℎRPE) ≥ 𝑘∗,
the probability for ℎRPE to misclassify a uniformly random element of 𝑃 is at least 𝑘∗/𝑛 ≥ 𝜉 . Hence, the

probability for ℎRPE to be correct on all the elements in 𝑆 is at most (1− 𝜉)2/𝜉 < 1/𝑒2 < 1/3. This means

that the algorithm outputs “no” with probability at least 2/3.

3 Relative-Comparison Coresets
This section will solve Problem 1 up to an approximation ratio 1 + 𝜖 w.h.p. assuming 𝜖 ≤ 1 (for 𝜖 > 1,

reset it to 1). The central step is to find a relative-comparison coreset of the input 𝑃 . Recall from

Section 1.5 that this is a subset 𝑍 ⊆ 𝑃 where every element 𝑝 ∈ 𝑍 has its label revealed and is associated

with a positive weight such that the weighted error of every monotone classifier ℎ on 𝑍 — namely,

w-err𝑍 (ℎ) defined in (11) — satisfies the condition in (12), where Δ is some unknown value common to

all ℎ ∈ Hmon. Formally, we will establish:

Theorem 6. Let 𝑛 be the size of the input 𝑃 of Problem 1 and𝑤 be the width of 𝑃 . In𝑂 (𝑤
𝜖2
Log

𝑛
𝑤
· log 𝑛

𝛿
)

probes, we can obtain a subset 𝑍 of 𝑃 with |𝑍 | = 𝑂 (𝑤
𝜖2
Log

𝑤
𝑛
· log 𝑛

𝛿
) such that 𝑍 is a relative-comparison

coreset of 𝑃 with probability at least 1 − 𝛿 .

As explained in Section 1.5, given the coreset 𝑍 in Theorem 6, the remaining task to solve Problem 1

is to find a monotone classifier ℎ⊛ minimizing w-err𝑍 (ℎ⊛). The task requires no more probing and can

be done in CPU time polynomial in |𝑍 | and 𝑑 (see [2, 41]). This leads us to:

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:17

Corollary 7. For Problem 1, there is an algorithm that guarantees an error of (1 + 𝜖)𝑘∗ w.h.p. by
probing 𝑂 (𝑤

𝜖2
Log

𝑤
𝑛
· log𝑛) elements, where 𝑛 is the size of the input 𝑃 ,𝑤 is the width of 𝑃 , and 𝑘∗ is the

optimal error of 𝑃 .

The rest of the section serves as a proof of Theorem 6. The main difficulty arises from establishing its

correctness for 𝑑 = 1. Indeed, most of our discussion will revolve around the following problem.

Problem 2. Let 𝑃 be a multi-set of 1D labeled points as defined in Problem 1 (under 𝑑 = 1), and 𝜖 be
a value in (0, 1]. Find a function 𝐹 : Hmon → R such that every ℎ ∈ Hmon satisfies (19) and (20):

|𝐹 (ℎ) − err𝑃 (ℎ) | ≤ 𝜖 |𝑃 |/64 (19)

err𝑃 (ℎ) ·
(
1 − 𝜖

4

)
+ Δ ≤ 𝐹 (ℎ) ≤ err𝑃 (ℎ) ·

(
1 + 𝜖

4

)
+ Δ (20)

where Δ is a possibly unknown value with

|Δ| ≤ 𝜖 |𝑃 |/64. (21)

The efficiency of an algorithm is measured by the number of elements probed.

Two remarks are in order:

• The value Δ in (20) is the same for all ℎ ∈ Hmon.

• Before returning a function 𝐹 , we must make sure that 𝐹 (ℎ) is computable for every ℎ ∈ Hmon.

Sections 3.1-3.4 will settle Problem 2 with probability at least 1 − 𝛿 by performing 𝑂 (𝑤
𝜖2
Log

𝑤
𝑛
· log 𝑛

𝛿
)

probes. Section 3.5 will then utilize our solution to build a relative-comparison coreset that meets the

requirements of Theorem 6 for 𝑑 = 1. Section 3.6 will extend the argument to 𝑑 > 1.

3.1 Warm Up: A Special Case
Solving Problem 2 requires demonstrating the existence of Δ even when its actual value remains

undetermined. This subsection will illustrate this principle in the specific case where all elements of 𝑃

have identical values (i.e., all the points in 𝑃 are located at the same position). In this case, any monotone

classifier ℎ maps the entire 𝑃 to 1 or −1. We denote by ℎpos (resp., ℎneg) the monotone classifier that

always outputs 1 (resp., −1). It suffices to construct a function 𝐹 : {ℎpos, ℎneg} → R such that (19)-(21)

hold for ℎ ∈ {ℎpos, ℎneg}.
As it turns out, in this special instance, we can simply return an arbitrary function 𝐹 : {ℎpos, ℎneg} → R

satisfying (19). It is standard to build such a function with random sampling, the details of which will be

given in Section 3.4. What is less standard, however, is to argue for the availability of a Δ value to meet

the requirements in (20) and (21). W.l.o.g., let us assume that the optimal error 𝑘∗ is achieved by ℎpos,

namely, 𝑘∗ = err𝑃 (ℎpos). Our argument distinguishes two scenarios depending on whether 𝑘∗ is large.

When 𝒌∗ ≥ |𝑷 |/16. This is a simple scenario and can be dealt with by setting Δ = 0. This choice of

Δ trivially satisfies (21). To see why (20) holds as well, recall that the value 𝐹 (ℎ) estimates err𝑃 (ℎ) up
to an absolute offset of 𝜖 |𝑃 |/64 for ℎ ∈ {ℎpos, ℎneg}. As err𝑃 (ℎ) ≥ |𝑃 |/16, the offset is at most

𝜖
4
err𝑃 (ℎ).

This yields err𝑃 (ℎ) · (1 − 𝜖
4
) ≤ 𝐹 (ℎ) ≤ err𝑃 (ℎ) · (1 + 𝜖

4
).

When 𝒌∗ < |𝑷 |/16. In this scenario, we set

Δ = 𝐹 (ℎpos) − 𝑘∗. (22)

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:18 • Yufei Tao

Even though we cannot compute Δ (because 𝑘∗ is unknown), we are certain that it exists. Furthermore,

as 𝐹 satisfies (19) for ℎ = ℎpos, we have |Δ| ≤ 𝜖 |𝑃 |/64; hence, (21) holds.
Next, we will explain why (20) holds for ℎ ∈ {ℎpos, ℎneg}. This is easy for ℎ = ℎpos, in which case (20)

becomes 𝑘∗(1 − 𝜖/4) ≤ 𝑘∗ ≤ 𝑘∗(1 + 𝜖/4), which is true. Regarding ℎneg , first note that as 𝑘∗ < |𝑃 |/16,
we have err𝑃 (ℎneg) = |𝑃 | − err𝑃 (ℎpos) ≥ 15

16
|𝑃 |. Thus, from (19):

|𝐹 (ℎneg) − err𝑃 (ℎneg) | ≤
𝜖 |𝑃 |
64

≤ 𝜖

60

· err𝑃 (ℎneg) .

On the other hand, as explained earlier,

|Δ| ≤ 𝜖 |𝑃 |
64

≤ 𝜖

60

· err𝑃 (ℎneg)

Hence

|𝐹 (ℎneg) − err𝑃 (ℎneg) − Δ| ≤ 𝜖

60

· err𝑃 (ℎneg) +
𝜖

60

· err𝑃 (ℎneg) <
𝜖

4

· err𝑃 (ℎneg).

We thus conclude that (20) holds for ℎ = ℎneg .

3.2 A Recursive Framework for Problem 2
This subsection discusses Problem 2 in its generic settings. If |𝑃 | = 1, we probe the only element in 𝑃

and return 𝐹 (ℎ) = err𝑃 (ℎ) for any ℎ ∈ Hmon. Our subsequent discussion assumes |𝑃 | ≥ 2.

When 𝑑 = 1, a monotone classifier ℎ has the form

ℎ(𝑝) =

{
1 if 𝑝 > 𝜏

−1 otherwise

(23)

which is parameterized by a value 𝜏 ; we will sometimes make the parameter explicit by representing

the classifier in (23) as ℎ𝜏 .

We will construct (in Section 3.4) a function𝐺1 : Hmon → R that approximates err𝑃 up to absolute

error 𝜖 |𝑃 |/64, namely,

|𝐺1(ℎ) − err𝑃 (ℎ) | ≤ 𝜖 |𝑃 |/64 (24)

for all ℎ ∈ Hmon. The function is said to be consistently large if

𝐺1(ℎ𝜏) ≥ |𝑃 |
(
1

4

− 𝜖

64

)
for all 𝜏 ∈ R. (25)

Our subsequent development depends on whether (25) is true.

3.2.1 When 𝐺1 Is Consistently Large. In this case, we decide the target function 𝐹 to be

𝐹 (ℎ) = 𝐺1(ℎ) . (26)

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:19

3.2.2 When 𝐺1 Is Not Consistently Large. Define:

𝛼 = the smallest 𝜏 ∈ R with 𝐺1(ℎ𝜏) < |𝑃 | ·
(
1

4

− 𝜖

64

)
𝛽 = the largest 𝜏 ∈ R with 𝐺1(ℎ𝜏) < |𝑃 | ·

(
1

4

− 𝜖

64

)
.

Our construction of 𝐺1 in Section 3.4 makes 𝛼 and 𝛽 well defined when 𝐺1 is not consistently large.

Now, break 𝑃 into:

𝑃𝛼 = {𝑝 ∈ 𝑃 | 𝑝 = 𝛼} (27)

𝑃mid = {𝑝 ∈ 𝑃 | 𝛼 < 𝑝 ≤ 𝛽} (28)

𝑃rest = (𝑃 \ 𝑃𝛼) \ 𝑃mid (29)

Note that these are multi-sets where each (1D) point inherits its label in 𝑃 .

Proposition 4. |𝑃mid | < |𝑃 |/2.

Proof. We argue that 𝑃mid has less than |𝑃 |/4 elements of label 1. To see why, assume that 𝑃 has at

least |𝑃 |/4 elements in (𝛼, 𝛽] having label 1. Thus, err𝑃 (ℎ𝛽) ≥ |𝑃 |/4, which together with (24) tells us

𝐺1(ℎ𝛽) ≥ |𝑃 | (1
4
− 𝜖

64
), contradicting the definition of 𝛽 .

Similarly, we argue that 𝑃mid has less than |𝑃 |/4 elements of label −1. To see why, assume that 𝑃 has

at least |𝑃 |/4 elements in (𝛼, 𝛽] having label −1. Thus, err𝑃 (ℎ𝛼) ≥ |𝑃 |/4, which together with (24) tells

us 𝐺1(ℎ𝛼) ≥ |𝑃 | (1
4
− 𝜖

64
), contradicting the definition of 𝛼 . □

We will construct (again in Section 3.4) another function 𝐺2 : Hmon → R fulfilling two requirements:

• G2-1: 𝐺2 approximates err𝑃rest up to absolute error 𝜖 |𝑃rest |/64, namely, for any ℎ ∈ Hmon

|𝐺2(ℎ) − err𝑃rest (ℎ) | ≤ 𝜖 |𝑃rest |/64; (30)

• G2-2: for any 𝜏 ∈ [𝛼, 𝛽], it holds that

𝐺2(ℎ𝜏) = 𝐺2(ℎ𝛽) . (31)

By solving Problem 2 on 𝑃𝛼 using the solution in Section 3.1 and on 𝑃mid recursively, we obtain functions

𝐹𝛼 : Hmon → R and 𝐹mid : Hmon → R such that every ℎ ∈ Hmon satisfies (32)-(35):

|𝐹𝛼 (ℎ) − err𝑃𝛼 (ℎ) | ≤ 𝜖 |𝑃𝛼 |/64 (32)

|𝐹mid (ℎ) − err𝑃mid (ℎ) | ≤ 𝜖 |𝑃mid |/64 (33)

err𝑃𝛼 (ℎ) ·
(
1 − 𝜖

4

)
+ Δ𝛼 ≤ 𝐹𝛼 (ℎ) ≤ err𝑃𝛼 (ℎ) ·

(
1 + 𝜖

4

)
+ Δ𝛼 (34)

err𝑃mid (ℎ) ·
(
1 − 𝜖

4

)
+ Δmid ≤ 𝐹mid (ℎ) ≤ err𝑃mid (ℎ) ·

(
1 + 𝜖

4

)
+ Δmid (35)

where Δ𝛼 and Δmid are (unknown) real values such that

|Δ𝛼 | ≤ 𝜖 |𝑃𝛼 |/64 (36)

|Δmid | ≤ 𝜖 |𝑃mid |/64 (37)

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:20 • Yufei Tao

The target function 𝐹 for Problem 2 can now be finalized as

𝐹 (ℎ) = 𝐺2(ℎ) + 𝐹𝛼 (ℎ) + 𝐹mid (ℎ) . (38)

3.3 Correctness of the Framework
Next, we prove that the above framework always produces a function 𝐹 obeying (19)-(21).

3.3.1 When 𝐺1 Is Consistently Large. In this scenario, the constructed 𝐹 is given in (26). We will show

that 𝐹 satisfies (19) and (20) with Δ = 0. Note that this choice of Δ trivially fulfills (21).

Proof of (19). This directly follows from (24) and (26).

Proof of (20). As 𝐺1 is consistently large, we can first apply (24) and then (25) to derive

err𝑃 (ℎ) ≥ 𝐺1(ℎ) −
𝜖 |𝑃 |
64

≥ |𝑃 |
4

− 𝜖 |𝑃 |
64

− 𝜖 |𝑃 |
64

≥ 14|𝑃 |
64

(39)

where the last step used 𝜖 ≤ 1. Applying (24) and then (39) yields

|𝐺1(ℎ) − err𝑃 (ℎ) | ≤
𝜖 |𝑃 |
64

≤ 𝜖

64

· 64 · err𝑃 (ℎ)
14

<
𝜖 · err𝑃 (ℎ)

4

which leads to

err𝑃 (ℎ) · (1 − 𝜖/4) ≤ 𝐹 (ℎ) ≤ err𝑃 (ℎ) · (1 + 𝜖/4) .

Thus, (20) holds with Δ = 0.

3.3.2 When 𝐺1 Is Not Consistently Large. Inductively, assuming that (33), (35), and (37) hold on 𝑃mid ,

we will show that the function 𝐹 produced in (38) satisfies (19)-(21) with

Δ = Δ𝛼 + Δmid +𝐺2(ℎ𝛽) − err𝑃rest (ℎ𝛽) . (40)

Proof of (19). For any ℎ ∈ Hmon, it holds that

err𝑃 (ℎ) = err𝑃𝛼 (ℎ) + err𝑃mid (ℎ) + err𝑃rest (ℎ) . (41)

Combining the above with (38) gives:

|𝐹 (ℎ) − err𝑃 (ℎ) | ≤ |𝐹𝛼 (ℎ) − err𝑃𝛼 (ℎ) | + |𝐹mid (ℎ) − err𝑃mid (ℎ) | + |𝐺2(ℎ) − err𝑃rest (ℎ) |

(by (30), (32), and (33)) ≤ 𝜖 |𝑃𝛼 |
64

+ 𝜖 |𝑃mid |
64

+ 𝜖 |𝑃rest |
64

≤ 𝜖 |𝑃 |
64

where the last step used the fact that 𝑃𝛼 , 𝑃mid , and 𝑃rest decompose 𝑃 ; see (27)-(29).

Proof of (21). From (30), (36), (37), and (40), we know

|Δ| = |Δ𝛼 + Δmid +𝐺2(ℎ𝛽) − err𝑃rest (ℎ𝛽) | ≤
𝜖 |𝑃𝛼 |
64

+ 𝜖 |𝑃mid |
64

+ 𝜖 |𝑃rest |
64

≤ 𝜖 |𝑃 |
64

. (42)

Proof of (20).We will prove that 𝐹 (ℎ𝜏) satisfies (20) for all 𝜏 ∈ R in two separate lemmas.

Lemma 8. The requirement (20) is fulfilled when 𝜏 < 𝛼 or 𝜏 > 𝛽 .

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:21

Proof. By the definitions of 𝛼 and 𝛽 , we have 𝐺1(ℎ𝜏) ≥ |𝑃 | (1
4
− 𝜖

64
) when 𝜏 < 𝛼 or 𝜏 > 𝛽 . Hence, by

the same derivation in (39), we obtain err𝑃 (ℎ𝜏) ≥ 14

64
|𝑃 |. Combining this with (42) yields

𝜖 · err𝑃 (ℎ𝜏)
4

+ Δ ≥ 𝜖

4

· 14|𝑃 |
64

− 𝜖 |𝑃 |
64

=
10𝜖 |𝑃 |
256

.

As proved earlier, 𝐹 satisfies (19), which tells us

𝐹 (ℎ𝜏) − err𝑃 (ℎ𝜏) ≤
𝜖 |𝑃 |
64

<
10𝜖 |𝑃 |
256

≤ 𝜖 · err𝑃 (ℎ𝜏)
4

+ Δ. (43)

Similarly, from err𝑃 (ℎ𝜏) ≥ 14

64
|𝑃 | and (42), we know

𝜖 · err𝑃 (ℎ𝜏)
4

− Δ ≥ 𝜖

4

· 14|𝑃 |
64

− 𝜖 |𝑃 |
64

=
10𝜖 |𝑃 |
256

.

Hence, (19) tells us

err𝑃 (ℎ𝜏) − 𝐹 (ℎ𝜏) ≤
𝜖 |𝑃 |
64

<
10𝜖 |𝑃 |
256

≤ 𝜖 · err𝑃 (ℎ𝜏)
4

− Δ. (44)

The correctness of (20) now follows from (43) and (44). □

Lemma 9. (20) holds when 𝛼 ≤ 𝜏 ≤ 𝛽 .

Proof. For any 𝜏 ∈ [𝛼, 𝛽], we have
err𝑃rest (ℎ𝜏) = err𝑃rest (ℎ𝛽) (45)

because 𝑃rest has no element in [𝛼, 𝛽]. By requirement G2-2 (see Section 3.2.2), 𝐺2(ℎ𝜏) = 𝐺2(ℎ𝛽) for all
𝜏 ∈ [𝛼, 𝛽]. This, together with (38), yields

𝐹 (ℎ𝜏) = 𝐹𝛼 (ℎ𝜏) + 𝐹mid (ℎ𝜏) +𝐺2(ℎ𝛽) . (46)

We can thus derive

err𝑃 (ℎ𝜏) (1 + 𝜖/4) + Δ

(by (41) and (45)) = (err𝑃𝛼 (ℎ𝜏) + err𝑃mid (ℎ𝜏) + err𝑃rest (ℎ𝛽)) (1 + 𝜖/4) + Δ

≥ (err𝑃𝛼 (ℎ𝜏) + err𝑃mid (ℎ𝜏)) (1 + 𝜖/4) + err𝑃rest (ℎ𝛽) + Δ

(by (40)) = (err𝑃𝛼 (ℎ𝜏) + err𝑃mid (ℎ𝜏)) (1 + 𝜖/4) + Δ𝛼 + Δmid +𝐺2(ℎ𝛽)
(by (34) and (35)) ≥ 𝐹𝛼 (ℎ𝜏) + 𝐹mid (ℎ𝜏) +𝐺2(ℎ𝛽)

(by (46)) = 𝐹 (ℎ𝜏) .
Similarly,

err𝑃 (ℎ𝜏) (1 − 𝜖/4) + Δ

(by (41) and (45)) = (err𝑃𝛼 (ℎ𝜏) + err𝑃mid (ℎ𝜏) + err𝑃rest (ℎ𝛽)) (1 − 𝜖/4) + Δ

≤ (err𝑃𝛼 (ℎ𝜏) + err𝑃mid (ℎ𝜏)) (1 − 𝜖/4) + err𝑃rest (ℎ𝛽) + Δ

(by (40)) = (err𝑃𝛼 (ℎ𝜏) + err𝑃mid (ℎ𝜏)) (1 − 𝜖/4) + Δ𝛼 + Δmid +𝐺2(ℎ𝛽)
(by (34) and (35)) ≤ 𝐹𝛼 (ℎ𝜏) + 𝐹mid (ℎ𝜏) +𝐺2(ℎ𝛽) = 𝐹 (ℎ𝜏) .

This completes the proof. □

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:22 • Yufei Tao

3.4 A Concrete Algorithm for Problem 2
Instantiating our framework in Section 3.2 into an actual algorithm requires constructing the function

𝐹 in Section 3.1, the function𝐺1 in Section 3.2, and the function𝐺2 in Section 3.2.2. We will explain how

to achieve those purposes in this subsection. In doing so, we will factor in the consideration that the

whole framework needs to succeed with probability at least 1 − 𝛿 . Denote by ℓ the number of recursion

levels in our framework; the value of ℓ is 𝑂 (log𝑛) due to Proposition 4.

Constructing 𝑮1 and 𝑮2. Recall that both 𝐺1 and 𝐺2 map Hmon to R. Although Hmon has an infinite

size, there exists a finite set of “effective” classifiers:

Hmon(𝑃) = {ℎ𝜏 | 𝜏 ∈ 𝑃 or 𝜏 = −∞}.

The size of |Hmon(𝑃) | is at most |𝑃 | + 1. Every monotone classifier has the same error on 𝑃 as one of the

classifiers in Hmon(𝑃).
To build 𝐺1, uniformly sample with replacement a set 𝑆1 of 𝑂 (1

𝜖2
log

|𝑃 |ℓ
𝛿
) elements from 𝑃 . For each

ℎ ∈ Hmon, define 𝐺1(ℎ) as

𝐺1(ℎ) =
|𝑃 |
|𝑆1 |

· err𝑆1 (ℎ). (47)

By the discussion in Appendix A, for each ℎ ∈ Hmon(𝑃), the value𝐺1(ℎ) satisfies (24) with probability at

least 1− 𝛿
3ℓ · (|𝑃 |+1) . As |Hmon(𝑃) | = |𝑃 | + 1, the function𝐺1 given in (47) satisfies (24) for all ℎ ∈ Hmon(𝑃)

— also for all ℎ ∈ Hmon — with probability at least 1 − 𝛿/(3ℓ).
To build 𝐺2, uniformly sample with replacement a set 𝑆2 of 𝑂 (1

𝜖2
log

|𝑃 |ℓ
𝛿
) elements from 𝑃rest , where

𝑃rest is given in (29). For each ℎ ∈ Hmon, define

𝐺2(ℎ) =
|𝑃rest |
|𝑆2 |

· err𝑆2 (ℎ) . (48)

An argument analogous to the one used earlier for 𝐺1 shows that 𝐺2 obeys (30) for all ℎ ∈ Hmon with

probability at least 1 − 𝛿/(3ℓ). 𝐺2 fulfills requirement G2-2 because 𝑆2 has no element in [𝛼, 𝛽].
Constructing the Function 𝑭 in Section 3.1. In our framework, the method in Section 3.1 is applied

is to solve Problem 2 on 𝑃𝛼 — defined in (27) — whose goal is to obtain a function 𝐹𝛼 satisfying (32). To

build 𝐹𝛼 (i.e., the function 𝐹 in Section 3.1 when 𝑃 = 𝑃𝛼), uniformly sample with replacement a set 𝑆𝛼

of 𝑂 (1

𝜖2
log

|𝑃 |ℓ
𝛿
) elements from 𝑃𝛼 . For each ℎ ∈ Hmon, define

𝐹𝛼 (ℎ) =
|𝑃𝛼 |
|𝑆𝛼 |

· err𝑆𝛼 (ℎ) . (49)

It satisfies (32) for all ℎ ∈ Hmon with probability at least 1 − 𝛿/(3ℓ).

Putting All Levels Together. In summary, at each recursion level, by probing 𝑂 (1

𝜖2
log

|𝑃 |ℓ
𝛿
) elements

we can build the desired functions 𝐺1, 𝐺2, and 𝐹𝛼 with probability at least 1 − 𝛿/ℓ . As there are ℓ levels,
the overall cost is 𝑂 (ℓ

𝜖2
log

𝑛
𝛿
) = 𝑂 (log𝑛

𝜖2
· log 𝑛

𝛿
) and we solve Problem 2 with probability at least 1 − 𝛿 .

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:23

3.5 A One-Dimensional Relative-Comparison Coreset
We are now ready to prove Theorem 6 for 𝑑 = 1. Let us examine our algorithm (combining Sections 3.1,

3.2, and 3.4) again and construct a coreset 𝑍 along the way.

If |𝑃 | = 1, our algorithm probes the only element 𝑝 ∈ 𝑃 . Accordingly, we set 𝑍 = 𝑃 and define

weight (𝑝) = 1. When |𝑃 | ≥ 2, our algorithm acts differently in two scenarios.

• If function 𝐺1 is consistently large, the target function 𝐹 is decided in (26). In this case, we

add to 𝑍 the entire sample set 𝑆1 described in Section 3.4; for each element 𝑝 ∈ 𝑆1, define

weight (𝑝) = |𝑃 |/|𝑆1 |.
• Otherwise, the function 𝐹 is decided in (38), where function 𝐹𝛼 is obtained from 𝑃𝛼 and function

𝐹mid is recursively obtained from 𝑃mid . In this case, we first add to 𝑍 the entire sample set 𝑆2
described in Section 3.4; for each element 𝑝 ∈ 𝑆2, define weight (𝑝) = |𝑃rest |/|𝑆2 |. Then, we
add to 𝑍 the entire sample set 𝑆𝛼 described in Section 3.4; for each element 𝑝 ∈ 𝑆𝛼 , define

weight (𝑝) = |𝑃𝛼 |/|𝑆𝛼 |. The recursion on 𝑃mid returns a coreset 𝑍mid ⊆ 𝑃mid . We finish by adding

𝑍mid to 𝑍 .

The following pseudocode summarizes the above steps.

algorithm Build-Coreset (𝑃)
1. if |𝑃 | = 1 then probe the only element 𝑝 ∈ 𝑃 and set 𝑍 = 𝑃 with weight (𝑝) = 1

2. else probe the sample set 𝑆1 described in Section 3.4 /* this defines 𝐺1; see (47) */

3. if 𝐺1 is consistently large then
4. set 𝑍 = 𝑆1 with weight (𝑝) = |𝑃 |/|𝑆1 | for each 𝑝 ∈ 𝑆1

else
5. probe the sample set 𝑆2 described in Section 3.4 /* this defines 𝐺2; see (48) */

6. set 𝑍 = 𝑆2 with weight (𝑝) = |𝑃rest |/|𝑆2 | for each 𝑝 ∈ 𝑆2
7. probe the sample set 𝑆𝛼 described in Section 3.4 /* this defines 𝐹𝛼 ; see (49) */

8. set weight (𝑝) = |𝑃𝛼 |/|𝑆𝛼 | for each 𝑝 ∈ 𝑆𝛼 and then add 𝑆𝛼 to 𝑍

9. 𝑍mid = Build-Coreset (𝑃mid) and add 𝑍mid to 𝑍

10. return 𝑍

The discussion in Section 3.4 asserts that Build-Coreset returns a set 𝑍 of 𝑂 (log𝑛
𝜖2

· log 𝑛
𝛿
) elements.

Lemma 10. The function 𝐹 we return for Problem 2 satisfies 𝐹 (ℎ) = w-err𝑍 (ℎ) for every ℎ ∈ Hmon.

Proof. The claim obviously holds when |𝑃 | = 1. Assuming that the claim is true for all 𝑃 with at

most𝑚 ≥ 1 elements, next we prove the correctness for |𝑃 | = 𝑚 + 1. When 𝐺1 is consistently large,

𝐹 (ℎ) = 𝐺1(ℎ) and 𝑍 is simply the set 𝑆1 in Section 3.4. Hence:

𝐹 (ℎ) = 𝐺1(ℎ) =
|𝑃 |
|𝑆1 |

· err𝑆1 (ℎ) = w-err𝑆1 (ℎ) = w-err𝑍 (ℎ) .

When 𝐺1 is not consistently large, the algorithm recursively processes 𝑃mid whose size is strictly

smaller than |𝑃 | (Proposition 4). Suppose that the recursion returns a function 𝐹mid and a coreset 𝑍mid .

By the inductive assumption, 𝐹mid (ℎ) = w-err𝑍mid (ℎ). Recall that 𝐹 (ℎ) = 𝐺2(ℎ) + 𝐹𝛼 (ℎ) + 𝐹mid (ℎ) (see
(38)) and the coreset constructed for 𝑃 is 𝑍 = 𝑆𝛼 ∪ 𝑆2 ∪𝑍mid (review 𝑆𝛼 and 𝑆2 from Section 3.4). Hence:

𝐹 (ℎ) = 𝐺2(ℎ) + 𝐹𝛼 (ℎ) + 𝐹mid (ℎ) =
|𝑃rest |
|𝑆2 |

· err𝑆2 (ℎ) +
|𝑃𝛼 |
|𝑆𝛼 |

· err𝑆𝛼 (ℎ) + 𝐹mid (ℎ)

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:24 • Yufei Tao

= w-err𝑆2 (ℎ) + w-err𝑆𝛼 (ℎ) + w-err𝑍mid (ℎ) = w-err𝑍 (ℎ).

This completes the proof. □

We therefore conclude that Theorem 6 holds for 𝑑 = 1.

3.6 Arbitrary Dimensionalities
This subsection will prove Theorem 6 for any 𝑑 ≥ 2. As before, denote by 𝑛 and 𝑤 the size and the

width of the input 𝑃 , respectively. We start by computing a chain decomposition of 𝑃 with𝑤 chains:

𝐶1,𝐶2, ...,𝐶𝑤 ; as explained in Section 2.2, such a chain decomposition definitely exists. It can be computed

in time polynomial in 𝑑 and 𝑛 (see [43]) without any probing.

For every 𝑖 ∈ [𝑤], we will compute a subset 𝑍𝑖 ⊆ 𝐶𝑖 where every element 𝑝 ∈ 𝑍𝑖 has its label revealed
and carries a weight weight (𝑝) > 0. The set 𝑍𝑖 ensures

err𝐶𝑖
(ℎ) ·

(
1 − 𝜖

4

)
− Δ𝑖 ≤ w-err𝑍𝑖

(ℎ) ≤ err𝐶𝑖
(ℎ) ·

(
1 − 𝜖

4

)
+ Δ𝑖 (50)

for every ℎ ∈ Hmon, where Δ𝑖 is some unknown real value common to all ℎ ∈ Hmon. Once this is done,

we can obtain

𝑍 =

𝑤⋃
𝑖=1

𝑍𝑖 . (51)

It must hold for every ℎ ∈ Hmon that

err𝑃 (ℎ) ·
(
1 − 𝜖

4

)
− Δ ≤ w-err𝑍 (ℎ) ≤ err𝑃 (ℎ) ·

(
1 − 𝜖

4

)
+ Δ (52)

where

Δ =

𝑤∑︁
𝑖=1

Δ𝑖

remains unknown.

Finding 𝑍𝑖 for an arbitrary 𝑖 ∈ [𝑤] is a 1D problem. To explain, let us sort the elements of 𝐶𝑖 in

“ascending” order (i.e., if 𝑝 precedes 𝑞 in the ordering, then 𝑝 ⪯ 𝑞). A monotone classifier ℎ maps only a

prefix of the ordering to −1; hence, as far as 𝐶𝑖 is concerned, we can regard ℎ as a 1D classifier of the

form (23). Earlier, we have proved that Theorem 6 is correct for 𝑑 = 1. We can thus apply the theorem

to produce the desired 𝑍𝑖 with probability at least 1 − 𝛿
𝑤
by probing 𝑂 (1

𝜖2
· Log |𝐶𝑖 | · log(𝑤𝑛/𝛿)) =

𝑂 (log(𝑛/𝛿)
𝜖2

Log |𝐶𝑖 |) elements from 𝐶𝑖 . This 𝑍𝑖 has size 𝑂 (log(𝑛/𝛿)
𝜖2

Log |𝐶𝑖 |).
Therefore, with probability at least 1 − 1/𝛿 , the aforementioned 𝑍1, ..., 𝑍𝑤 can be produced with a

total probing cost of

𝑂

(
log(𝑛/𝛿)

𝜖2

𝑤∑︁
𝑖=1

log |𝐶𝑖 |
)

= 𝑂

(
log(𝑛/𝛿)

𝜖2
·𝑤 Log

𝑛

𝑤

)
where the derivation used the fact

∑𝑤
𝑖=1 |𝐶𝑖 | = 𝑛. The same bound also applies to the size of 𝑍 in (51).

This completes the whole proof of Theorem 6.

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:25

4 Optimal Monotone Classification Needs Ω(𝑛) Probes
This section will focus on Problem 1 under 𝜖 = 0, namely, the objective is to find an optimal monotone

classifier. Naively, we can achieve the objective by probing all the elements in the input 𝑃 . We will

prove that this is already the best approach up to a constant factor, as stated in the theorem below.

Theorem 11. For Problem 1, any algorithm promising to find an optimal classifier with probability over
2/3 must probe Ω(𝑛) labels in expectation, where 𝑛 is the number of elements in the input 𝑃 . This is true
even if the dimensionality 𝑑 is 1, and the algorithm knows the optimal error 𝑘∗ of 𝑃 .

The rest of the section serves as a proof of the theorem. Assuming 𝑛 to be an even number, we

construct a family P of 𝑛 one-dimensional inputs. Every input of P has 𝑛 elements, which are 1, 2, ...,

𝑛 (every number represents a 1D point). The inputs of P, however, differ in their label assignments.

Specifically, every integer 𝑖 ∈ [𝑛/2] defines two inputs in P:

• 𝑃−1(𝑖), where every odd (resp., even) number in [𝑛] carries label 1 (resp., −1). The only exception

is the number 2𝑖 − 1, which is assigned label −1;
• 𝑃1(𝑖), where every odd (resp., even) number in [𝑛] carries label 1 (resp., −1). The only exception

is the number 2𝑖 , which is assigned label 1.

We will refer to 𝑃−1(𝑖) and 𝑃1(𝑖) as a (−1)-input and a 1-input, respectively.
The constructed family P = {𝑃−1(1), 𝑃−1(2), ..., 𝑃−1(𝑛/2), 𝑃1(1), 𝑃1(2), ..., 𝑃1(𝑛/2)} can also be under-

stood in an alternative manner. Chop the elements 1, 2, ..., 𝑛 into 𝑛/2 pairs (1, 2), (3, 4), ..., (𝑛 − 1, 𝑛). In
a normal pair (𝑥 − 1, 𝑥), elements 𝑥 − 1 and 𝑥 carry labels 1 and −1, respectively. Each input 𝑃 ∈ P
contains exactly one anomaly pair (𝑥 − 1, 𝑥). If 𝑃 is a (−1)-input, both 𝑥 − 1 and 𝑥 are assigned label

−1; otherwise, they are assigned label 1.

For each input 𝑃 ∈ P, an optimal monotone classifier has error 𝑘∗ = 𝑛/2 − 1. Indeed, every monotone

classifier has to misclassify at least one element in each normal pair of 𝑃 . On the other hand, the error

𝑛/2 − 1 is attainable by mapping all the elements to 1 for a 1-input or −1 for a (−1)-input.
We say that an algorithmA for Problem 1 errs on an input 𝑃 ∈ P ifA fails to find an optimal classifier

for 𝑃 . Denote by cost𝑃 (A) the number of probes performed by A when executed on 𝑃 ; note that this is

a random variable if A is randomized. Define

family-err (A) =
∑︁
𝑃∈P

Pr[A errs on 𝑃]

family-cost (A) =
∑︁
𝑃∈P

cost𝑃 (A).

If A is a deterministic algorithm, then Pr[A errs on 𝑃] is either 0 or 1 for each 𝑃 ∈ P. Section 4.1 will

prove the following lemma for such algorithms.

Lemma 12. Fix any non-negative constant 𝑐 < 1. When 𝑛 ≥ max{4, 2/𝑐}, the following holds for any
deterministic algorithm Adet : if family-err (Adet) ≤ 𝑐𝑛/2, then family-cost (Adet) = Ω(𝑛2).

We can utilize the lemma to a hardness result for randomized algorithms.

Corollary 13. When 𝑛 ≥ 4, the following holds for any randomized algorithm A: if family-err (A) <
𝑛/3, then E[family-cost (A)] = Ω(𝑛2).

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:26 • Yufei Tao

Proof. A randomized algorithm degenerates into a deterministic algorithm when all the random

bits are fixed. Hence, we can treat A as a random variable sampled from a family A of deterministic

algorithms, each sampled possibly with a different probability. We call an algorithm Adet ∈ A accurate
if family-err (Adet) ≤ (2/5)𝑛. Define Aacc as the set of accurate algorithms in A.

We argue that Pr[A ∈ Aacc] > 1/6. Indeed, if Pr[A ∉ Aacc] ≥ 5/6, then

family-err (A) =
∑︁

Adet ∈A
family-err (Adet) · Pr[A = Adet]

≥
∑︁

Adet ∈Aacc

family-err (Adet) · Pr[A = Adet]

≥ 2𝑛

5

∑︁
Adet ∈Aacc

Pr[A = Adet]

=
2𝑛

5

· Pr[A ∈ Aacc] ≥
2𝑛

5

· 5
6

= 𝑛/3

contradicting the definition of A.

By Lemma 12, every accurateAdet must satisfy family-cost (𝐴det) = Ω(𝑛2). Thus,E[family-cost (A)] ≥
Ω(𝑛2) · Pr[A ∈ Aacc] = Ω(𝑛2). □

The corollary implies Theorem 11. Indeed, if A guarantees finding an optimal classifier with prob-

ability over 2/3 on any input, then family-err (A) < |P|/3 = 𝑛/3. Thus, Corollary 13 tells us that

E[family-cost (A)] = Ω(𝑛2) when 𝑛 ≥ 4. This means that the expected cost of A is Ω(𝑛) on at least

one input in P (recall that P has 𝑛 inputs).

4.1 Proof of Lemma 12
We start with a crucial property of the family P constructed.

Proposition 5. For each 𝑖 ∈ [𝑛/2], no monotone classifier can be optimal for both 𝑃−1(𝑖) and 𝑃1(𝑖).

Proof. As mentioned, the optimal error is 𝑛/2 − 1 for each input of P. Recall that a 1D monotone

classifier ℎ has the form (23), which is parameterized by a value 𝜏 ; next, we will denote the classifier as

ℎ𝜏 . We argue that no ℎ𝜏 is optimal for both 𝑃−1(𝑖) and 𝑃1(𝑖). For this purpose, we examine all possible

scenarios.

• Case 𝜏 < 2𝑖 − 1: on 𝑃−1(𝑖), ℎ𝜏 misclassifies both 2𝑖 − 1 and 2𝑖 and has error 𝑛/2 + 1.

• Case 𝜏 = 2𝑖 − 1: on 𝑃−1(𝑖), ℎ𝜏 misclassifies 2𝑖 and has error 𝑛/2.
• Case 𝜏 ≥ 2𝑖: on 𝑃1(𝑖), ℎ𝜏 misclassifies both 2𝑖 − 1 and 2𝑖 and has error 𝑛/2 + 1.

Thus, regardless of 𝜏 , the error of ℎ𝜏 is non-optimal on either 𝑃−1(𝑖) or 𝑃1(𝑖). □

To simplify the proof of Lemma 12, we strengthen the power of Adet by giving it certain “free” labels.

Specifically, every time Adet probes an element of some pair (2𝑖 − 1, 2𝑖), where 𝑖 ∈ [𝑛/2], we reveal the
label for the other element (of the pair) voluntarily. Henceforth, Adet is said to “probe pair 𝑖” if Adet
probes either 2𝑖 − 1 or 2𝑖 . If Lemma 12 holds even on such an “empowered” Adet , it must hold on the

original Adet because an empowered algorithm can choose to ignore the free information.

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:27

We consider, w.l.o.g., that Adet terminates immediately after probing an anomaly pair, i.e., catching

the only pair where the two elements share the same label. Once the anomaly pair is found, Adet can

output an optimal classifier immediately because the labels in all the normal pairs are fixed. As a result,

we can model Adet as a procedure that performs probing according to a pre-determined sequence: pair

𝑥1, pair 𝑥2, ..., pair 𝑥𝑡 up to some integer 𝑡 ∈ [0, 𝑛/2]. Specifically, for each 𝑗 ∈ [𝑡 − 1], if pair 𝑥 𝑗 is an
anomaly, the algorithm terminates after the probing of 𝑥 𝑗 ; otherwise, it moves on to pair 𝑥 𝑗+1. If all the 𝑡
pairs have been probed but no anomaly is found, Adet always outputs a fixed classifier, denoted as ℎdet .

As Adet never probes pair 𝑖 for

𝑖 ∈ {1, 2, ..., 𝑛/2} \ {𝑥1, 𝑥2, ..., 𝑥𝑡 } (53)

the output of Adet must be ℎdet on both 𝑃−1(𝑖) and 𝑃1(𝑖). Proposition 5 asserts that ℎdet cannot be

optimal for both 𝑃−1(𝑖) and 𝑃1(𝑖), meaning that Adet has to err on either 𝑃−1(𝑖) or 𝑃1(𝑖), which gives

family-err (Adet) ≥ 𝑛/2 − 𝑡 . (54)

Regarding its cost, observe that Adet performs 𝑡 probes for 𝑃−1(𝑖) and 𝑃1(𝑖) of every 𝑖 satisfying (53),

but 𝑗 ∈ [𝑡] probes for 𝑃−1(𝑥 𝑗) and 𝑃1(𝑥 𝑗). Hence

family-cost (Adet) = 2𝑡 · (𝑛/2 − 𝑡) + 2

𝑡∑︁
𝑗=1

𝑗 = 𝑛𝑡 − 𝑡2 − 𝑡 . (55)

If family-err (Adet) needs to be at most 𝑐𝑛/2 (as demanded in Lemma 12), then by (54) 𝑡 must be at

least
𝑛
2
(1 − 𝑐). On the other hand, for 𝑡 ≥ 𝑛

2
(1 − 𝑐) and 𝑛 ≥ 2/𝑐 , we have

(55) ≥ 𝑛2

4

(1 − 𝑐2) − 𝑛

2

(1 − 𝑐)

which is at least 𝑛2(1 − 𝑐2)/8 for 𝑛 ≥ 4. This completes the proof of Lemma 12.

5 A Lower Bound for Constant Approximation Ratios
We now proceed to study the hardness of approximation for Problem 1. This section’s main result is:

Theorem 14. Let 𝑛′,𝑤 ′, 𝑘 , and 𝑐 be arbitrary integers satisfying 𝑛′ ≥ 2,𝑤 ′ ≥ 1, 𝑘 ≥ 0, 𝑐 ≥ 1, and 𝑛′ is
a multiple of𝑤 ′. Set

𝑛 = 𝑛′ + 2𝑘 + 2𝑐𝑘𝑛′ (56)

𝑤 = 𝑤 ′ + 1𝑘≥1. (57)

For Problem 1, we can construct a family P of inputs where each input has size 𝑛, width𝑤 , and optimal
error 𝑘∗ = 𝑘 , such that any randomized algorithm, which guarantees an expected error at most 𝑐𝑘∗, must
entail expected cost Ω(𝑤 ′

Log
𝑛′

𝑤′) on at least one input of P. Here, Ω(.) hides a constant that does not
depend on 𝑛′,𝑤 ′, 𝑘 , and 𝑐 . The claim holds true even if the algorithm knows the value of 𝑘∗.

The theorem is particularly useful when the approximation ratio 𝑐 is a constant. To see this, first note

that when 𝑘 = 0 (the realizable case), the theorem gives a lower bound of Ω(𝑤 Log
𝑛
𝑤
) on the expected

cost. For 𝑘 ≥ 1 (the non-realizable case), we always have 𝑛′ + 2𝑘 ≤ 𝑛/2, because of which
𝑛′

𝑤 ′ =
𝑛 − (𝑛′ + 2𝑘)

2𝑐𝑘𝑤 ′ ≥ 𝑛

4𝑐𝑘𝑤
.

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:28 • Yufei Tao

. . .

. .
.

. .
.

. .
.

. .
.

Fig. 4. A hard realizable input for Problem 1:𝑤 boxes each with 𝑛/𝑤 points

In this case, Theorem 14 implies a lower bound of Ω(𝑤 Log
𝑛

𝑘∗𝑤) on the expected cost when 𝑤 is

sufficiently large.

We will first prove the theorem for 𝑘 = 0 in Section 5.1 and then for 𝑘 ≥ 1 in Section 5.2.

5.1 The Realizable Case
We use the term box to refer to an axis-parallel rectangle with a positive area in R2

. The main diagonal
of the box is the segment connecting its bottom-left and top-right corners. We say that two boxes 𝐵1
and 𝐵2 are independent from each other if no point in 𝐵1 dominates any point in 𝐵2 and vice versa.

When 𝑘 = 0, an algorithm that guarantees an expected error at most 𝑐𝑘∗ = 0 must always find an

optimal classifier. To prove Theorem 14 in this case, we construct hard inputs as follows. Let 𝑛′ ≥ 2 and

𝑤 ′ ≥ 1 be integers such that 𝑛′ is a multiple of𝑤 ′
. Let 𝐵1, 𝐵2, ..., 𝐵𝑤′ be arbitrary mutually independent

boxes. For each 𝑖 ∈ [𝑤 ′], place 𝑛′/𝑤 ′
points on the main diagonal of 𝐵𝑖 , making sure that they are at

distinct locations and no point lies at a corner of 𝐵𝑖 . This yields a set 𝑃 of 𝑛′ points that has width
𝑤 ′

; see Figure 4 for an illustration. Label assignment is done for each box independently, subject to

the constraint that 𝑃 is monotone. In each box, there are 1 + 𝑛′

𝑤′ ways to do the assignment: for each

𝑖 ∈ [0, 𝑛′

𝑤′], assign label −1 to the 𝑖 lowest points in the box and 1 to the rest. This gives a family P𝑛′,𝑤′

of (1 + 𝑛′

𝑤′)𝑤
′
labeled point sets, each of which serves as an input to Problem 1.

Recall from Section 1.1 that a deterministic algorithm Adet is a binary decision tree T . If Adet is

always correct for 𝑘 = 0, it must be able to distinguish all the inputs in P𝑛′,𝑤′ by returning a different

classifier for each input (no classifier is optimal for two inputs in P𝑛′,𝑤′). The number of leaves in T is

thus at least (1 + 𝑛′

𝑤′)𝑤
′
. The average cost of Adet — defined as the average of its costs on all the inputs

of P𝑛′,𝑤′ — equals the average depth of the leaves in T . A binary tree with at least (1 + 𝑛′

𝑤′)𝑤
′
leaves

must have an average depth of Ω(𝑤 ′
Log

𝑛′

𝑤′). Hence, Adet must have average cost Ω(𝑤 Log
𝑛
𝑤
).

By Yao’s minimax theorem [37], any randomized algorithm that is always correct for 𝑘 = 0 must

entail Ω(𝑤 ′
Log

𝑛′

𝑤′) expected cost on at least one input of P𝑛′,𝑤′ , as claimed in Theorem 14 (for 𝑘 = 0).

5.2 The Non-Realizable Case
This subsection serves as a proof of Theorem 14 for 𝑘 ≥ 1.

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:29

pj (label −1)

pj+1 (label 1)

. .
.

. .
.

ck dummy points with label 1

ck dummy points with label −1

. . .

..
.

..
.

..
.

zoom-in

..
.

..
.

..
.

k points with label 1

k points with label −1

dummy box

(a) Dummy points in a non-dummy box (b) Dummy points in the dummy box

Fig. 5. Adding dummy points for a Las Vegas lower bound

Algorithms with Guessing Power. We first strengthen the power of a deterministic algorithm Adet .

As before, Adet is described by a binary decision tree T determined by the point locations in the input

𝑃 . Different from the decision tree in Section 1.1, however, there are two types of internal nodes:

• Probe node. This is the (only) type of internal nodes allowed in Section 1.1.

• Guess node. At such a node, Adet proposes a monotone classifier ℎ and asks an almighty guru

whether err𝑃 (ℎ) is at most a certain value fixed at this node. On a “yes” answer from the guru,

Adet descends to the left child, which must be a leaf returning ℎ. On a “no” answer, Adet branches

right and continues.

We charge one unit of cost to every probe or guess node. A randomized algorithm is still modeled as a

function that maps a random-bit sequence to a deterministic algorithm. Almighty gurus do not exist in

reality. However, a lower bound on such empowered algorithms must also hold on algorithms that use

probe nodes only.

Let𝑛′ ≥ 2 and𝑤 ′ ≥ 1 be arbitrary integers such that𝑛′ is a multiple of𝑤 ′
. The argument in Section 5.1

has essentially proved that any deterministic algorithm in the form of a binary decision tree must have

an average cost of Ω(𝑤 ′
Log

𝑛′

𝑤′) over the inputs of P𝑛′,𝑤′ . Hence, this is also true for a deterministic

algorithm with guess nodes. By Yao’s minimax theorem, any randomized algorithm with guess nodes

must incur Ω(𝑤 ′
Log

𝑛′

𝑤′) expected cost on at least one input of P(𝑛′,𝑤 ′) if it always returns an optimal

classifier on the inputs of P(𝑛′,𝑤 ′).
A Las Vegas Lower Bound. Let 𝑛′, 𝑘 ′, 𝑘, 𝑐, 𝑛, and𝑤 be as described in the statement of Theorem 14.

Denote by A a randomized algorithm (with guessing power) that, when executed on an input having

size 𝑛, width𝑤 , and optimal error 𝑘∗ = 𝑘 , guarantees

• returning a monotone classifier whose error on the input is at most 𝑐𝑘∗, and
• an expected cost at most 𝐽LV .

We will show that 𝐽LV = Ω(𝑤 ′
Log

𝑛′

𝑤′).
Given an input 𝑃 ′ ∈ P𝑛′,𝑤′ , we construct a set 𝑃 of labeled points in several steps. As the first step, add

all the points of 𝑃 ′ to 𝑃 . Recall that the points of 𝑃 ′ are inside𝑤 ′
boxes 𝐵1, 𝐵2, ..., 𝐵𝑤′ , each of which has

𝑛′/𝑤 ′
points; see Figure 4. For each 𝑖 ∈ [𝑤 ′], let 𝑝1, 𝑝2, ..., 𝑝𝑛′/𝑤′ be the points already in 𝐵𝑖 , sorted in

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:30 • Yufei Tao

ascending order of y-coordinate. For each 𝑗 ∈ [𝑛′

𝑤′ − 1], place 2𝑐𝑘 dummy points on the main diagonal

of 𝐵𝑖 between 𝑝 𝑗 and 𝑝 𝑗+1. Assign labels to those dummy points as follows:

• If label(𝑝 𝑗) = label(𝑝 𝑗+1), set the labels of all 2𝑐𝑘 dummy points to label(𝑝 𝑗).
• Otherwise, we must have label(𝑝 𝑗) = −1 and label(𝑝 𝑗+1) = 1 (because 𝑃 ′ is monotone); set the

labels of the 𝑐𝑘 lowest dummy points to −1 and the labels of the other dummy points to 1; see

Figure 5a.

Furthermore, add 𝑐𝑘 dummy points to 𝑃 between the bottom-left corner of 𝐵𝑖 and 𝑝1. Set their labels to

−1 if label(𝑝1) = −1, or 1 otherwise. Symmetrically, add to 𝑃 another 𝑐𝑘 dummy points between 𝑝𝑛′/𝑤′

and the top-right corner of 𝐵𝑖 . Set their labels to 1 if label(𝑝𝑛′/𝑤′) = 1, or −1 otherwise. Finally, create
a dummy box that is independent from all of 𝐵1, ..., 𝐵𝑛′/𝑤′ . Add 2𝑘 points to 𝑃 on the main diagonal

of this box, setting the labels of the 𝑘 lowest (resp., highest) points to 1 (resp., −1); see Figure 5b. This
finishes the construction of 𝑃 .

The set 𝑃 has 𝑛 = 𝑛′ + 2𝑘 + 2𝑐𝑘𝑛′ points (all at distinct locations) and width𝑤 = 𝑤 ′ + 1. Furthermore,

the optimal error 𝑘∗ of 𝑃 is 𝑘 because (i) any monotone classifier must misclassify at least 𝑘 points in

the dummy box, and (ii) error 𝑘 is attainable by the classifier that classifies all the points in 𝐵1, ..., 𝐵𝑛′/𝑤′

correctly and maps all the points in the dummy box to 1.

Let us apply the given algorithm A on 𝑃 and obtain its output classifier ℎ. We argue that ℎ must

correctly classify every non-dummy point 𝑝 ∈ 𝑃 (remember that such 𝑝 originated from 𝑃 ′). Otherwise,
suppose that label(𝑝) = −1 but ℎ(𝑝) = 1 for some non-dummy 𝑝 ∈ 𝑃 . By our construction, 𝑝 is

dominated by at least 𝑐𝑘 points of label −1. As ℎ maps all those 𝑐𝑘 points to 1, we know err𝑃 (ℎ) ≥ 𝑐𝑘 +1,
contradicting the fact that A guarantees an error at most 𝑐𝑘∗. A symmetric argument rules out the

possibility that label(𝑝) = 1 but ℎ(𝑝) = −1. We can thus return ℎ as an optimal classifier for 𝑃 ′.

It follows from our earlier lower bound on P(𝑛′,𝑤 ′) that 𝐽LV must be Ω(𝑤 ′
Log

𝑛′

𝑤′).
A Monte-Carlo Lower Bound. Again, let 𝑛′, 𝑘 ′, 𝑘, 𝑐, 𝑛, and𝑤 be as described in Theorem 14. Let A be

a randomized algorithm (with guessing power) that, when executed on an input 𝑃 with size 𝑛, width𝑤 ,

and optimal error 𝑘∗ = 𝑘 , always guarantees

• an expected error at most 𝑐𝑘 on 𝑃 and

• an expected cost at most 𝐽MC .

We will show that 𝐽MC = Ω(𝑤 ′
Log

𝑛′

𝑤′), which will complete the proof of Theorem 14.

With probability at least 1/2, the algorithm A must (i) return a monotone classifier whose error on

𝑃 is at most 4𝑐𝑘 and (ii) probe at most 4𝐽MC points. Otherwise, one of the following two events must

occur with probability at least 1/4:

• A outputs a classifier whose error on 𝑃 is over 4𝑐𝑘∗, or
• A probes more than 4𝐽MC points of 𝑃 .

However, this means that A either has an expected error higher than 𝑐𝑘∗ or incurs an expected cost

higher than 𝐽MC , contradicting its guarantees.

We can deploy A as a black box to design a randomized algorithm that probes 𝑂 (𝐽𝑀𝐶) points in
expectation and always returns a monotone classifier with an error at most 4𝑐𝑘∗ on 𝑃 . For this purpose,
run A until either it returns a monotone classifier ℎ or has probed 4𝐽𝑀𝐶 points. In the former situation,

we ask the almighty guru whether err𝑃 (ℎ) ≤ 4𝑐𝑘∗. If so, return ℎ. In all other situations (i.e., the guru

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:31

answers “no” or A does not terminate after 4𝐽𝑀𝐶 probes), we declare “failure” and start all over again.

After having failed ⌈log
2
𝑛⌉ times, we simply probe the entire 𝑃 and return an optimal monotone

classifier. Since each time we fail with probability at most 1/2, the expected probing cost is bounded by

©­«
⌈log

2
𝑛⌉∑︁

𝑖=0

4𝐽MC · (𝑖 + 1)
(
1

2

)𝑖ª®¬ + 1

𝑛
· 𝑛 = 𝑂 (𝐽𝑀𝐶)

noticing that the probability of failing ⌈log
2
𝑛⌉ times is at most 1/𝑛. By our earlier Las Vegas lower

bound, we conclude that 𝐽𝑀𝐶 = Ω(𝑤 ′
Log

𝑛′

𝑤′).

6 A Lower Bound for Arbitrary Approximation Ratios
We now continue our study on the approximation hardness of Problem 1 in the regime where 𝜖 can be

arbitrarily small. Our main result in this section is:

Theorem 15. Let 𝜖 be an arbitrary value satisfying 0 < 𝜖 ≤ 1/10. Fix any integers 𝑛 ≥ 1 and𝑤 ≥ 1

such that 𝑛 is a multiple of 𝑤 , and 𝑛 ≥ max{90, 𝑤
𝜖2
ln𝑛}. Suppose that A is an algorithm for Problem 1

under 𝑑 = 2 that guarantees an expected error of (1 + 𝜖)𝑘∗ on any input 𝑃 of size 𝑛 where 𝑘∗ is the optimal
error of 𝑃 . Then, the expected cost of A must be Ω(𝑤/𝜖2) on at least one input where𝑤 is the width of 𝑃 ,
and Ω(.) hides a constant that does not depend on 𝜖 , 𝑛,𝑤 , and 𝑐 .

The rest of the section serves as a proof of the theorem. Define

𝛾 = 9𝜖 (58)

𝜇1 = (1 − 𝛾)/2 (59)

𝜇2 = (1 + 𝛾)/2 (60)

𝑀 = ln(9/8) · (1 − 𝛾2)/𝛾2. (61)

Let A be an algorithm ensuring an expected cost at most𝑤𝑀/6 when executed on an input 𝑃 of size 𝑛

and width 𝑘 . Careful calculation shows that when 𝜖 ≤ 1/10,
𝑤𝑀

6

>
1

4200

𝑤

𝜖2
. (62)

Let 𝑟 (𝑃) represent the approximation ratio of the classifier ℎA output by A, namely,

𝑟 (𝑃) = err𝑃 (ℎA)/𝑘∗. (63)

Our goal is to prove that E[𝑟 (𝑃)] > 1 + 𝜖 , which along with (62) will then imply that Ω(𝑤/𝜖2) probes
are needed in expectation to guarantee an expected error of (1 + 𝜖)𝑘∗.
Let 𝑥1, 𝑥2, ..., 𝑥𝑤 be𝑤 distinct locations in R2

such that no location dominates another. Henceforth,

we will fix 𝑃 to be a multi-set of 𝑛 points where

• exactly 𝑛/𝑤 points are placed at location 𝑥𝑖 , for each 𝑖 ∈ [𝑤];
• every element of 𝑃 has a distinct ID.

The elements in 𝑃 do not carry labels yet. The random process described below stochastically generates

their labels and measures the cost and inaccuracy of A over the resulting 𝑃 :

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:32 • Yufei Tao

RP-1
1. 𝝁 = a𝑤-dimensional vector sampled from {𝜇1, 𝜇2}𝑚 uniformly at random

2. for every element 𝑝 ∈ 𝑃 do /* suppose that 𝑝 is at 𝑥𝑖 */

3. assign 𝑝 label 1 with probability 𝝁 [𝑖] or −1 with probability 1 − 𝝁 [𝑖]
4. ℎA = the monotone classifier output by algorithm A when executed on 𝑃 ;

Λ1 = the number of probes A performed

5. 𝑅1 = err𝑃 (ℎA)/𝑘∗ where 𝑘∗ is the optimal error of 𝑃

6. return (Λ1, 𝑅1)
Recall that A ensures E[Λ1] ≤ 𝑤𝑀/6. Our objective is to argue that 𝑅1 has a large expectation. We

will achieve the purpose by relating RP-1 to another random process:

RP-2
1. 𝝁 = a𝑤-dimensional vector sampled from {𝜇1, 𝜇2}𝑚 uniformly at random

/* now run A on 𝑃 */

2. while algorithm A still needs to perform a probe do
3. 𝑝 = the element probed by A (identified by ID) /* suppose that 𝑝 is at 𝑥𝑖 */

4. assign 𝑝 label 1 with probability 𝝁 [𝑖] or −1 with probability 1 − 𝝁 [𝑖]
5. ℎA = the monotone classifier output by A;

Λ2 = the number of probes A performed

6. for every element 𝑞 ∈ 𝑃 that has not been probed by A do /* suppose that 𝑞 is at 𝑥𝑖 */

7. assign 𝑞 label 1 with probability 𝝁 [𝑖] or −1 with probability 1 − 𝝁 [𝑖]
8. 𝑅2 = err𝑃 (ℎA)/𝑘∗ where 𝑘∗ is the optimal error of 𝑃

9. return (Λ2, 𝑅2)

Lemma 16. E[Λ1] = E[Λ2] and E[𝑅1] = E[𝑅2].

Proof. We will prove only E[𝑅1] = E[𝑅2] because an analogous (and simpler) argument shows

E[Λ1] = E[Λ2]. Let us first consider that A is a deterministic algorithm, i.e., a binary decision tree T .

Recall that each internal node of T is associated with an element (identified by ID) in 𝑃 that should be

probed when A is at this node. Each leaf of T is associated with a classifier that should be returned

when A is at this node. For each leaf node 𝑣 , denote by 𝜋𝑣 the path from the root of T to 𝑣 .

We have for each 𝑗 ∈ {1, 2}:

E[𝑅 𝑗] =
∑︁

leaf 𝑣 of T
Pr[A finishes at 𝑣 in RP- 𝑗] · E[𝑅 𝑗 | A finishes at 𝑣 in RP- 𝑗] .

Let us concentrate on an arbitrary leaf 𝑣 . Let 𝑝1, 𝑝2, ..., 𝑝𝑡 be the elements associated with the internal

nodes of 𝜋𝑣 in the top-down order. The algorithm A arrives at 𝑣 if and only if each element 𝑝𝑖 (𝑖 ∈ [𝑡])
takes a specific label, denoted as 𝑙𝑖 . The probability of the event “label(𝑝𝑖) = 𝑙𝑖 for all 𝑖 ∈ [𝑡]” is identical in
RP-1 and RP-2. Hence,A has the same probability of reaching 𝑣 in each random process. Conditioned on

the aforementioned event, 𝑅 𝑗 = err𝑃 (ℎA)/𝑘∗ is determined by the labels of the elements in 𝑃 \{𝑝1, ..., 𝑝𝑡 },
whose distributions are the same in RP-1 and RP-2. Hence, E[𝑅 𝑗 | A finishes at 𝑣 in RP- 𝑗] is identical
for 𝑗 = 1 and 2. It thus follows that E[𝑅1] = E[𝑅2].
As a randomized algorithm is a distribution over a family of deterministic algorithms, our above

deterministic analysis implies that E[𝑅1] = E[𝑅2] holds for a randomized A as well. □

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:33

Because E[Λ1] ≤ 𝑤𝑀/6, we immediately have

E[Λ2] ≤ 𝑤𝑀/6. (64)

The next subsection will utilize (64) to prove:

Lemma 17. E[𝑅2] > 1 + 𝜖 when 𝜖 ≤ 1/10 and 𝑛 ≥ max{90, 𝑤
𝜖2
ln𝑛}.

The above lemma indicates that, when𝑛meets the stated condition, the algorithmA cannot guarantee

E[𝑟 (𝑃)] ≤ 1 + 𝜖 on every input 𝑃 , where 𝑟 (𝑃) is defined in (63). Otherwise, 𝑅1, defined at Line 5 of

RP-1, must have an expectation at most 1 + 𝜖 , which by Lemma 16 tells us E[𝑅2] ≤ 1 + 𝜖 , giving a

contradiction. This concludes the proof of Theorem 15.

6.1 Proof of Lemma 17
Our proof was inspred by an argument in [7] for establishing the lower bound (6) on agnostic active

learning. The main technicality arises from adapting the argument to the scenario where precision is

measured on a finite number of points (in [7], precision is measured over a distribution). The following

fundamental result from [3] will be useful later.

Lemma 18. Define 𝜇 to be a random variable that equals 𝜇1 or 𝜇2 — see (59) and (60) — each with
probability 1/2. Let Σ = (𝑋1, ..., 𝑋𝑚) be a sequence of i.i.d. samples such that Pr[𝑋𝑖 = 1] = 𝜇 and
Pr[𝑋𝑖 = −1] = 1 − 𝜇. If𝑚 < 𝑀 where𝑀 is given in (61), then no (deterministic or randomized) algorithm
can correctly infer 𝜇 from Σ with probability over 2/3.

Proof. Every algorithm that aims to infer 𝜇 from Σ can be regarded as a distribution over a family of

functions mapping {−1, 1}𝑚 to {𝜇1, 𝜇2}. By [3, Lemma 5.1], under the condition𝑚 < 𝑀 no function

{−1, 1}𝑚 to {𝜇1, 𝜇2} can correctly output 𝜇 with a probability over 2/3. The lemma then follows from

the law of total probability. □

For each 𝑖 ∈ [𝑤], define a random variable according to RP-2:

𝐿𝑖 =

{
1 if A probes less than𝑀 points at location 𝑥𝑖 in RP-2
0 otherwise

We say that the value 𝑖 is light if Pr[𝐿𝑖 = 1] ≥ 2/3 or heavy otherwise.

Lemma 19. There are more than𝑤/2 light values of 𝑖 .

Proof. For each 𝑖 ∈ [𝑤], let𝑀𝑖 be the number of points at 𝑥𝑖 probed by A in RP-2. For every heavy

𝑖 ∈ [𝑤], Pr[𝐿𝑖 = 0] > 1/3 and hence E[𝑀𝑖] ≥ 𝑀𝑖 · Pr[𝐿𝑖 = 0] > 𝑀/3. If at least𝑤/2 heavy values exist

in [𝑤], then ∑𝑤
𝑖=1 E[𝑀𝑖] > 𝑤

2

𝑀
3
= 𝑤𝑀/6, meaning that in RP-2 the algorithm A probes over 𝑤𝑀/6

elements in expectation, which contradicts (64). Hence, [𝑤] must have less than𝑤/2 heavy values, thus
establishing the claim. □

Take the classifier ℎA output by A at Line 5 of RP-2. For each 𝑖 ∈ [𝑤], set 𝐾𝑖 = 1 if one of the

following events occurs:

• ℎA (𝑥𝑖) = 1 and 𝝁 [𝑖] = 𝜇1;
• ℎA (𝑥𝑖) = −1 and 𝝁 [𝑖] = 𝜇2.

Otherwise, 𝐾𝑖 = 0. Note that 𝐾𝑖 is a random variable decided by RP-2.

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:34 • Yufei Tao

Lemma 20. If 𝑖 ∈ [𝑤] is light, then E[𝐾𝑖] > 1/3.
Proof. Recall that 𝝁 [𝑖] is taken from {𝑢1, 𝑢2} uniformly at random. We can view ℎA (𝑥𝑖) as the

guess of algorithm A about 𝝁 [𝑖] based on the labels of the points probed at location 𝑥𝑖 (the labels of

points at other locations provides no information about 𝝁 [𝑖]). Specifically, we consider that A guesses

𝝁 [𝑖] = 𝜇2 if ℎA (𝑥𝑖) = 1 or 𝝁 [𝑖] = 𝜇1 if ℎA (𝑥𝑖) = −1. Thus, 𝐾𝑖 = 1 if and only if the guess of A is wrong.

Lemma 18 indicates that, when 𝐿𝑖 = 1 (i.e., A probes less than𝑀 points at 𝑥𝑖), the guess A is wrong

with probability over 1/3. Thus:

Pr[𝐾𝑖 = 1] ≥ Pr[𝐾𝑖 = 1 | 𝐿𝑖 = 1] · Pr[𝐿𝑖 = 1] > 1

3

· 2
3

=
4

9

.

The claim in the lemma now follows. □

Recall that RP-2 randomly chooses a vector 𝝁 at Line 1. Accordingly, for each 𝑖 ∈ [𝑤], we define its
good 𝑖-label to be

• 1 if 𝒖 [𝑖] = 𝜇2;
• −1 otherwise.

We use the term bad 𝑖-label to refer to the label in {−1, 1} different from the good 𝑖-label. To each of

the 𝑛/𝑤 points at location 𝑥𝑖 , RP-2 assigns label 1 with probability 𝝁 [𝑖] and label −1 with probability

1 − 𝝁 [𝑖]. At location 𝑥𝑖 , the expected number of points receiving the good 𝑖-label is 𝑛
𝑤
(1
2
+ 𝛾

2
). We say

that the labeled multi-set 𝑃 created by RP-2 is intended if, for every 𝑖 ∈ [𝑤], at least
𝑛

𝑤

(
1

2

+ 𝛾
4

)
points at location 𝑥𝑖 receive the good 𝑖-label.

Lemma 21. Let 𝑐 be a sufficiently large constant. When 𝑛 ≥ 𝑤
𝜖2
ln𝑛, the probability for 𝑃 to be intended

is at least 1 − 1/𝑛.
Proof. Let us focus on an arbitrary 𝑖 ∈ [𝑤]. Denote by 𝑋1, 𝑋2, ..., 𝑋𝑛/𝑤 the labels of the 𝑛/𝑤 elements

of 𝑃 at location 𝑥𝑖 . For each 𝑗 ∈ [𝑛/𝑤], Pr[𝑋 𝑗 = bad 𝑖-label] = 1

2
− 𝛾

2
. Let 𝑌𝑖 be how many elements

of 𝑃 at location 𝑥𝑖 actually receive the bad 𝑖-label; hence, E[𝑌𝑖] = 𝑛
𝑤
(1
2
− 𝛾

2
). Set 𝑡 = 𝛾

2(1−𝛾) such that

E[𝑌𝑖] · (1 + 𝑡) = 1

2
− 𝛾

4
. By Chernoff bound (68),

Pr
[
𝑌𝑖 ≥

1

2

− 𝛾
4

]
≤ exp

(
− 𝑡2

2 + 𝑡 E[𝑌𝑖]
)
≤ exp

(
− 𝛾

2𝑛

16𝑤

)
= exp

(
−81𝜖

2𝑛

16𝑤

)
which is at most 1/𝑛2 when 𝑛 ≥ 𝑤

𝜖2
ln𝑛. As𝑤 ≤ 𝑛, the probability of “𝑌𝑖 ≥ 1

2
− 𝛾

4
for at least one 𝑖 ∈ [𝑤]”

is at most 1/𝑛. It thus follows that 𝑃 is intended with probability at least 1 − 1/𝑛. □

Lemma 22. When 𝑛 ≥ 9, E[∑𝑤
𝑖=1 𝐾𝑖 | 𝑃 intended] > 𝑤/8.

Proof. For each light 𝑖 ∈ [𝑤], we argue that E[𝐾𝑖 | 𝑃 intended] ≥ 1/4 when 𝑛 ≥ 9. Otherwise,

E[𝐾] = E[𝐾𝑖 | 𝑃 intended] · Pr[𝑃 intended] + E[𝐾𝑖 | 𝑃 not intended] · Pr[𝑃 not intended]
≤ (1/4) · (1 − 1/𝑛) + 1 · (1/𝑛)

which is at most 1/3 when 𝑛 ≥ 9. This, however, contradicts Lemma 20. The target claim then follows

from the fact that [𝑤] has more than𝑤/2 light values of 𝑖 ∈ [𝑤] (see Lemma 19). □

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:35

Unless otherwise stated, the subsequent discussion assumes that 𝑃 is intended. For each 𝑖 ∈ [𝑤],
define 𝐼𝑖 as the number of points at location 𝑥𝑖 receiving the good 𝑖-label; thus, 𝑛/𝑤 − 𝐼𝑖 points at 𝑥𝑖
receive the bad 𝑖-label. The optimal classifier ℎ∗ for 𝑃 should map 𝑥𝑖 to the good label. As 𝑃 is intended,

we have 𝐼𝑖 ≥ 𝑛
𝑤
(1
2
+ 𝛾

4
) for all 𝑖 ∈ [𝑤]. Therefore:

𝑘∗ =
𝑤∑︁
𝑖=1

(𝑛
𝑤

− 𝐼𝑖
)
≤

𝑤∑︁
𝑖=1

(
𝑛

𝑤
− 𝑛

𝑤

(
1

2

+ 𝛾
4

))
= 𝑛

(
1

2

− 𝛾
4

)
. (65)

For each 𝑖 ∈ [𝑤], by how 𝐾𝑖 and the good 𝑖-label are defined, ℎ∗(𝑥𝑖) = ℎA (𝑥𝑖) if and only if 𝐾𝑖 = 0.

Furthermore, if ℎ∗(𝑥𝑖) ≠ ℎ(𝑥𝑖), then ℎ(𝑥𝑖) misclassifies 𝐼𝑖 points, which is 2𝐼𝑖 − 𝑛
𝑤
more than the number

𝑛
𝑤
− 𝐼𝑖 of points misclassified by ℎ∗ at 𝑥𝑖 . Hence:

𝑒𝑟𝑟𝑃 (ℎ) = 𝑘∗ +
𝑤∑︁
𝑖=1

𝐾𝑖 ·
(
2𝐼𝑖 −

𝑛

𝑤

)
.

Thus

𝑒𝑟𝑟𝑃 (ℎ) − 𝑘∗ =
𝑤∑︁
𝑖=1

𝐾𝑖 ·
(
2𝐼𝑖 −

𝑛

𝑤

)
≥

𝑤∑︁
𝑖=1

𝐾𝑖 ·
(
2 · 𝑛
𝑤

(
1

2

+ 𝛾
4

)
− 𝑛

𝑤

)
=
𝑛𝛾

2𝑤

𝑤∑︁
𝑖=1

𝐾𝑖 (66)

Therefore

E[𝑅2 | 𝑃 intended] = E[err𝑃 (ℎ)/𝑘∗ | 𝑃 intended]

= 1 + E
[
err𝑃 (ℎ) − 𝑘∗

𝑘∗

��� 𝑃 intended

]
(by (65) and (66)) ≥ 1 + E

[
𝑛𝛾/(2𝑤)

𝑛(1/2 − 𝛾/4)

𝑤∑︁
𝑖=1

𝐾𝑖

��� 𝑃 intended

]
(by Lemma 22) > 1 + 𝛾/16

1/2 − 𝛾/4
≥ 1 + 𝛾/8 = 1 + (9/8)𝜖.

We now conclude that E[𝑅2] ≥ E[𝑅2 | 𝑃 intended] · Pr[𝑃 intended] ≥ (1 + 9

8
𝜖) · (1 − 1/𝑛) which is

greater than 1 + 𝜖 for 𝑛 ≥ 90 and 𝜖 ≤ 1/10. This completes the proof of Lemma 17.

7 Conclusions
This article has provided a comprehensive study of monotone classification in R𝑑

with relative error

guarantees, where the objective is to minimize the label-probing cost while finding a classifier whose

error can be higher than the optimal error 𝑘∗ by at most a 1 + 𝜖 multiplicative factor. Our findings

delinerate the complexity landscape across the spectrum of 𝜖 . For the exact case (𝜖 = 0), we established

a lower bound of Ω(𝑛) probes even in 1D space, where 𝑛 is the size of the input 𝑃 , underscoring the

hardness of achieving optimality. In the approximate regime (𝜖 > 0), we introduced two algorithms:

the simple RPE algorithm, which achieves an expected error of at most 2𝑘∗ with 𝑂 (𝑤 Log
𝑛
𝑤
) probes

where𝑤 is the width of 𝑃 , and an algorithm powered by a new “relative-comparison coreset” technique,

which ensures (1 + 𝜖)𝑘∗ error w.h.p. at a cost of 𝑂 (𝑤
𝜖2
Log

𝑛
𝑤
· log𝑛). These are complemented by lower

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:36 • Yufei Tao

bounds of Ω(𝑤 Log
𝑛

(1+𝑘∗)𝑤) for constant 𝜖 ≥ 1 and Ω(𝑤/𝜖2) for arbitrary 𝜖 > 0, demonstrating that

our algorithms are near-optimal asymptotically.

For future work, it would be an intriguing challenge to shave off an 𝑂 (log𝑛) factor in the cost of our

coreset-based algorithm. Equally challenging would be the task of proving a lower bound that grows

strictly faster than Ω(𝑤/𝜖2) for arbitrary 𝜖 > 0.

Appendix
A Concentration Bounds
Let 𝑋1, 𝑋2, ..., 𝑋𝑡 be 𝑡 independent Bernoulli random variables with Pr[𝑋𝑖 = 1] = 𝜇 for each 𝑖 ∈ [𝑡] (and
hence Pr[𝑋𝑖 = 0] = 1 − 𝜇). The following are two standard forms of Chernoff bounds [37]:

• for any 𝛾 ∈ (0, 1]:

Pr

[�����𝜇 − 1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖

����� ≥ 𝛾𝜇
]

≤ 2 exp

(
−𝛾

2𝑡𝜇

3

)
; (67)

• for any 𝛾 ≥ 0:

Pr

[
1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖 ≥ (1 + 𝛾)𝜇
]

≤ exp

(
− 𝛾2

2 + 𝛾 𝑡𝜇
)
. (68)

In addition, we prove:

Lemma 23. For any 𝜙 ∈ (0, 1] and 𝛿 ∈ (0, 1], it holds that

Pr

[���𝜇 − 1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖

��� ≥ 𝜙]
≤ 𝛿 (69)

as long as 𝑡 ≥ ⌈max{ 𝜇

𝜙2
, 1
𝜙
} · 3 ln 2

𝛿
⌉.

Proof. If 𝜇 ≥ 𝜙 , we can derive

Pr

[�����𝜇 − 1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖

����� ≥ 𝜙
]

= Pr

[�����𝜇 − 1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖

����� ≥ 𝜙

𝜇
· 𝜇

]
(by (67)) ≤ 2 exp

(
−1
3

(
𝜙

𝜇

)
2

𝑡𝜇

)
which is at most 𝛿 when 𝑡 = ⌈ 3𝜇

𝜙2
ln

2

𝛿
⌉.

If 𝜇 < 𝜙 , we can derive

Pr

[�����𝜇 − 1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖

����� ≥ 𝜙
]

= Pr

[
1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖 ≥ 𝜙 + 𝜇
]
= Pr

[
1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖 ≥
(
1 + 𝜙

𝜇

)
𝜇

]
J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:37

(by (68)) ≤ exp

(
− (𝜙/𝜇)2
2 + 𝜙/𝜇 · 𝑡𝜇

)
= exp

(
𝑡𝜙2

2𝜇 + 𝜙

)
which is at most 𝛿 when 𝑡 = ⌈ 2𝜇+𝜙

𝜙2
ln

1

𝛿
⌉ ≤ ⌈ 3

𝜙
ln

1

𝛿
⌉. □

Consider the settings of Problem 1. Suppose that we want to estimate the number 𝑥 of elements in the

input 𝑃 satisfying an arbitrary predicate 𝑄 . We can draw with replacement a set 𝑆 of 𝑡 = 𝑂 (1

𝜙2
log

1

𝛿
)

elements from 𝑃 uniformly at random. If 𝑦 is the number of elements in 𝑆 satisfying 𝑄 , Lemma 23

assures us that (𝑦/𝑡) · 𝑛 approximates 𝑥 up to absolute error 𝜙𝑛 with probability at least 1 − 𝛿 . As
a further corollary, given any ℎ ∈ Hmon, we can utilize the aforementioned 𝑆 to estimate err𝑃 (ℎ) —
defined in (1) — up to absolute error 𝜙𝑛 by formulating𝑄 as follows: an element 𝑝 ∈ 𝑃 satisfies𝑄 if and

only if label(𝑝) ≠ ℎ(𝑝).

B VC-Dimension and Disagreement Coefficient of Monotone Classifiers
This section will discuss the VC-dimension and disagree coefficient of the class Hmon of monotone

classifiers. We will focus on the context of Problem 1, in which 𝑃 is a multi-set of points in R𝑑
where

each element 𝑝 ∈ 𝑃 is associated with a label from {−1, 1}. The VC-dimension of Hmon on 𝑃 is defined

as the size of the largest subset 𝑆 ⊆ 𝑃 that can be shattered by Hmon, meaning that for any function

𝑓 : 𝑆 → {−1, 1}, there exists a classifier ℎ ∈ Hmon such that ℎ(𝑝) = 𝑓 (𝑝) for every 𝑝 ∈ 𝑆 .

Lemma 24. The VC-dimension of Hmon on 𝑃 is the width𝑤 of 𝑃 .

Proof. By Dilworth’s Theorem [20], there exists a subset 𝑆 ⊆ 𝑃 such that |𝑆 | = 𝑤 and there are

no two distinct elements 𝑝, 𝑞 ∈ 𝑆 such that 𝑝 ⪰ 𝑞. It is clear that 𝑆 can be shattered by Hmon. On the

other hand, Dilworth’s Theorem also shows that, among any𝑤 + 1 elements from 𝑃 , we can always

find two elements 𝑝, 𝑞 such that 𝑝 ⪰ 𝑞. The subset of 𝑃 comprising those 𝑤 + 1 elements cannot be

shattered because no monotone classifier ℎ can satisfy ℎ(𝑝) = −1 but ℎ(𝑞) = 1. It thus follows that the

VC-dimension of Hmon on 𝑃 is exactly𝑤 . □

The rest of the section will focus on disagreement coefficients. Given a setH ⊆ Hmon of monotone

classifiers, the disagreement region of H — denoted as DIS(H) — is the set of elements 𝑝 ∈ 𝑃 such

that ℎ1(𝑝) ≠ ℎ2(𝑝) for some ℎ1, ℎ2 ∈ H . Fix ℎ∗ to be an optimal monotone classifier on 𝑃 , namely,

err𝑃 (ℎ∗) = 𝑘∗. Given a real value 𝜌 ∈ (0, 1], define the ball — denoted as 𝐵(ℎ∗, 𝜌) — as the set of

classifiers ℎ ∈ Hmon such that |{𝑝 ∈ 𝑃 | ℎ(𝑝) ≠ ℎ∗(𝑝)}| ≤ 𝜌𝑛, namely, ℎ disagrees with ℎ∗ on at most

𝜌𝑛 elements of 𝑃 . The disagreement coefficient 𝜃 [29] of Hmon under the uniform distribution over 𝑃 is

defined as:

𝜃 = max

1, sup

𝜌∈ (𝑘∗
𝑛
,1]

|DIS(𝐵(ℎ∗, 𝜌)) |
𝜌 · 𝑛

 . (70)

Lemma 25. The value of 𝜃 is at most 2𝑤 .

Proof. Consider any 𝜌 ∈ (𝑘∗/𝑛, 1]. We will prove that |DIS(𝐵(ℎ∗, 𝜌)) | ≤ 2𝑤𝜌𝑛. The claim then

follows from the definition of 𝜃 in (70).

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:38 • Yufei Tao

As defined in Section 2.2, a subset 𝑆 ⊆ 𝑃 is a chain if we can arrange the elements of 𝑆 into a sequence

𝑝1 ⪯ 𝑝2 ⪯ ... ⪯ 𝑝 |𝑆 | . By Dilworth’s Theorem [20], we can decompose 𝑃 into𝑤 disjoint chains 𝐶1, 𝐶2, ...,

𝐶𝑤 . For each 𝑖 ∈ [𝑤], use the optimal classifier ℎ∗ to break the chain 𝐶𝑖 into two disjoint subsets:

• 𝐶1

𝑖 = {𝑝 ∈ 𝐶𝑖 | ℎ∗(𝑝) = 1}, and
• 𝐶−1

𝑖 = {𝑝 ∈ 𝐶𝑖 | ℎ∗(𝑝) = −1}.
We will prove that DIS(𝐵(ℎ∗, 𝜌)) can contain at most 𝜌𝑛 elements from each of 𝐶1

𝑖 and 𝐶
−1
𝑖 . This will

then establish the fact |DIS(𝐵(ℎ∗, 𝜌)) | ≤ 2𝑤𝜌𝑛. Next, we will explain why DIS(𝐵(ℎ∗, 𝜌)) ∩𝐶1

𝑖 has at

most 𝜌𝑛 elements; a symmetric argument works on 𝐶−1
𝑖 .

Set 𝑚 = |𝐶1

𝑖 | and linearize the elements of 𝐶1

𝑖 as 𝑝1 ⪯ 𝑝2 ⪯ ... ⪯ 𝑝𝑚 . If a monotone classifier ℎ

maps 𝑝𝑖 to −1 for some 𝑖 ∈ [𝑚], then it must also map 𝑝 𝑗 to −1 for every 𝑗 ∈ [𝑖]. Hence, ℎ and

ℎ∗ can only differ on a prefix of the sequence 𝑝1, 𝑝2, ..., 𝑝𝑚 . Furthermore, as ℎ ∈ 𝐵(ℎ∗, 𝜌), the prefix
must have a length at most 𝜌𝑛. It thus follows that every classifier in 𝐵(ℎ∗, 𝜌) must map the whose

sequence to 1 except possibly for the first 𝜌𝑛 elements. By definition of DIS(𝐵(ℎ∗, 𝜌)), we can assert

that |DIS(𝐵(ℎ∗, 𝜌)) ∩𝐶1

𝑖 | ≤ 𝜌𝑛. □

We close the section by giving a multi-set 𝑃 , whose 𝜃 value is at least its width𝑤 . Choose arbitrary

integers 𝑛 and 𝑤 such that 𝑤 ≥ 2, 𝑛 > 𝑤2
, and 𝑛 is a multiple of 𝑤 . Identify 𝑤 distinct locations

𝑥1, 𝑥2, ..., 𝑥𝑤 in R2
where no location dominates another. Place 𝑛/𝑤 points at each 𝑥𝑖 (𝑖 ∈ [𝑤]), assign

label 1 to all of them except for exactly one point, which is assigned label −1. This yields 𝑛 labeled

points, which constitute 𝑃 . It is clear that 𝑃 has width𝑤 and optimal error 𝑘∗ = 𝑤 . Define ℎ∗ to be the

optimal classifier that maps the entire R2
to 1.

Set 𝜌 = 1/𝑤 , which is greater than 𝑘∗/𝑛 = 𝑤/𝑛 because 𝑛 > 𝑤2
. Accordingly, 𝐵(ℎ∗, 𝜌) includes

every classifier ℎ ∈ Hmon that differs from ℎ∗ in at most 𝑛/𝑤 elements of 𝑃 . For each 𝑖 ∈ [𝑤], define
ℎ𝑖 as the classifier that maps the entire 𝑃 to 1 except the 𝑛/𝑤 elements at 𝑥𝑖 , which are mapped to −1.
Thus, ℎ𝑖 ∈ 𝐵(ℎ∗, 𝜌). For every point 𝑝 ∈ 𝑃 , there exist two different 𝑖, 𝑗 ∈ [𝑤] such that ℎ𝑖 (𝑝) ≠ ℎ 𝑗 (𝑝).
Specifically, suppose that 𝑝 is at location 𝑥𝑖 ; then ℎ𝑖 (𝑝) = −1 but ℎ 𝑗 (𝑝) = 1 for any 𝑗 ∈ [𝑤] \ {𝑖}. It
follows that DIS(𝐵(ℎ∗, 𝜌)) = 𝑃 ; and hence, 𝜃 ≥ |DIS(𝐵 (ℎ∗,𝜌)) |

𝜌 ·𝑛 = 𝑤 .

References
[1] Meysam Alishahi and Jeff M. Phillips. 2024. No Dimensional Sampling Coresets for Classification. In Proceedings of

International Conference on Machine Learning (ICML).
[2] Stanislav Angelov, Boulos Harb, Sampath Kannan, and Li-San Wang. 2006. Weighted isotonic regression under the L

1

norm. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM Press, 783–791.

[3] Martin Anthony and Peter L. Bartlett. 1999. Neural Network Learning: Theoretical Foundations. Cambridge University

Press.

[4] Arvind Arasu, Michaela Götz, and Raghav Kaushik. 2010. On active learning of record matching packages. In Proceedings
of ACM Management of Data (SIGMOD). 783–794.

[5] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. 2009. Agnostic active learning. Journal of Computer and
System Sciences (JCSS) 75, 1 (2009), 78–89.

[6] Kedar Bellare, Suresh Iyengar, Aditya G. Parameswaran, and Vibhor Rastogi. 2013. Active Sampling for Entity Matching

with Guarantees. ACM Transactions on Knowledge Discovery from Data (TKDD) 7, 3 (2013), 12:1–12:24.
[7] Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. 2009. Importance weighted active learning. In Proceedings of

International Conference on Machine Learning (ICML). 49–56.

J. ACM, Vol. , No. , Article 1. Publication date: January .

Monotone Classification with Relative Approximations • 1:39

[8] Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. 2021. Efficient Coreset Constructions

via Sensitivity Sampling. In Asian Conference on Machine Learning (ACML), Vol. 157. 948–963.
[9] Nader H. Bshouty and Christino Tamon. 1996. On the Fourier Spectrum of Monotone Functions. Journal of the ACM

(JACM) 43, 4 (1996), 747–770.
[10] Deeparnab Chakrabarty and C. Seshadhri. 2013. Optimal bounds for monotonicity and lipschitz testing over hypercubes

and hypergrids. In Proceedings of ACM Symposium on Theory of Computing (STOC). 419–428.
[11] Deeparnab Chakrabarty and C. Seshadhri. 2014. An Optimal Lower Bound for Monotonicity Testing over Hypergrids.

Theory of Computing 10 (2014), 453–464.

[12] Ke Chen. 2009. On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces and Their Applications.

SIAM Journal of Computing 39, 3 (2009), 923–947.

[13] Xi Chen, Anindya De, Yizhi Huang, Yuhao Li, ShivamNadimpalli, Rocco A. Servedio, and Tianqi Yang. 2025. Relative-error

monotonicity testing. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 373–402.
[14] Peter Christen, Dinusha Vatsalan, and Qing Wang. 2015. Efficient Entity Resolution with Adaptive and Interactive

Training Data Selection. In Proceedings of International Conference on Management of Data (ICDM). 727–732.
[15] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. 2016. Distributed Data Deduplication. Proceedings of the VLDB Endowment

(PVLDB) 9, 11 (2016), 864–875.
[16] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Mahoney. 2009. Sampling Algorithms and

Coresets for $\ellp Regression. SIAM Journal of Computing 38, 5 (2009), 2060–2078.

[17] Sanjoy Dasgupta. 2005. Coarse sample complexity bounds for active learning. In Proceedings of Neural Information
Processing Systems (NIPS). 235–242.

[18] Sanjoy Dasgupta, Daniel J. Hsu, and Claire Monteleoni. 2007. A general agnostic active learning algorithm. In Proceedings
of Neural Information Processing Systems (NIPS). 353–360.

[19] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. 2009. Analysis of Perceptron-Based Active Learning.

Journal of Machine Learning Research (JMLR) 10 (2009), 281–299.
[20] Robert P. Dilworth. 1950. A Decomposition Theorem for Partially Ordered Sets. The Annals of Mathematics 51, 1 (1950),

161–166.

[21] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis, and Themis Palpanas. 2017. Parallel

meta-blocking for scaling entity resolution over big heterogeneous data. Information Systems 65 (2017), 137–157.
[22] Dan Feldman and Michael Langberg. 2011. A unified framework for approximating and clustering data. In Proceedings of

ACM Symposium on Theory of Computing (STOC). 569–578.
[23] Dan Feldman, Melanie Schmidt, and Christian Sohler. 2020. Turning Big Data Into Tiny Data: Constant-Size Coresets for

k-Means, PCA, and Projective Clustering. SIAM Journal of Computing 49, 3 (2020), 601–657.

[24] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex Samorodnitsky. 2002.

Monotonicity testing over general poset domains. In Proceedings of ACM Symposium on Theory of Computing (STOC).
474–483.

[25] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. 1997. Selective Sampling Using the Query by Committee

Algorithm. Machine Learning 28, 2-3 (1997), 133–168.

[26] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan Rampalli, Jude W. Shavlik, and Xiaojin

Zhu. 2014. Corleone: hands-off crowdsourcing for entity matching. In Proceedings of ACMManagement of Data (SIGMOD).
601–612.

[27] Oded Goldreich, Shafi Goldwasser, Eric Lehman, and Dana Ron. 1998. Testing Monotonicity. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 426–435.

[28] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. 2000. Testing Monotonicity.

Combinatorica 20, 3 (2000), 301–337.
[29] Steve Hanneke. 2014. Theory of Disagreement-Based Active Learning. Foundations and Trends in Machine Learning 7,

2-3 (2014), 131–309.

[30] Sariel Har-Peled and Akash Kushal. 2007. Smaller Coresets for k-Median and k-Means Clustering. Discrete & Computa-
tional Geometry 37, 1 (2007), 3–19.

[31] Sariel Har-Peled and Micha Sharir. 2011. Relative (p, 𝜖)-Approximations in Geometry. Discrete & Computational Geometry
45, 3 (2011), 462–496.

J. ACM, Vol. , No. , Article 1. Publication date: January .

1:40 • Yufei Tao

[32] Matti Kääriäinen. 2006. Active Learning in the Non-realizable Case. In Proceedings of International Conference on
Algorithmic Learning Theory (ALT). 63–77.

[33] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity resolution approaches on real-world match

problems. Proceedings of the VLDB Endowment (PVLDB) 3, 1 (2010), 484–493.
[34] Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. 2022. Properly learning monotone functions via local correction. In

Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS). 75–86.
[35] Jane Lange and Arsen Vasilyan. 2023. Agnostic proper learning of monotone functions: beyond the black-box correction

barrier. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS). 1149–1170.
[36] Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj Sen, and Mohamed Sarwat. 2020. A Comprehensive Benchmark

Framework for Active Learning Methods in Entity Matching. In Proceedings of ACM Management of Data (SIGMOD).
1133–1147.

[37] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press.

[38] Jeff M. Phillips. 2016. Coresets and Sketches. CRC Press, Chapter 49.

[39] Sunita Sarawagi and Anuradha Bhamidipaty. 2002. Interactive deduplication using active learning. In Proceedings of
ACM Knowledge Discovery and Data Mining (SIGKDD). 269–278.

[40] Burr Settles. 2010. Active learning Literature Survey. Technical Report, University of Wisconsin-Madison (2010).

[41] Quentin F. Stout. 2013. Isotonic Regression via Partitioning. Algorithmica 66, 1 (2013), 93–112.
[42] Yufei Tao. 2018. Entity Matching with Active Monotone Classification. In Proceedings of ACM Symposium on Principles of

Database Systems (PODS). 49–62.
[43] Yufei Tao and Yu Wang. 2021. New Algorithms for Monotone Classification. In Proceedings of ACM Symposium on

Principles of Database Systems (PODS). 260–272.
[44] Andreas Thor and Erhard Rahm. 2007. MOMA - A Mapping-based Object Matching System. In Proceedings of Biennial

Conference on Innovative Data Systems Research (CIDR). 247–258.
[45] Liwei Wang. 2011. Smoothness, Disagreement Coefficient, and the Label Complexity of Agnostic Active Learning.

Journal of Machine Learning Research (JMLR) 12 (2011), 2269–2292.

J. ACM, Vol. , No. , Article 1. Publication date: January .

	Abstract
	1 Introduction
	1.1 Problem Definitions
	1.2 Practical Motivations
	1.3 Related Work: Active Classification and Monotonicity Testing
	1.4 Our Results
	1.5 Our Techniques

	2 Random Probes with Elimination
	2.1 The Expected Error of RPE
	2.2 The Expected Cost of RPE
	2.3 Application to Monotonicity Testing

	3 Relative-Comparison Coresets
	3.1 Warm Up: A Special Case
	3.2 A Recursive Framework for Problem 2
	3.3 Correctness of the Framework
	3.4 A Concrete Algorithm for Problem 2
	3.5 A One-Dimensional Relative-Comparison Coreset
	3.6 Arbitrary Dimensionalities

	4 Optimal Monotone Classification Needs (n) Probes
	4.1 Proof of Lemma 12

	5 A Lower Bound for Constant Approximation Ratios
	5.1 The Realizable Case
	5.2 The Non-Realizable Case

	6 A Lower Bound for Arbitrary Approximation Ratios
	6.1 Proof of Lemma 17

	7 Conclusions
	A Concentration Bounds
	B VC-Dimension and Disagreement Coefficient of Monotone Classifiers
	References

