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Abstract

This article studies two problems related to sampling from the results of database queries.
The first one is to uniformly sample a tuple from the result of a join obeying an acyclic set of
degree constraints (the join itself need not be acyclic). The second is to uniformly sample a
given subgraph pattern’s occurrence (the pattern may contain cycles) in a directed data graph.
It is shown that, after a linear expected-time preprocessing, both problems admit an algorithm
drawing a sample in O(polymat/max{1,OUT}) expected time, where OUT and polymat are the
“full result size” and “polymatroid bound” of the underlying problem, respectively (assuming data
complexity). These results are derived with a new sampling algorithm for the former problem
and a new graph-theoretic theorem for the latter.
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1 Introduction

(Natural) joins in relational database systems are known to be computation-intensive, with their
costs surging drastically in response to growing data volumes. In the current big data era, the
imperative to circumvent excessive computation increasingly overshadows the requirement for
complete join results. A myriad of applications, including machine learning algorithms, online
analytical processing, and query optimization can operate effectively with random samples (see,
e.g., [25, 34, 36]). This situation has sparked research initiatives focused on devising techniques
capable of producing samples from a join result significantly faster than executing the join in its
entirety. In the realm of graph theory, the significance of join operations is mirrored in their intrinsic
connections to subgraph listing, a classical problem that seeks to identify all the occurrences of a
pattern P (for instance, a directed 3-vertex cycle) within a data graph G (such as a social network
where a directed edge symbolizes a “follow” relationship). Analogous to joins, subgraph listing
demands a vast amount of computation time, which escalates rapidly with the sizes of G and P .
Fortunately, many social network analyses do not require the full set of occurrences of P , but can
function well with only samples from those occurrences. This has triggered the development of
methods that can extract samples considerably faster than finding all the occurrences.

This article will study join sampling and subgraph sampling under a unified “degree-constrained
framework”. Next, we will first describe the framework formally in Section 1.1, review the previous
results in Section 1.2, and then overview our results in Section 1.3.

1.1 Problem Definitions

Join Sampling. Let att be a finite set, with each element called an attribute, and dom be a
countably infinite set, with each element called a value. For a non-empty set X ⊆ att of attributes,
a tuple over X is a function u : X → dom. For any non-empty subset Y ⊆ X , we define u[Y ] — the
projection of u on Y — as the tuple v over Y satisfying v(Y ) = u(Y ) for every attribute Y ∈ Y.

A relation R is a set of tuples over the same set Z of attributes; we refer to Z as the schema of
R and represent it as schema(R). We say that R is a binary relation if |schema(R)| = 2.

For subsets X and Y of schema(R) satisfying X ⊂ Y (note: X is a proper subset of Y), define:

degY|X (R) = max
tuple u over X

∣∣∣{v[Y] | v ∈ R,v[X ] = u
}∣∣∣. (1)

For an intuitive explanation, imagine grouping the tuples of R by X and counting, for each group,
how many distinct Y-projections are formed by the tuples therein. Then, the value degY|X (R)
corresponds to the maximum count of all groups. It is worth pointing out that, when X = ∅, then
degY|X (R) is simply |ΠY(R)| where Π is the standard “projection” operator in relational algebra. If
in addition Y = schema(R), then degY|X (R) = |R|.

We define a join as a set Q of relations (some of which may have the same schema). Let
schema(Q) be the union of the attributes of the relations in Q, i.e., schema(Q) =

⋃
R∈Q schema(R).

Focusing on “data complexity”, we consider only joins where Q has a constant number of relations
and schema(Q) has a constant size. The result of Q is a relation over schema(Q) formalized as:

join(Q) = {tuple u over schema(Q) | ∀R ∈ Q : u[schema(R)] ∈ R}.

Define IN =
∑

R∈Q |R| and OUT = |join(Q)|. We will refer to IN and OUT as the input size and
output size of Q, respectively.
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A join sampling operation returns a tuple drawn uniformly at random from join(Q) or declares
join(Q) = ∅. All such operations must be mutually independent. The objective of the join sampling
problem is to preprocess the input relations of Q into an appropriate data structure that can be
used to perform join-sampling operations repeatedly.

We study the problem in the scenario where Q conforms to a set DC of degree constraints.
Specifically, each degree constraint has the form (X ,Y, NY|X ) where X and Y are subsets of
schema(Q) satisfying X ⊂ Y and NY|X ≥ 1 is an integer. A relation R ∈ Q is said to guard the
constraint (X ,Y, NY|X ) if

Y ⊆ schema(R), and degY|X (R) ≤ NY|X .

The join Q is consistent with DC — written as Q |= DC — if every degree constraint in DC is
guarded by at least one relation in Q. It is safe to assume that DC does not have two constraints
(X ,Y, NY|X ) and (X ′,Y ′, NY ′|X ′) with X = X ′ and Y = Y ′; otherwise, assuming NY|X ≤ NY ′|X ′ ,
the constraint (X ′,Y ′, NY ′|X ′) is redundant and can be removed from DC.

In this work, we concentrate on “acyclic” degree constraints. To formalize this notion, let us define
a constraint dependency graph GDC as follows. This is a directed graph whose vertex set is schema(Q)
(i.e., each vertex of GDC is an attribute in schema(Q)). For each degree constraint (X ,Y, NY|X )
such that X ̸= ∅, we add a (directed) edge (X,Y ) to GDC for every pair (X,Y ) ∈ X × (Y \ X ). We
say that the set DC is acyclic if GDC is an acyclic graph; otherwise, DC is cyclic.

It is important to note that each relation R ∈ Q implicitly defines a special degree constraint
(X ,Y, NY|X ) where X = ∅, Y = schema(R), and NY|X = |R|. Such a constraint — known as a
cardinality constraint — is assumed to be always present in DC. As all cardinality constraints have
X = ∅, they do not affect the construction of GDC. Consequently, if DC only contains cardinality
constraints, then GDC has no edges and hence trivially acyclic. Moreover, readers should avoid the
misconception that “an acyclic GDC implies Q being an acyclic join”; these two acyclicity notions are
unrelated. While the definition of an acyclic join is not needed for our discussion, readers unfamiliar
with this term may refer to [2, Chapter 6.4].

(Directed) Subgraph Sampling. We are given a data graph G = (V,E) and a pattern graph
P = (VP , EP ), both being simple directed graphs. The pattern graph is weakly-connected1 and has
a constant number of vertices. A simple directed graph Gsub = (Vsub , Esub) is a subgraph of G if
Vsub ⊆ V and Esub ⊆ E. The subgraph Gsub is an occurrence of P if they are isomorphic, namely,
there is a bijection f : Vsub → VP such that, for any distinct vertices u1, u2 ∈ Vsub , an edge (u1, u2)
exists in Esub if and only if (f(u1), f(u2)) is an edge in EP . We will refer to f as a isomorphism
bijection between P and Gsub .

A subgraph sampling operation returns an occurrence of P in G uniformly at random or declares
the absence of any occurrence. All such operations need to be mutually independent. The objective
of the subgraph sampling problem is to preprocess G into a data structure that can support every
subgraph-sampling operation efficiently. We will study the problem under a degree constraint: every
vertex in G has an out-degree at most λ.

Math Conventions. For an integer x ≥ 1, the notation [x] denotes the set {1, 2, ..., x}; as a special
case, [0] represents the empty set. Every logarithm log(·) has base 2, and function exp2(x) is defined
to be 2x. We use double curly braces to represent multi-sets, e.g., {{1, 1, 1, 2, 2, 3}} is a multi-set
with 6 elements.

1Namely, if we ignore the edge directions, then P becomes a connected undirected graph.
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1.2 Related Work

Join Computation. Any algorithm correctly answering a join query Q must incur Ω(OUT) time
just to output the OUT tuples in join(Q). Hence, finding the greatest possible value of OUT is
an imperative step towards unraveling the time complexity of join evaluation. A classical result in
this regard is the AGM bound [6]. To describe this bound, let us define the schema graph of Q as a
multi-hypergraph G = (V, E) where

V = schema(Q), and E = {{schema(R) | R ∈ Q}}. (2)

Note that E is a multi-set because the relations in Q may have identical schemas. A fractional
edge cover of G is a function w : E → [0, 1] such that, for any X ∈ V, we have

∑
F∈E:X∈F w(F ) ≥ 1

(namely, the total weight assigned to the hyperedges covering X is at least 1). Atserias, Grohe, and
Marx [6] showed that, given any fractional edge cover, it always holds that OUT ≤

∏
F∈E |RF |w(F ),

where RF is the relation in Q whose schema corresponds to the hyperedge F . The AGM bound is
defined as AGM (Q) = minw

∏
F∈E |RF |w(F ), where the minimization is over all the functional edge

covers w of G.

The AGM bound is tight: given any hypergraph G = (V, E) and any set of positive integers
{NF | F ∈ E}, there is always a join Q such that Q has G as the schema graph, |RF | = |NF | for
each F ∈ E , and the output size OUT is Θ(AGM (Q)). This has motivated the development of
algorithms [13,28,31–33,39] that can compute join(Q) in Õ(AGM (Q)) time — where Õ(.) hides a
factor polylogarithmic to the input size IN of Q — and therefore are worst-case optimal up to an
Õ(1) factor.

However, the tightness of the AGM bound relies on the assumption that all the degree constraints
on Q are purely cardinality constraints. In reality, general degree constraints are prevalent, and their
inclusion could dramatically decrease the maximum output size OUT. This observation has sparked
significant interest [12,16,20–23,30,37] in establishing refined upper bounds on OUT tailored for
more complex degree constraints. Most notably, Khamis et al. [23] proposed the entropic bound,
which is applicable to any set DC of degree constraints and is tight in a good sense (see Theorem
5.5 of [37]). Unfortunately, the entropic bound is difficult to compute because it requires solving a
linear program (LP) involving infinitely many constraints (it remains an open problem whether the
computation is decidable). Not coincidentally, no join algorithm is known to have a running time
matching the entropic bound.

To circumvent the above issue, Khamis et al. [23] introduced the polymatroid bound as an
alternative, which we represent as polymat(DC) because this bound is fully decided by DC (i.e., any
join Q |= DC must satisfy OUT ≤ polymat(DC)). Section 2 will discuss polymat(DC) in detail; for
now, it suffices to understand that (i) the polymatroid bound, although possibly looser than the
entropic bound, never exceeds the AGM bound, and (ii) polymat(DC) can be computed in O(1)
time under data complexity. Khamis et al. [23] proposed an algorithm named PANDA that can
evaluate an arbitrary join Q |= DC in time Õ(polymat(DC)).

Interestingly, when DC is acyclic, the entropic bound is equivalent to the polymatroid bound
[30]. In this scenario, Ngo [30] presented a simple algorithm to compute any join Q |= DC in
O(polymat(DC)) time, after a preprocessing of O(IN) expected time.

Join Sampling. For an acyclic join (not to be confused with a join having an acyclic set of degree
constraints), it is possible to sample from the join result in constant time, after a preprocessing
of O(IN) expected time [40]. The problem becomes more complex when dealing with an arbitrary

3



(cyclic) join Q, with the latest advancements presented in two PODS’23 papers [13, 24]. Specifically,
Kim et al. [24] described how to sample in Õ(AGM (Q)/max{1,OUT}) expected time, after
a preprocessing of Õ(IN) time. Deng et al. [13] achieved the same guarantees using different
approaches, and offered a rationale explaining why the expected sample time O(AGM (Q)/OUT)
can no longer be significantly improved, even when 0 < OUT≪ AGM (Q), subject to commonly
accepted conjectures. We refer readers to [3, 9, 10, 13, 24, 40] and the references therein for other
results (now superseded) on join sampling.

Subgraph Listing. Closely relevant to subgraph sampling is the subgraph listing problem. Given a
data graph G = (V,E) and a pattern graph P = (VP , EP ) — both being simple directed graphs
— the goal of subgraph listing is to find all the occurrences of P in G. Let us define ρ∗(P ) — the
fractional edge cover number of P — as the fractional edge cover number ρ∗(P ′) of the corresponding
undirected graph P ′ = (VP ′ , EP ′) that is obtained from P by ignoring edge directions; formally,
VP = VP ′ and {u, v} ∈ EP ′ if and only if either (u, v) ∈ EP or (v, u) ∈ EP .

When P has a constant size, the data graph G can contain O(|E|ρ∗(P )) occurrences of P [4, 6].
Furthermore, this bound is tight: for any integer m, there is a data graph G = (V,E) with |E| = m
edges that has Ω(mρ∗(P )) occurrences of P . Thus, a subgraph listing algorithm is considered
worst-case optimal if it finishes in O(|E|ρ∗(P )) time. It is well-known that subgraph listing can be
converted to a join Q on binary relations. The join Q has an input size of IN = Θ(|E|), and its
AGM bound is AGM (Q) = Θ(|E|ρ∗(P )). All occurrences of P in G can be derived from join(Q)
in O(|E|ρ∗(P )) extra time. Thus, any Õ(AGM (Q))-time join algorithm is essentially worst-case
optimal for subgraph listing.

However, the tightness of the AGM bound assumes that the vertices in G can have degrees
up to |V | − 1. Jayaraman et al. [18] studied how to reduce the time of enumerating all pattern
occurrences in the more practical scenario where vertices have much lower degrees. For this purpose,
they resorted to the polymatroid bound of the aforementioned join Q derived from subgraph listing.
As will be explained in Section 4, this join Q has a set DC of degree constraints whose constraint
dependency graph GDC coincides with P . Jayaraman et al. [18] gave an algorithm that (after a
preprocessing of O(IN) expected time) can list all occurrences of Q in G within a time complexity
that, as we show in Section 4.1, turns out to be O(polymat(DC)). We will delve into their findings
further when the specifics become necessary for our discussion.

There is a substantial body of literature on bounding the cost of subgraph listing using parameters
different from those already mentioned. These studies typically concentrate on specific patterns
(such as paths, cycles, and cliques) or particular graphs (for instance, sparse graphs). We refer
interested readers to [1, 7, 8, 11,14,17,19,26,29,38] and the references therein.

Subgraph Sampling. Fichtenberger, Gao, and Peng [15] described how to sample an occurrence
of the pattern P in the data graph G in O(|E|ρ∗(P )/max{1,OUT}) expected time, where OUT is
the number of occurrences of P in G, after a preprocessing of O(|E|) expected time. In [13], Deng
et al. explained how to deploy an arbitrary join sampling algorithm to perform subgraph sampling;
their approach ensures the same guarantees as in [15], baring an Õ(1) factor.

1.3 Our Results

For any join Q with an acyclic set DC of degree constraints, we will show in Section 3 that it is
possible to extract a uniform sample from join(Q) in

O(polymat(DC)/max{1,OUT})
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expected time, following an initial preprocessing of O(IN) expected time. This performance guarantee
is favorable when compared to the recent results of [13, 24] (reviewed in Section 1.2), which are
applicable when DC contains only cardinality constraints and is therefore trivially acyclic. As
polymat(DC) is at most but can be substantially lower than AGM (Q), our guarantees are never
worse, but can be considerably better, than those in [13,24].

What if DC is cyclic? An idea, proposed in [30], is to discard enough constraints to make the
remaining set DC′ of constraints acyclic (while ensuring Q |= DC′). Our algorithm can then be
applied to draw a sample in O(polymat(DC′)/max{1,OUT}) time. However, polymat(DC′) can
potentially be much larger than polymat(DC).

Our next contribution is to prove that the issue does not affect subgraph listing and subgraph
sampling. Consider first subgraph listing, defined by a pattern graph P and a data graph G where
every vertex has an out-degree at most λ. As mentioned, this problem can be converted to a join Q
on binary relations, which is associated with a set DC of degree constraints such that the constraint
dependency graph GDC is exactly P (Section 4.1 will describe the conversion in full). Consequently,
whenever P contains a cycle, so does GDC, making DC cyclic. Nevertheless, we will establish a
graph-theoretic theorem — which we name the De-cycling Theorem — that guarantees the existence
of an acyclic set DC′ ⊂ DC ensuring

Q |= DC′ and polymat(DC) = Θ(polymat(DC′)).

This “magical” DC′ has an immediate implication: Ngo’s join algorithm in [30], when applied
to Q and DC′ directly, already solves directed subgraph listing optimally in O(polymat(DC′)) =
O(polymat(DC)) time. This dramatically simplifies — in terms of both procedure and analysis —
an algorithm of Jayaraman et al. [18] that has the same guarantees.

The same elegance extends to subgraph sampling: by applying our new join sampling algorithm to
Q and the magical DC′, we can sample an occurrence of P in G using O(polymat(DC)/max{1,OUT})
expected time, after a preprocessing of O(|E|) expected time. As polymat(DC) never exceeds but
can be much lower than AGM (Q) = Θ(|E|ρ∗(P )), our result compares favorably with the state of
the art [13,15,24] reviewed in Section 1.2.

By virtue of the power of sampling, our findings have further implications on other fundamental
problems including output-size estimation, output permutation, and small-delay enumeration. We
will elaborate on the details in Section 5.

2 Preliminaries

Set Functions, Polymatroid Bounds, and Modular Bounds. Suppose that V is a finite set.
We refer to a function h : 2V → R≥0 as a set function over V, where R≥0 is the set of non-negative
real values. Such a function h is said to be

• zero-grounded if h(∅) = 0;

• monotone if h(X ) ≤ h(Y) for all X ,Y satisfying X ⊂ Y ⊆ V;

• modular if h(X ) =
∑

A∈X h({A}) holds for any X ⊆ V;

• submodular if h(X ∪ Y) + h(X ∩ Y) ≤ h(X ) + h(Y) holds for any X ,Y ⊆ V.
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Define:

MV = the set of modular set functions over V
ΓV = the set of set functions over V that are zero-grounded, monotone, submodular

Note that every modular function must be zero-grounded, monotone, and submodular. Hence,
MV ⊆ ΓV .

Consider C to be a set of triples each having the form (X ,Y, NY|X ) where X ⊂ Y ⊆ V and
NY|X ≥ 1 is an integer. We will refer to C as a rule collection over V. The rule collection instructs
us to focus on only those set functions in:

HC =
{
set function h over V | h(Y)− h(X ) ≤ logNY|X , ∀(X ,Y, NY|X ) ∈ C

}
. (3)

The polymatroid bound of C can now be defined as

polymat(C) = exp2

(
max

h∈ΓV∩HC
h(V)

)
. (4)

Recall that exp2(x) = 2x. Similarly, the modular bound of C is defined as

modular(C) = exp2

(
max

h∈MV∩HC
h(V)

)
. (5)

Join Output Size Bounds. Let us fix a join Q whose schema graph is G = (V, E). Suppose that
Q is consistent with a set DC of degree constraints, i.e., Q |= DC. As explained in Section 1.1,
we follow the convention that each relation of Q implicitly inserts a cardinality constraint (i.e., a
special degree constraint) to DC. The set DC is a rule collection over V. The following lemma was
established by Khamis et al. [23]:

Lemma 2.1 ( [23]). The output size OUT of Q is at most polymat(DC), i.e., the polymatroid bound
of DC defined in (4).

How about modular(DC), i.e., the modular bound of V? As MV ⊆ ΓV , we have modular(DC) ≤
polymat(DC) and the inequality can be strict in general. However, an exception arises when DC is
acyclic, as proved in [30]:

Lemma 2.2 ( [30]). When DC is acyclic, modular(DC) = polymat(DC), namely, maxh∈ΓV∩HDC
h(V) =

maxh∈MV∩HDC
h(V).

As a corollary, when DC is acyclic, modular(DC) always serves as an upper bound of OUT.
In our technical development, we will need to analyze the set functions h∗ ∈ ΓV that realize the
polymatroid bound, i.e., h∗(V) = maxh∈ΓV∩HDC

h(V). A crucial advantage provided by Lemma 2.2
is that we can instead scrutinize those set functions h∗ ∈ MV realizing the modular bound, i.e.,
h∗(V) = maxh∈MV∩HDC

h(V). Compared to their submodular counterparts, modular set functions
exhibit more regularity because every h ∈ MV is fully determined by its value h({A}) on each
individual attribute A ∈ V. In particular, for any h ∈ MV ∩HDC, it holds true that h(Y)− h(X ) =∑

A∈Y\X h(A) for any X ⊂ Y ⊆ V.

Formally, if we associate each A ∈ V with a variable νA, then maxh∈MV∩HDC
h(V) — hence, also

maxh∈ΓV∩HDC
h(V) for acyclic DC — is precisely the optimal value of the following LP:
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modular LP maximize
∑

A∈V νA subject to∑
A∈Y\X

νA ≤ logNY|X for each (X ,Y, NY|X ) ∈ DC

νA ≥ 0 for each A ∈ V

We will also need to work with the LP’s dual. Specifically, if we associate a variable δY|X for every
degree constraint (X ,Y, NY|X ) ∈ DC, then the dual LP is:

dual modular LP minimize
∑

(X ,Y,NY|X )∈DC

δY|X · logNY|X subject to

∑
(X ,Y,NY|X )∈DC

such that A∈Y\X

δY|X ≥ 1 for each A ∈ V

δY|X ≥ 0 for each (X ,Y, NY|X ) ∈ DC

By the strong duality theorem, the optimal values of the two LPs are equal, meaning that
maxh∈MV∩HDC

h(V) is also the optimal value of the dual modular LP.

Readers may refer to Appendix A for a brief introduction to the basic properties of LP related
to duality and its geometric interpretations.

3 Join Sampling under Acyclic Degree Dependency

This section serves as a proof of our first main result:

Theorem 3.1. For any join Q consistent with an acyclic set DC of degree constraints, we can
build in O(IN) expected time a data structure that supports each join sampling operation in
O(polymat(DC)/max{1,OUT}) expected time, where IN and OUT are the input and out sizes
of Q, respectively, and polymat(DC) is the polymatroid bound of DC.

3.1 Basic Definitions

Let G = (V, E) be the schema graph of Q, and GDC be the constraint dependency graph determined
by DC. For each hyperedge F ∈ E , we denote by RF the relation in Q whose schema corresponds
to F . Recall that every constraint (X ,Y, NY|X ) ∈ DC is guarded by at least one relation in Q.
Among them, we arbitrarily designate one relation as the constraint’s main guard, whose schema is
represented as F (X ,Y) (the main guard can then be conveniently identified as RF (X ,Y)).

Example 3.1. We will illustrate the concepts and algorithms of this section using a running example
where Q = {RABC , RBCD, RACD, RABD}, with the four relations’ content shown in Figure 1. The
schema graph of Q is G = (V, E), where V = {A,B,C,D} and E = {{A,B,C}, {B,C,D}, {A,C,D},
{A,B,D}}. Figure 2a shows the degree constraints in DC under columns 2-4, where set symbols are
omitted for better clarity (e.g., Y = ABC should be understood as Y = {A,B,C}). For convenient
referencing, an ID has been assigned to each constraint (the first column). The last column describes
the main guards of all the constraints. Figure 2b gives the constraint dependency graph GDC

determined by DC.

Set

k = |V|.

7



A B C

1 3 6
1 4 2
1 4 7
2 1 3
2 2 1
2 3 4

A B D

1 4 2
1 4 4
2 2 1
2 2 2
2 2 3
2 2 7

A C D

1 2 4
1 7 2
1 7 4
2 1 3
2 5 7
3 4 6

B C D

2 1 3
2 4 1
3 5 5
4 2 4
4 7 2
4 7 4

RABC RABD RACD RBCD

Figure 1: Running example: Q is the join on relations RABC , RBCD, RACD, and RABD

constraint ID X Y NY|X RF (X ,Y)

1 ∅ ABC 6 RABC

2 ∅ ABD 6 RABD

3 ∅ ACD 6 RACD

4 ∅ BCD 6 RBCD

5 ∅ AB 2 RABD

6 A AB 3 RABC

7 BC BCD 2 RBCD

8 AB ABC 2 RABC

C D

BA

(a) DC (b) GDC

Figure 2: The degree constraint set DC and the constraint dependency graph GDC

As GDC is a DAG (acyclic directed graph), we can order its k vertices (i.e., attributes) into a
topological order: A1, A2, ..., Ak. This means that GDC cannot have an edge from Ai to Aj where
the subscripts satisfy j < i; this further implies — by the way GDC is constructed — that DC has
no constraint (X ,Y, NY|X ) satisfying Ai ∈ X and Aj ∈ Y \ X (because such a constraint would
induce an edge from Ai to Aj). For any i ∈ [k], let us define

DC(Ai) = {(X ,Y, NY|X ) ∈ DC | Ai ∈ Y \ X}. (6)

By the aforementioned observations, for each (X ,Y, NY|X ) ∈ DC(Ai), the set X can include only
attributes Aj with subscripts j < i.

Example 3.2. The subsequent discussion will assume the topological order A,B,C,D of the graph
GDC in Figure 2b. Accordingly, we can derive from (6):

DC(A1) = DC(A) = the set of constraints with IDs 1, 2, 3, and 5

DC(A2) = DC(B) = the set of constraints with IDs 1, 2, 4, 5, and 6

DC(A3) = DC(C) = the set of constraints with IDs 1, 3, 4, and 8

DC(A4) = DC(D) = the set of constraints with IDs 2, 3, 4, and 7.

Constraint IDs are as shown in Figure 2a.

For convenience, let us introduce for each i ∈ [0, k]:

Vi =
{
∅ if i = 0
{A1, A2, ..., Ai} if i ≥ 1

(7)
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We now define an important concept called “relative degree”. For this purpose, fix

• an arbitrary i ∈ [k];

• an arbitrary tuple w over Vi−1 — note: if i = 1, then Vi−1 = ∅ and w is the null tuple;

• an arbitrary constraint (X ,Y, NY|X ) ∈ DC(Ai) — note: recall from our earlier discussion that
X can contain only attributes from Vi, because of which w must have set a value for every
attribute in X (but w has not set any value for Ai as Ai ∈ Y \ X );

• an arbitrary value v ∈ dom.

Then, the relative degree of (w, v) in RF (X ,Y) is:

reldegX ,Y(w, v) =


0 if RF (X ,Y) ⋉w = ∅∣∣σAi=v(ΠY (RF (X ,Y)⋉w))

∣∣∣∣ΠY (RF (X ,Y)⋉w)
∣∣ otherwise

(8)

where σ and ⋉ are the standard selection and semi-join operators in relational algebra, respectively.
To understand the intuition behind (8), consider (w, v) as a tuple over Vi, i.e., “extending” w by
setting Ai = v. Then, the numerator (in the second branch) of (8) is the size of ΠY(RF (X ,Y)⋉(w, v)).
It is thus clear that (8) gives the fraction that ΠY(RF (X ,Y)⋉(w, v)) accounts for in ΠY(RF (X ,Y)⋉w).

Example 3.3. As mentioned in Example 3.2, the topological order for our running example is
A1 = A,A2 = B,A3 = C, and A4 = D. Consider i = 2 and w as a tuple over {A1} with w(A) = 2.
Furthermore, choose from DC(A2) = DC(B) a constraint (X ,Y, NY|X ) = (A,AB, 3) (with ID 6),
whose main guard is RF (X ,Y) = RABC (see Figure 2a). Finally, fix value v = 2.

From Figure 1, we can see that RF (X ,Y) ⋉w has three tuples {(2, 1, 3), (2, 2, 1), (2, 3, 4)} (over
schema ABC) and thus ΠY(RF (X ,Y) ⋉w) = {(2, 1), (2, 2), (2, 3)} (over schema AB). Among the
tuples in ΠY(RF (X ,Y) ⋉w), only (2, 2) satisfies B = 2. Thus, |σAi=v(ΠY(RF (X ,Y) ⋉w))| = 1. By
(8), the relative degree of (w, v) in RABC is reldegX ,Y(w, v) = 1/3.

Next, we extend “relative degree” to another concept called “maximum relative degree”. For
this purpose, fix

• an arbitrary i ∈ [k];

• an arbitrary tuple w over Vi−1;

• an arbitrary value v ∈ dom.

Then, the maximum relative degree of (w, v) is:

reldeg∗(w, v) = max
(X ,Y,NY|X )∈DC(Ai)

reldegX ,Y(w, v). (9)

Conceptually, for every degree constraint (X ,Y, NY|X ) ∈ DC(Ai), we calculate the relative degree
of (w, v) in RF (X ,Y), after which reldeg∗(w, v) is the maximum of all those relative degrees. The
following “companion” definition aims to capture which degree constraint attains the maximum:

constraint∗(w, v) = argmax
(X ,Y,NY|X )∈DC(Ai)

reldegX ,Y(w, v). (10)
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Example 3.4. Let us first consider i = 1, w as the null tuple, and v = 2. As noted in Example 3.2,
the set DC(Ai) = DC(A) has four constraints: (∅, ABC, 6), (∅, ABD, 6), (∅, ACD, 6), and (∅, AB, 2).
As shown in Figure 2a, their main guards are RABC , RABD, RACD, and RABD, respectively. We
have from (8):

reldeg∅,ABC(w, v) =
|σA=2(ΠABC(RABC))|
|ΠABC(RABC)|

=
3

6
=

1

2

reldeg∅,ABD(w, v) =
|σA=2(ΠABD(RABD))|
|ΠABD(RABD)|

=
4

6
=

2

3

reldeg∅,ACD(w, v) =
|σA=2(ΠACD(RACD))|
|ΠACD(RACD)|

=
2

6
=

1

3

reldeg∅,AB(w, v) =
|σA=2(ΠAB(RABD))|
|ΠAB(RABD)|

=
1

2
.

Hence, reldeg∗(w, v) = 2/3 and constraint∗(w, v) = (∅, ABD, 6).

As another example, consider i = 2, w as a tuple over {A} with w(A) = 2, and v = 2. The
set DC(Ai) = DC(B) has five constraints: (∅, ABC, 6), (∅, ABD, 6), (∅, BCD, 6), (∅, AB, 2), and
(A,AB, 3), whose main guards are RABC , RABD, RBCD, RABD, and RABC , respectively. We have:

reldeg∅,ABC(w, v) =
|σA=2,B=2(ΠABC(RABC))|
|σA=2(ΠABC(RABC))|

=
1

3

reldeg∅,ABD(w, v) =
|σA=2,B=2(ΠABD(RABD))|
|σA=2(ΠABD(RABD))|

=
4

4
= 1

reldeg∅,BCD(w, v) =
|σB=2(ΠBCD(RBCD))|
|ΠBCD(RBCD)|

=
2

6
=

1

3

reldeg∅,AB(w, v) =
|σA=2,B=2(ΠAB(RABD))|
|σB=2(ΠAB(RABD))|

=
1

1
= 1

reldegA,AB(w, v) =
|σA=2,B=2(ΠAB(RABC))|
|σB=2(ΠAB(RABC))|

=
1

3
.

Hence, reldeg∗(w, v) = 1 and constraint∗(w, v) = (∅, ABD, 6) (alternatively, one may also set
constraint∗(w, v) = (∅, AB, 2)).

3.2 Global and Local Polymatroid Bounds

Henceforth, we will fix an arbitrary optimal solution

{δ∗Y|X | (X ,Y, NY|X ) ∈ DC} (11)

to the dual modular LP in Section 2. Thus:∏
(X ,Y,NY|X )∈DC

N
δ∗Y|X
Y|X = exp2

( ∑
(X ,Y,NY|X )∈DC

δ∗Y|X · logNY|X

)
= exp2

(
max

h∈MV∩HDC

h(V)
)

(by (5)) = modular(DC)

(by Lemma 2.2) = polymat(DC). (12)

Example 3.5. In Figure 2a, we have assigned an ID to each degree constraint in DC. For each
i ∈ [1, 8], introduce δi as an alias for the variable δY|X of the constraint with ID i. Furthermore,
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define Ni as the value in the column NY|X (of Figure 2a) corresponding to the constraint with ID i
(e.g., N1 = 6, N5 = 2, and N6 = 3). Then, the dual modular LP for our running example is:

minimize
8∑

i=1
δi · logNi subject to

δi ≥ 0 for each i ∈ [8]

δ1 + δ2 + δ3 + δ5 ≥ 1 this corresponds to
∑

(X ,Y,NY|X )∈DC(A)

δY|X ≥ 1

δ1 + δ2 + δ4 + δ5 + δ6 ≥ 1 this corresponds to
∑

(X ,Y,NY|X )∈DC(B)

δY|X ≥ 1

δ1 + δ2 + δ4 + δ8 ≥ 1 this corresponds to
∑

(X ,Y,NY|X )∈DC(C)

δY|X ≥ 1

δ2 + δ3 + δ4 + δ7 ≥ 1 this corresponds to
∑

(X ,Y,NY|X )∈DC(D)

δY|X ≥ 1

The following values make an optimal solution to the above LP:

δABC|∅ = δ1 = 0

δABD|∅ = δ2 = 0

δACD|∅ = δ3 = 0

δBCD|∅ = δ4 = 0

δAB|∅ = δ5 = 1

δAB|A = δ6 = 0

δBCD|BC = δ7 = 1

δABC|AB = δ8 = 1

Define δ∗ABC|∅ = δ∗ABD|∅ = δ∗ACD|∅ = δ∗BCD|∅ = δ∗AB|A = 0 and δ∗AB|∅ = δ∗BCD|BC = δ∗ABC|AB = 1. We
thus have:

polymat(DC) = exp2

( ∑
(X ,Y,NY|X )∈DC

δ∗Y|X · logNY|X

)
= exp2

(
logNAB|∅ + logNBCD|BC + logNABC|AB

)
= NAB|∅ ·NBCD|BC ·NABC|AB

= 2 · 2 · 2 = 8.

The values of NAB|∅, NBCD|BC , and NABC|AB are shown in Figure 2a.

The polymatroid bound in (12) is “global” because it is an upper bound on the size of the whole
result join(Q). Next, we will introduce its “local” counterpart. For this purpose, fix

• an arbitrary integer i ∈ [0, k], and

• an arbitrary tuple w over Vi (see (7)).

Define:

B(w) = exp2

( ∑
(X ,Y,NY|X )∈DC

δ∗Y|X · log degY|X (RF (X ,Y) ⋉w)
)
. (13)
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The lemma below explains why this is a local polymatroid bound. In other words, if we filter the
join result join(Q) by discarding all those tuples inconsistent with the values of w, the number of
remaining tuples in join(Q) is at most B(w).

Lemma 3.2. |join(Q) ▷◁ w| ≤ B(w).

Proof. Define a join

Q(w) = {R⋉w | R ∈ Q}.

It is clear that join(Q) ▷◁ w = join(Q(w)). The subsequent proof will show |join(Q(w))| ≤ B(w).

Construct a set of constraints DC(w) as follows. Initially, set DC(w) = ∅. For each constraint
(X ,Y, NY|X ) ∈ DC, add (X ,Y, N ′

Y|X ) to DC(w), where N ′
Y|X = degY|X (RF (X ,Y) ⋉ w). As far

as Q(w) is concerned, this constraint is guarded by the relation RF (X ,Y) ⋉ w. Hence, Q(w) is
compatible with DC(w).

The constraint dependency graph of DC(w) is identical to that of DC. Thus, DC(w) is acyclic;
and Lemma 2.1 tells us that |join(Q(w))| ≤ polymat(DC(w)). Next, we will prove:

polymat(DC(w)) ≤ B(w). (14)

It will then follow that |join(Q(w))| ≤ polymat(DC(w)) ≤ B(w).

By Lemma 2.2, we have polymat(DC(w)) = modular(DC(w)), while as discussed in Section 2
log(modular(DC(w))) is the value obtained by the dual modular LP:

minimize
∑

(X ,Y,N ′
Y|X )∈DC(w)

δY|X · logN ′
Y|X subject to

∑
(X ,Y,N ′

Y|X )∈DC(w)

such that A∈Y\X

δY|X ≥ 1 for each A ∈ V

δY|X ≥ 0 for each (X ,Y, N ′
Y|X ) ∈ DC(w)

Consider the set {δ∗Y|X | (X ,Y, NY|X ) ∈ DC} in (11), namely, an optimal solution to the dual

modular LP defined by DC. This is also a feasible solution to the above LP defined by DC(w).
Hence, the value returned by this LP cannot exceed∑

(X ,Y,N ′
Y|X )∈DC(w)

δ∗Y|X · logN
′
Y|X =

∑
(X ,Y,NY|X )∈DC

δ∗Y|X · log degY|X (RF (X ,Y) ⋉w)

= log(B(w)).

We now have modular(DC(w)) ≤ B(w), which then gives (14) (because polymat(DC(w)) =
modular(DC(w)), as mentioned).

Example 3.6. Let us first consider i = 1 and w as the tuple over V1 = {A} with w(A) = 2. Utilizing
the optimal LP solution in Example 3.5 and also the main-guard relations shown in Figure 2a, we
have

B(w) = exp2

(
δ∗AB|∅ · log degAB|∅(RABD ⋉w) + δ∗BCD|BC · log degBCD|BC(RBCD ⋉w)

δ∗ABC|AB · log degABC|AB(RABC ⋉w)
)
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= degAB|∅(RABD ⋉w) · degBCD|BC(RBCD ⋉w) · degABC|AB(RABC ⋉w)

= 1 · 2 · 1 = 2.

Lemma 3.2 assures us that at most 2 tuples u ∈ join(Q) can satisfy u(A) = 2.

As another example, let us consider i = 2 and w as the tuple over V2 = {A,B} with w(A) =
w(B) = 2. This time, we have:

B(w) = exp2

(
δ∗AB|∅ · log degAB|∅(RABD ⋉w) + δ∗BCD|BC · log degBCD|BC(RBCD ⋉w)

+δ∗ABC|AB · log degABC|AB(RABC ⋉w)
)

= degAB|∅(RABD ⋉w) · degBCD|BC(RBCD ⋉w) · degABC|AB(RABC ⋉w)

= 1 · 1 · 1 = 1.

Lemma 3.2 assures us that at most one tuple u ∈ join(Q) can satisfy u(A) = 2 and u(B) = 2.

The following simple observations will be useful later:

• If i = 0, then w is the null tuple and B(w) = polymat(DC).

• If i = k and w ∈ join(Q), then B(w) = 1.

3.3 The Core: ADC-Sample

Figure 3 presents ADC-sample (where ADC stands for acyclic dependence constraints), which is the
core of our sampling method. At a high level, ADC-sample processes one attribute at a time according
to the topological order A1, A2, ..., Ak. The for-loop in Lines 2-8 finds a value vi for attribute Ai

(i ∈ [k]). The algorithm may fail to return anything, but when it succeeds (i.e., returning at Line 9),
the values v1, v2, ..., vk will form a uniformly random tuple from join(Q).

Next, we explain the for-loop. Suppose that, in the first i − 1 iterations of the for-loop, the
algorithm has already found the values v1, ..., vi−1 for A1, ..., Ai−1, respectively. These values are
stored in tuple wi−1 (i.e., wi−1(Aj) = vj for all j ∈ [i− 1]). The i-th iteration is designed to achieve
the following purpose: for any tuple u ∈ join(Q) with u[{A1, ..., Ai−1}] = wi−1, sample the value
u(Ai) for attribute Ai with a probability proportional to B(u[{A1, ..., Ai−1, Ai}])/B(wi−1).

Let us now delve into the details. Line 3 randomly chooses a degree constraint (X ◦,Y◦, NY◦|X ◦)
from DC(Ai) (see (6) for the definition of DC(Ai)). Conceptually, identify the main guard RF (X ◦,Y◦)

of this constraint, semi-join the relation with wi−1, and project the semi-join result on Y◦ to obtain
ΠY◦(RF (X ◦,Y◦) ⋉wi−1). Then, Line 4 randomly chooses a tuple u◦ from ΠY◦(RF (X ◦,Y◦) ⋉wi−1)
and Line 5 takes u◦(Ai) as the value of vi (note: Ai ∈ Y◦ − X ◦). Physically, we do not compute
ΠY◦(RF (X ◦,Y◦) ⋉wi−1) during the sampling process; instead, with proper preprocessing (discussed
later), we can acquire the value vi in O(1) time. Continuing, Line 6 may declare failure and terminate
ADC-sample, but if we get past this line, (X ◦,Y◦, NY◦|X ◦) must be exactly constraint∗(wi−1, vi)
(whose definition is in (10)). As clarified later, the check at Line 6 can be performed in O(1) time.
We now form a tuple wi that takes value vj on attribute Aj for each j ∈ [i] (Line 7). Line 8 allows
us to pass with probability

ppass(wi−1,wi) =
B(wi)

B(wi−1)
· 1

reldeg∗(wi−1,wi(Ai))
(15)
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ADC-sample
0. A1, A2, ..., Ak ← a topological order of GDC

1. w0 ← a null tuple
2. for i = 1 to k do
3. pick a constraint (X ◦,Y◦, NY◦|X ◦) uniformly at random from DC(Ai)

4. u◦ ← a tuple chosen uniformly at random from ΠY◦(RF (X ◦,Y◦) ⋉wi−1)

/* note: if i = 1, then RF (X ◦,Y◦) ⋉wi−1 = RF (X ◦,Y◦) */

5. vi ← u◦(Ai)
6. if (X ◦,Y◦, NY◦|X ◦) ̸= constraint∗(wi−1, vi) then declare failure

7. wi ← the tuple over Vi formed by extending wi−1 with Ai = vi
8. declare failure with probability 1− ppass(wi−1,wi), where ppass(wi−1,wi) is given in (15)
9. if wk[F ] ∈ RF for ∀F ∈ E then return wk /* that is, wk ∈ join(Q) */
10. else declare failure

Figure 3: The ADC-sample algorithm

or otherwise terminate the algorithm by declaring failure. As proved later, ppass(wi−1,wi) cannot
exceed 1 (Lemma 3.3); moreover, this value can be computed in O(1) time (Appendix B). The
overall execution time of ADC-sample is constant.

Example 3.7. We will illustrate ADC-sample using our running example in Figures 1a and 2 according
to the topological order of attributes A1 = A,A2 = B,A3 = C, and A4 = D. Recall that we have
obtained an optimal solution to the dual modular LP in Example 3.5.

At the outset, w0 = null and i = 1. Suppose that, from DC(A1) = DC(A) (which can be found in
Example 3.2), Line 3 randomly chooses (X ◦,Y◦, NY◦|X ◦) = (∅, ABD, 6). Here, ΠY◦(RF (X ◦,Y◦)⋉w0)
is simply the entire RABD. Thus, Line 4 randomly picks a tuple u◦ from RABD; for our discussion,
let it be (2, 2, 1), which gives v1 = 2 at Line 5. Line 6 would output “failure” if constraint∗(w0, 2)
was not (∅, ABD, 6). However, as shown in Example 3.4, constraint∗(w0, 2) is indeed (∅, ABD, 6).
Hence, ADC-sample creates tuple w1 with w1(A) = 2. Then, the algorithm calculates

ppass(w0,w1) =
B(w1)

B(w0)
· 1

reldeg∗(w0, 2)
=

B(w1)

polymat(DC)
· 1

reldeg∗(w0, 2)

=
2

8
· 1

2/3
=

3

8

where the derivation of B(w1), polymat(DC), and reldeg∗(w0, 2) can be found in Examples 3.6, 3.5,
and 3.4, respectively. Accordingly, Line 8 generates a random number x from 0 to 1 and terminates
with “failure” if x > 3/8. Here, let us assume x ≤ 3/8 so the execution continues.

We now return to Line 2 with i = 2. Suppose that, from DC(A2) = DC(B), Line 3 again picks
(X ◦,Y◦, NY◦|X ◦) = (∅, ABD, 6). Here, ΠY◦(RF (X ◦,Y◦) ⋉ w1) includes the following tuples from
RABD: (2, 2, 1), (2, 2, 2), (2, 2, 3), and (2, 2, 7). From them, let us assume that Line 4 randomly picks
u◦ = (2, 2, 3), yielding v2 = 2 at Line 5. Example 3.4 has shown that constraint∗(w1, 2) is exactly
(∅, ABD, 6), allowing the execution to get past Line 6. Line 7 now creates w2, which is a tuple over
{A,B} with w2(A) = 2 and w2(B) = 2. Next, the algorithm calculates

ppass(w1,w2) =
B(w2)

B(w1)
· 1

reldeg∗(w1, 2)
=

1

2
· 1
1
=

1

2
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where the derivation of B(w1) and B(w2) can be found in Example 3.6, and that of reldeg∗(w1, 2)
in Example 3.4. Hence, Line 8 gets past with probability 1/2. The rest execution is similar and
omitted.

In Appendix B, we will explain how to preprocess the relations of Q in O(IN) expected time to
ensure that ADC-sample runs in O(1) time. We now proceed to analyze ADC-sample, starting with
a lemma suggesting that the value in (15) serves as a legal probability value.

Lemma 3.3. For every i ∈ [k], it holds that ppass(wi−1,wi) ≤ 1.

Proof. Consider an arbitrary constraint (X ,Y, NY|X ) ∈ DC(Ai). Recall that ADC-sample processes
the attributes by the topological order A1, ..., Ak. In the constrained dependency graph GDC, every
attribute of X has an out-going edge to Ai. Hence, all the attributes in X must be processed
prior to Ai. This implies that all the tuples in RF (X ,Y) ⋉ wi−1 must have the same projection
on X . Therefore, degY|X (RF (X ,Y) ⋉wi−1) equals |ΠY(RF (X ,Y) ⋉wi−1)|. By the same reasoning,
degY|X (RF (X ,Y) ⋉wi) equals |ΠY(RF (X ,Y) ⋉wi)|.

Setting v = wi[Ai], we can derive:

degY|X (RF (X ,Y) ⋉wi)

degY|X (RF (X ,Y) ⋉wi−1)
=

|ΠY(RF (X ,Y) ⋉wi)|
|ΠY(RF (X ,Y) ⋉wi−1)|

=

∣∣σAi=v(ΠY(RF (X ,Y) ⋉wi−1))
∣∣∣∣ΠY(RF (X ,Y) ⋉wi−1)

∣∣
= reldegX ,Y(wi−1, v)

≤ reldeg∗(wi−1, v). (16)

On the other hand, for any constraint (X ,Y, NY|X ) /∈ DC(Ai), it trivially holds that

degY|X (RF (X ,Y) ⋉wi) ≤ degY|X (RF (X ,Y) ⋉wi−1) (17)

because RF (X ,Y) ⋉wi is a subset of RF (X ,Y) ⋉wi−1.

We can now derive

ppass(wi−1,wi) =
1

reldeg∗(wi−1, v)

∏
(X ,Y,NY|X )∈DC

( degY|X (RF (X ,Y) ⋉wi)

degY|X (RF (X ,Y) ⋉wi−1)

)δ∗Y|X

(by (17)) ≤ 1

reldeg∗(wi−1, v)

∏
(X ,Y,NY|X )∈DC(Ai)

( degY|X (RF (X ,Y) ⋉wi)

degY|X (RF (X ,Y) ⋉wi−1)

)δ∗Y|X

(by (16)) ≤ 1

reldeg∗(wi−1, v)

∏
(X ,Y,NY|X )∈DC(Ai)

reldeg∗(wi−1, v)
δ∗Y|X

= reldeg∗(wi−1, v)

(∑
(X ,Y,NY|X )∈DC(Ai)

δ∗Y|X

)
−1
≤ 1.

The last step used
∑

(X ,Y,NY|X )∈DC(Ai)
δ∗Y|X ≥ 1 guaranteed by the dual modular LP (see the

discussion in Section 3.2).

Next, we argue that every result tuple u ∈ join(Q) is returned by ADC-sample with the same
probability. For this purpose, let us define two random events for each i ∈ [k]:
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• event E1(i): (X ◦,Y◦, NY◦|X ◦) = constraint∗(wi−1,u(Ai)) in the i-th loop of ADC-sample;

• event E2(i): Line 8 does not declare failure in the i-th loop of ADC-sample.

The probability for ADC-sample to return u can be derived as follows.

Pr[u returned] =

k∏
i=1

Pr[vi = u(Ai),E1(i),E2(i) | wi−1 = u[Vi−1]]

(if i = 1, then wi−1 = u[Vi−1] becomes w0 = u[∅], which is vacuously true)

=
k∏

i=1

(
Pr[vi = u(Ai),E1(i) | wi−1 = u[Vi−1]] ·

Pr[E2(i) | E1(i), vi = u(Ai),wi−1 = u[Vi−1]]
)
. (18)

Observe

Pr[vi = u(Ai),E1(i) | wi−1 = u[Vi−1]]

= Pr[E1(i) | wi−1 = u[Vi−1]] ·Pr[vi = u(Ai) | E1(i),wi−1 = u[Vi−1]]

=
1

|DC(Ai)|
·
∣∣σAi=u(Ai)(ΠY(RF (X ◦,Y◦) ⋉ u[Vi−1]))

∣∣∣∣ΠY(RF (X ◦,Y◦) ⋉ u[Vi−1])
∣∣

(note: (X ◦,Y◦, NY◦|X ◦) = constraint∗(u[Vi−1],u(Ai)), due to E1(i) and wi−1 = u[Vi−1]])

=
1

|DC(Ai)|
· reldegX ◦,Y◦(u[Vi−1],u(Ai))

=
1

|DC(Ai)|
· reldeg∗(u[Vi−1],u(Ai)). (19)

On the other hand:

Pr[E2(i) | E1(i), vi = u(Ai),wi−1 = u[Vi−1]] = ppass(u[Vi−1],u[Vi])

(by (15)) =
B(u[Vi])
B(u[Vi−1])

· 1

reldeg∗(u[Vi−1],u(Ai))
. (20)

Plugging (19) and (20) into (18) yields

Pr[u returned] =
k∏

i=1

B(u[Vi])
B(u[Vi−1])

· 1

|DC(Ai)|
=

B(u[Vk])
B(u[V0])

·
k∏

i=1

1

|DC(Ai)|

=
1

B(null)
·

k∏
i=1

1

|DC(Ai)|

=
1

polymat(DC)
·

k∏
i=1

1

|DC(Ai)|
.

As the above is identical for every u ∈ join(Q), we can conclude that each tuple in the join result
gets returned by ADC-sample with the same probability. As an immediate corollary, each run of
ADC-sample successfully returns a sample from join(Q) with probability

OUT

polymat(DC)
·

k∏
i=1

1

|DC(Ai)|
= Ω

( OUT

polymat(DC)

)
.

We thus expect to find a sample from join(Q) by repeating ADC-sample O(polymat(DC)/OUT)
times.
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3.4 Completing the Proof of Theorem 3.1

Recall that, in join sampling, we are supposed to return a uniform sample of join(Q) or declare
join(Q) = ∅. The ADC-sample algorithm alone does not fulfill the purpose because it will never
succeed if OUT = 0. This issue can be remedied by executing two threads concurrently:

• The first thread repeatedly invokes ADC-sample until it manages to return a sample.

• The other thread runs Ngo’s algorithm in [30] to compute join(Q) in full, after which we can
declare join(Q) ̸= ∅ or sample from join(Q) in constant time.

As soon as one thread finishes, we manually terminate the other one.

The above two-thread strategy guarantees that a join sampling operation can be completed
in O(polymat(DC)/max{1,OUT}) expected time. To see why, consider first the scenario where
OUT ≥ 1. In this case, we expect to find a sample with O(polymat(DC)/OUT) repeats of ADC-
sample. Hence, the first thread finishes in O(polymat(DC)/OUT) expected time. On the other hand,
if OUT = 0, the second thread will finish in O(polymat(DC)) time. This concludes the proof of
Theorem 3.1.

Remarks. When DC has only cardinality constraints (is thus “trivially” acyclic), ADC-sample
simplifies into the sampling algorithm of Kim et al. [24]. In retrospect, two main obstacles prevent
a straightforward extension of their algorithm to an arbitrary acyclic DC. The first is identifying
an appropriate way to deal with constraints (X ,Y, NY|X ) ∈ DC where X ≠ ∅ (such constraints
are absent in the degenerated context of [24]). The second obstacle involves determining how to
benefit from a topological order (attribute ordering is irrelevant in [24]); replacing the order with a
non-topological one may ruin either the correctness or the efficiency of ADC-sample.

4 Subgraph Sampling with Arbitrary Patterns

This section will concentrate on the subgraph sampling problem. As before, let G = (V,E) be the
given data graph, which is a simple directed graph where each vertex has an out-degree at most λ;
let P = (VP , EP ) be the given pattern graph, which is a simple weakly-connected directed graph of
a constant size (i.e., |VP | = O(1)). Denote by occ(G,P ) the set of occurrences of P in G. Our goal
is to preprocess G into a data structure that can repeatedly sample from occ(G,P ) with low cost.

4.1 A Polymatroid Bound on the Number of Occurrences

This subsection will formulate a “polymatroid function” based on G = (V,E) and P = (VP , EP )
and relate the function to the cardinality of occ(G,P ). Our discussion will also clarify why finding
the occurrences in occ(G,P ) — i.e., the goal of subgraph listing — can be achieved using a join.

We will first design a rule collection DC over VP . Recall from Section 2 that a rule collection
over VP comprises triples of the form (X ,Y, NY|X ) where X ⊂ Y ⊆ VP . Setting m = |E|, we obtain
DC using the procedure below:

Build-DC (m,λ, P )
0. DC = ∅
1. for each edge (X,Y ) ∈ EP do
2. add (∅, {X,Y },m) to DC
3. add ({X}, {X,Y }, λ) to DC
4. return DC

17



Equipped with DC, we now introduce a function:

polymat(m,λ, P ) = polymat(DC) (21)

where polymat(DC) is as defined in (4).

The above formulation is closely related to a folklore reduction from subgraph listing to joins.
To elaborate, let us build a companion join Q from G and P in two steps.

1. For every edge (X,Y ) ∈ EP , add to Q an empty relation R{X,Y } with schema {X,Y }.

2. For every edge (X,Y ) ∈ EP , insert into the relation R{X,Y } a tuple u with u(X) = x and
u(Y ) = y for each edge (x, y) ∈ E (i.e., (x, y) is an edge in the data graph G).

Importantly, the rule collection DC acquired from Build-DC serves as a set of degree constraints
consistent with Q, i.e., Q |= DC. Specifically:

• Each triple of the form (∅, {X,Y },m) ∈ DC becomes a cardinality constraint stating that
|R{X,Y }| ≤ m. It holds because |R{X,Y }| is precisely m by our construction.

• Each triple of the form ({X}, {X,Y }, λ) ∈ DC becomes a degree constraint stating that
deg{X,Y }|{X}(R{X,Y }) ≤ λ. It holds because every vertex x ∈ V has an out-degree at most λ
in G.

The constraint dependence graph GDC of Q is precisely P .

The relationships between join(Q) and occ(G,P ) satisfy two properties:

• P1: Let u be a tuple in join(Q) such that u maps each X ∈ VP to a distinct vertex u(X) ∈ V .
Then, the subgraph induced by the edge set {(u(X),u(Y )) | (X,Y ) ∈ EP } must be an
occurrence in occ(G,P ) — we say that the occurrence is produced by u.

• P2: Every occurrence in occ(G,P ) is produced by the same number c of tuples in join(Q),
where c ≥ 1 is a constant equal to the number of automorphisms of P .

If we define

OUT = |occ(G,P )| (22)

OUTQ = |join(Q)| (23)

the above discussion implies

c ·OUT ≤ OUTQ ≤ polymat(DC) = polymat(m,λ, P ). (24)

where the second inequality is due to Lemma 2.1. This tells us OUT ≤ polymat(m,λ, P ). On the
other hand, Appendix C proves:

Lemma 4.1. Fix any weakly-connected pattern graph P = (VP , EP ). For any sufficiently large
integers m and λ satisfying λ ≤ m, there is a data graph G = (V,E) with |E| = m and maximum
vertex out-degree at most λ such that G has Ω(polymat(m,λ, P )) occurrences of P .

Let us define

G(m,λ) = the set of all simple directed graphs G′ satisfying (i) G′ has at most m edges

and (ii) the largest vertex out-degree in G′ is at most λ. (25)

F(m,λ, P ) = max
G′∈G(m,λ)

|occ(G′, P )| (26)

The above discussion indicates that polymat(m,λ, P ) is an asymptotically tight characterization of
F(m,λ, P ), namely, polymat(m,λ, P ) = Θ(F(m,λ, P )).
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4.2 Subgraph Sampling and The De-cycling Theorem

Properties P1 and P2 in Section 4.1 suggest a reduction from subgraph sampling to join sampling.
First, sample a tuple u ∈ join(Q) uniformly at random. Then, check whether u(X) = u(Y )
for any two distinct attributes X,Y ∈ VP . If so, declare failure; otherwise, declare success and
return {(u(X),u(Y )) | (X,Y ) ∈ EP } as an occurrence of P in G. The success probability equals
c · OUT/OUTQ, where c the number of automorphisms of P , and OUT and OUTQ are defined
in (22) and (23), respectively. In a success event, every occurrence in occ(G,P ) has the same
probability to be returned.

As mentioned before, the constraint dependence graph GDC of Q is precisely P . Therefore, if P
is acyclic, so is GDC, in which case our algorithm in Theorem 3.1 can be readily applied to perform
subgraph sampling. To analyze the performance, consider first OUT ≥ 1. In that scenario, we
expect to draw O(OUTQ/OUT) samples from join(Q) until having a success event. As Theorem 3.1
guarantees retrieving a sample from join(Q) in O(polymat(DC)/OUTQ) expected time, overall we
expect to sample an occurrence from occ(G,P ) in

O
(polymat(DC)

OUTQ
· OUTQ
OUT

)
= O

(polymat(DC)

OUT

)
time. To prepare for the possibility of OUT = 0, we apply the “two-thread approach” in Section 3.4.
That is, besides running the above algorithm for the case OUT ≥ 1, we run a concurrent thread
that executes Ngo’s algorithm in [30], which computes the whole join(Q) and, hence also occ(G,P ),
in O(polymat(DC)) time, after which we can declare occ(G,P ) = ∅ or sample from occ(G,P ) in
constant time. By terminating the whole algorithm as soon as one of the two threads finishes, we
ensure O(polymat(DC)/max{1,OUT}) expected time for subgraph sampling.

The main challenge, however, arises when P is cyclic. In this case, GDC = P is cyclic, meaning
that DC becomes a cyclic set of degree constraints, rendering neither Theorem 3.1 nor Ngo’s
algorithm in [30] applicable.

The key to overcoming this challenge is the following De-cycling Theorem:

Theorem 4.2 (De-cycling Theorem). Fix any pattern graph P = (VP , EP ) of a constant size.
Denote by dmax

P the maximum out-degree of a vertex in P . Consider any integer m ≥ |EP | and
any integer λ ∈ [dmax

P ,m]. Let DC be the set of degree constraints returned by Build-DC(m,λ, P ).
When DC is cyclic (which happens if and only if P is cyclic), we can always find a proper
subset DC′ ⊂ DC satisfying (i) DC′ is acyclic, and (ii) polymat(DC′) = Θ(polymat(DC)).

The proof is non-trivial and will be presented in the next subsection.

Theorem 4.2 enables us to perform subgraph sampling for a cyclic pattern P directly using
Theorem 3.1 and the join algorithm of Ngo [30]. Consider once again the companion join Q
constructed from G and P , and let DC be the output of Build-DC(m,λ, P ). First, obtain a proper
subset DC′ of DC from Theorem 4.2. Because Q |= DC, we know from DC′ ⊂ DC that Q must be
consistent with DC′ as well, i.e., Q |= DC′. Theorem 3.1 can now be used to extract a sample from
join(Q) in O(polymat(DC′)/max{1,OUTQ}) time. Just as importantly, Theorem 4.2 also permits
us to apply Ngo’s algorithm in [30] to compute join(Q) in O(polymat(DC′)) time. Therefore, we
can now utilize the two-thread approach to sample from occ(G,P ) in

O
( polymat(DC′)

max{1,OUT}

)
= O

( polymat(DC)

max{1,OUT}

)
= O

(polymat(|E|, λ, P )

max{1,OUT}

)
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time.

The astute reader would have noticed that Theorem 4.2 requires the assumptions of m ≥ |EP |
and λ ∈ [dmax

P ,m]. To see why these assumptions are harmless, note that when λ is outside the
range [dmax

P ,m], the input graph G cannot have any occurrence of P at all. Similarly, if m < |EP |,
there can be no occurrence of P in G either. We thus have arrived at:

Theorem 4.3. Let G = (V,E) be a simple directed graph, where each vertex has an out-
degree at most λ. Let P = (VP , EP ) be a simple weakly-connected directed pattern graph with a
constant number of vertices. We can build in O(|E|) expected time a data structure that supports
each subgraph sampling operation in O(polymat(|E|, λ, P )/max{1,OUT}) expected time, where
OUT is the number of occurrences of P in G, and polymat(|E|, λ, P ) is the polymatroid bound
in (21).

Remarks. For subgraph listing, Jayaraman et al. [18] described another method to enable the
application of Ngo’s algorithm [30] to a cyclic P . Given the companion join Q, they employ
the “degree uniformization” technique [20] to generate t = O(polylog |E|) new joins Q1,Q2, ...,Qt

such that join(Q) =
⋃t

i=1 join(Qi). For each i ∈ [t], they construct an acyclic set DCi of degree
constraints (which may not be a subset of DC) with the property

∑t
i=1 polymat(DCi) ≤ polymat(DC).

Each join Qi (i ∈ [t]) can then be processed by Ngo’s algorithm in O(polymat(DCi)) time, thus
giving an algorithm for computing join(Q) (and hence occ(G,P )) in O(polymat(DC)) time.

On the other hand, Theorem 4.2 facilitates a direct application of Ngo’s algorithm to Q,
implying that degree uniformization is unnecessary in solving subgraph listing. We believe that this
simplification is noteworthy and merits its own dedicated exposition, considering the fundamental
and critical nature of subgraph listing. In the absence of Theorem 4.2, integrating our join-sampling
algorithm in Theorem 3.1 with the methodology of [18] for the purpose of subgraph sampling would
require substantially more effort.

4.3 Proof of the De-cycling Theorem (Theorem 4.2)

Let us re-phrase the statement of Theorem 4.2 as follows. Let P = (VP , EP ) be a cyclic pattern graph,
m be an integer at least 1, and λ an integer at most m. Define DC to be a set of degree constraints
over VP that contains two constraints for each edge (X,Y ) ∈ EP : (∅, {X,Y },m) and ({X}, {X,Y },
λ). The constraint dependence graph GDC is exactly P (and, hence, is cyclic). The objective is to
prove the existence of an acyclic DC′ ⊂ DC such that polymat(DC′) = Θ(polymat(DC)).

4.3.1 Case λ >
√
m

Let us introduce two variables: xX,Y and zX,Y for every edge (X,Y ) in GDC = (VP , EP ). For
λ >
√
m, Jayaraman et al. [18] defined the following LP, which we name LP(+):

LP(+) [18] minimize
∑

(X,Y )∈EP

xX,Y logm+ zX,Y log λ subject to

∑
(X,A)∈EP

(xX,A + zX,A) +
∑

(A,Y )∈EP

xA,Y ≥ 1 ∀A ∈ VP

xX,Y ≥ 0, zX,Y ≥ 0 ∀(X,Y ) ∈ EP

The following result is due to Jayaraman et al. [18]; we provide a proof in Appendix D for
self-containment purposes.
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Lemma 4.4. The optimal value of LP(+) is at most O(1) + logF(m,λ, P ).

We have shown in Section 4.1 that polymat(m,λ, P ) is an asymptotically tight characterization of
F(m,λ, P ). Hence, by Lemma 4.4, the optimal value of LP(+) is at most

O(1) + logF(m,λ, P ) = O(1) + logΘ(polymat(m,λ, P )) = O(1) + log polymat(DC). (27)

Next, we establish a crucial lemma.

Lemma 4.5. Any optimal solution to LP(+) has the property that the edges in {(X,Y ) ∈ EP |
zX,Y > 0} induce an acyclic subgraph of GDC.

Proof. Consider an arbitrary optimal solution to LP(+) that sets xX,Y = x∗X,Y and zX,Y = z∗X,Y for
each (X,Y ) ∈ EP . If the edge set {(X,Y ) ∈ EP | z∗X,Y > 0} induces an acyclic graph, we are done.
Next, we consider that the graph induced by the edge set contains a cycle.

Suppose that (A1, A2) is the edge in the cycle with the smallest z∗A1,A2
(breaking ties arbitrarily).

Let (A2, A3) be the edge succeeding (A1, A2) in the cycle. It thus follows that z∗A2,A3
≥ z∗A1,A2

.
Define

x′A2,A3
= x∗A2,A3

+ z∗A1,A2
(28)

x′A1,A2
= x∗A1,A2

(29)

z′A2,A3
= z∗A2,A3

− z∗A1,A2
(30)

z′A1,A2
= 0 (31)

For every edge (X,Y ) ∈ EP \ {(A1, A2), (A2, A3)}, set x′X,Y = x∗X,Y and z′X,Y = z∗X,Y . It is easy to
verify that, for every vertex A ∈ VP , we have∑

(X,A)∈EP

(x′X,A + z′X,A) +
∑

(A,Y )∈EP

x′A,Y ≥
∑

(X,A)∈EP

(x∗X,A + z∗X,A) +
∑

(A,Y )∈EP

x∗A,Y .

Therefore, {x′X,Y , z
′
X,Y | (X,Y ) ∈ EP } serves as a feasible solution to LP(+). However:( ∑

(X,Y )∈EP

x′X,Y logm+ z′X,Y log λ
)
−
( ∑

(X,Y )∈EP

x∗X,Y logm+ z∗X,Y log λ
)

= z∗A1,A2
logm− 2 · z∗A1,A2

log λ

< 0 (32)

where the last step used the fact λ2 > m. This contradicts the optimality of {x∗X,Y , z
∗
X,Y | (X,Y ) ∈

EP }.

We now build a set DC′ of degree constraints as follows.

• First, take an arbitrary optimal solution {x∗X,Y , z
∗
X,Y | (X,Y ) ∈ EP } to LP(+).

• Then, add to DC′ a constraint (X, {X,Y }, λ) for every (X,Y ) ∈ EP satisfying z∗X,Y > 0.

• Finally, for every edge (X,Y ) ∈ EP , add to DC′ a constraint (∅, {X,Y },m).

Lemma 4.5 assures us that the DC′ thus constructed must be acyclic. Denote by GDC′ = (V ′
P , E

′
P )

the degree constraint graph of DC′. Note that VP = V ′
P and E′

P ⊂ EP .

Example 4.1. We will use the graph GDC in Figure 4a to illustrate the concepts and methods in this
subsection. Here, VP = {A,B,C,D,E}, and EP = {(A,B), (B,C), (C,A), (D,C), (C,E)}. The
LP(+) for this graph is:
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Figure 4: An example for illustrating the λ >
√
m case

LP(+) minimize
∑

(X,Y )∈EP
(xX,Y logm+ zX,Y log λ) subject to

xA,B + xC,A + zC,A ≥ 1
xA,B + xB,C + zA,B ≥ 1
xB,C + xC,A + xD,C + xC,E + zB,C + zD,C ≥ 1
xD,C ≥ 1
xC,E + zC,E ≥ 1
xX,Y ≥ 0, zX,Y ≥ 0 ∀(X,Y ) ∈ EP

An optimal solution to the above LP is

• xA,B = xD,C = zC,E = 1,

• the rest variables in {xX,Y , zX,Y | (X,Y ) ∈ EP } are set to 0.

The optimal value is 2 logm+log λ. We can prove that this solution is optimal by the strong duality
theorem. Consider the dual LP of LP(+) for P :

dual LP(+) maximize
∑

X∈VP
νX subject to

νX + νY ≤ logm ∀(X,Y ) ∈ EP

νX ≤ log λ ∀X ∈ VP \ {D}
νX ≥ 0 ∀X ∈ VP

We can construct a solution that achieves an objective value of 2 logm + log λ by setting νA =
νB = 0.5 logm, νC = 0, νD = logm, and νE = log λ. Hence, the solution we constructed is indeed
optimal. By our construction, we have DC′ = {(∅, {A,B},m), (∅, {D,C},m), ({C}, {C,E}, λ)}, and
GDC′ is shown in Figure 4b.

Lemma 4.6. The DC′ constructed in the above manner satisfies polymat(DC′) = Θ(polymat(DC)).

Proof. We will first show that polymat(DC′) ≥ polymat(DC). As defined in (4), the calculation of
polymat(DC′) involves taking the maximum h(V ′

P ) over all set functions h ∈ ΓV ′
P
∩HDC′ . Similarly, the

calculation of polymat(DC) involves taking the maximum h(VP ) over all set functions h ∈ ΓVP
∩HDC.

As VP = V ′
P and DC′ ⊂ DC, we can assert that HDC′ must be a superset of HDC (because DC′ has

fewer constraints than DC). Thus, polymat(DC′) ≥ polymat(DC). The rest of the proof will show
polymat(DC′) = O(polymat(DC)), which will establish the lemma.

As DC′ is acyclic, the discussion of Section 2 tells us that log(polymat(DC′)) is the optimal value
of the dual modular LP defined by DC′. Next, we will construct a feasible solution to that dual
modular LP under which the dual modular LP’s objective function equals the optimal value of
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LP(+). Thus, the optimal value of the dual modular LP is at most the optimal value of LP(+), which
is at most O(1)+ log polymat(DC) as shown in (27). As a result, polymat(DC′) = O(polymat(DC)).

Let {x∗X,Y , z
∗
X,Y | (X,Y ) ∈ EP } denote the optimal solution to LP(+) from which DC′ was

obtained. Recall that the dual modular LP associates every constraint (X ,Y, NY|X ) ∈ DC′ with a
variable δY|X . We assign values to these variables as follows:

• δ{X,Y }|∅ = x∗X,Y for each (X,Y ) ∈ EP ;

• δ{X,Y }|{X} = z∗X,Y for each (X,Y ) ∈ E′
P .

First, we prove that the above assignment is a feasible solution to the dual modular LP defined
by DC′. By our construction we have δY|X ≥ 0 for each (X ,Y, NY|X ) ∈ DC′. In addition, for every
vertex A ∈ VP , it holds that ∑

(X ,Y,NY|X )∈DC′

such that A∈Y\X

δY|X =
∑

(X,A)∈EP

x∗X,A +
∑

(A,Y )∈EP

x∗A,Y +
∑

(X,A)∈E′
P

z∗X,A

(since z∗X,A = 0 for every (X,A) ∈ EP \ E′
P ) =

∑
(X,A)∈EP

(x∗X,A + z∗X,A) +
∑

(A,Y )∈EP

x∗A,Y

(by the first constraint in LP(+)) ≥ 1.

Hence, our assignment is a feasible solution to the dual modular LP(+) defined by DC′. The objective
value of the dual modular LP under the solution constructed is:∑

(X ,Y,NY|X )∈DC′

δY|X · logNY|X =
∑

(X,Y )∈EP

x∗X,Y logm+
∑

(X,Y )∈E′
P

z∗X,Y log λ

(since z∗X,A = 0 for every (X,A) ∈ EP \ E′
P ) =

∑
(X,Y )∈EP

x∗X,Y logm+ z∗X,Y log λ.

Therefore, the objective value of the dual modular LP is the same as the optimal value of LP(+),
which completes the proof.

4.3.2 Case λ ≤
√
m

Let us start by defining some concepts. Recall (from Section 1.2) that the fractional edge cover
number of a directed graph Gdir — denoted as ρ(Gdir) — is defined as the fractional edge cover
number of the corresponding undirected graph obtained from Gdir by ignoring the edge directions.

Now consider Gdir to be a directed bipartite graph Gbp = (Vbp , Ebp). By Lemma 8.2 of [32]
(see also Lemma 3.1 of [5] and Theorem 30.10 of [35]), it is always possible to decompose Gbp into
vertex-disjoint subgraphs ⋆1, ⋆2, ..., and ⋆α (for some integer α > 0) such that

• ⋆i is a directed star for each i ∈ [α] (a directed star is a graph consisting of t ≥ 2 vertices,
among which one vertex, called the center, has t− 1 edges — in-coming and out-going edges
combined — and every other vertex, called a petal, has only one edge, which can be an
in-coming or out-going edge);

•
∑α

i=1 ρ(⋆i) = ρ(Gbp).
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Figure 5: An example for illustrating the λ ≤
√
m case

We will refer to {⋆1, ⋆2, ..., ⋆α} as a fractional edge-cover decomposition of Gbp . It is worth mentioning
that the fractional edge-cover decomposition in Lemma 8.2 of [32] also comprises “odd-length cycles”.
However, when Gbp is a bipartite graph, the decomposition includes only directed stars.

Next, we review a formula from [18] that, as we will prove later, is O(F(m,λ, P )) where F(m,λ, P )
is defined in (26). Find all the strongly connected components (SCCs) of GDC = (VP , EP ) (recall
that GDC is the same as the pattern graph P ). Call an SCC a source SCC if it has no in-coming
edge from another SCC. Furthermore, a source SCC is (i) trivial if it has a single vertex, or (ii)
non-trivial otherwise.

Example 4.2. We will use the graph GDC in Figure 5a to illustrate the concepts and methods in this
subsection. Here, VP = {A,B, ..., J}, and EP includes the 12 edges shown. There are 6 SCCs: {A},
{B,C,D}, {E}, {F}, {G}, and {H, I, J}. Among them, {A}, {E}, {F}, and {H, I, J} are source
SCCs. Furthermore, {A}, {E}, and {F} are trivial source SCCs, while {H, I, J} is a non-trivial
source SCC.

Define:

S = the set of vertices in GDC each forming a trivial source SCC by itself (33)

T = the set of vertices in GDC receiving an in-coming edge from at least one vertex in S (34)

The sets S and T must be disjoint because each vertex T has an in-coming edge and thus cannot
belong to a source SCC. Take a fractional edge-cover decomposition Σ∗ of the directed bipartite
graph induced by S and T ; as mentioned, Σ∗ is a set of directed stars.

Define:

I = the set of vertices in the non-trivial source SCCs of GDC (35)

J = VP \ (S ∪ T ∪ I) (36)

It is worth pointing out that S, T , I, and J are mutually disjoint. We now introduce three quantities:

n1 = |I| (37)

n2 = |J | = |VP | − n1 − |S| − |T |. (38)

n3 = number of non-trivial source SCCs (39)

n4 = the number of edges in the directed stars of Σ∗ (40)

Example 4.3. Consider again the graph GDC in Figure 5a. It has one non-trivial source SCC
{H, I, J}, giving n3 = 1. Also, S = {A,E, F} and T = {G,B,C}. The directed bipartite graph
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induced by S and T has 4 edges: (A,B), (A,C), (E,G) and (F,G). A fractional edge-cover cover
Σ∗ of this bipartite graph has two directed stars: the first has center A and petals B and C, while
the second has center G and petals E and F . Thus, n4 = 4. Set I includes H, I, and J , while
J = {D}. Hence, n1 = 3, and n2 = 1 = 10− 3− 3− 3.

The lemma below was claimed in [18] but we are unable to verify their proof. In Appendix E,
we provide our own proof of the statement.

Lemma 4.7. Fix a pattern graph P = (VP , EP ). For any integer m ≥ |EP | and integer λ ∈
[dmax

P ,
√
m], we have F(m,λ, P ) = Ω(mn3+|S| · λn1+n2+n4−2n3−|S|).

Because (as proved in Section 4.1) polymat(m,λ, P ) is Θ(F(m,λ, P )), it follows that

polymat(m,λ, P ) = Ω
(
mn3+|S| · λn1+n2+n4−2n3−|S|

)
. (41)

Next, we construct the acyclic degree constraint set DC′ that fulfills the requirement in our
de-cycling theorem (no such construction was given in [18]). Let G∗ = (V ∗, E∗) be an arbitrary
weakly-connected acyclic subgraph of GDC satisfying the conditions below.

• V ∗ = VP .

• E∗ contains all the edges in the directed stars of Σ∗.

• In every non-trivial source SCC, each vertex — with a single exception which we identify the
SCC’s root Xroot — has exactly one in-coming edge in E∗. No in-coming edge of Xroot is in
E∗ but E∗ includes at least one out-going edge of Xroot . We designate one arbitrary out-going
edge of Xroot in E∗ as the SCC’s main edge.

• Every vertex in J has exactly one in-coming edge included in E∗.

It is rudimentary to build such a subgraph G∗, e.g., using depth first traversal. The existence of G∗

is guaranteed by the fact that GDC is weakly connected.

Example 4.4. Let us build G∗ = (V ∗, E∗) for the graph GDC in Figure 5a. The first bullet sets
V ∗ = VP = {A,B, ..., J}. The second bullet adds edges (A,B), (A,C), (E,G), and (F,G) to E∗.
The third bullet concerns the (only) non-trivial source SCC {H, I, J}. We add edges (J,H) and
(I, J) to E∗. Here, I is the root of the SCC, and (I, J) is the main edge of the SCC. The last bullet
concerns the only vertex D in J ; adding edge (B,D) to E∗ fulfill the bullet’s requirement. This
completes the construction of E∗ = {(A,B), (A,C), (E,G), (F,G), (J,H), (I, J), (B,D)}. The final
G∗ is shown in Figure 5b.

Equipped with GDC = (VP , EP ) and G∗ = (V ∗, E∗), we now create a set DC′ of degree constraints
in four steps:

• For each edge (X,Y ) ∈ EP , add a constraint (∅, {X,Y },m) to DC′.

• Inspect each directed star in Σ∗ and distinguish two scenarios.

– Scenario 1: either the star has only one edge or its center is from T . Nothing needs to
be done in this case.
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– Scenario 2: The star has more than one edge and its center X is from S. In this case,
pick an arbitrary petal Y and designate (X,Y ) as the star’s main edge. Then, for every
other petal Y ′, add a constraint ({X}, {X,Y ′}, λ) to DC′.

• Next, consider each non-trivial source SCC. Remember that every vertex Y , other than the
SCC’s root, has an in-coming edge (X,Y ) ∈ E∗. For every such Y , if (X,Y ) is not the SCC’s
main edge, add a constraint ({X}, {X,Y }, λ) to DC′.

• Finally, recall that every vertex Y ∈ J has an in-coming edge (X,Y ) in E∗; add a constraint
({X}, {X,Y }, λ) to DC′.

By the above construction, the constraint dependency graph GDC′ of DC′ is a subgraph of G∗

and, hence, must be acyclic (because G∗ is acyclic). The set DC′ we have obtained is thus acyclic.

Example 4.5.Continuing on the previous example, we now construct DC′ from the GDC and G∗ in
Figures 5a and 5b. The first bullet adds to DC′ the constraints (∅, AB,m), (∅, AC,m), (∅, CB,m),
(∅, BD,m), (∅, DC,m), (∅, EG,m), (∅, FG,m), (∅, GD,m), (∅, HD,m), (∅, JH,m), (∅, HI,m), and
(∅, IJ,m). The second bullet inspects the two stars in Σ∗. The first star has center A and pellets
B and C. Because A ∈ S and the star contains two petals, we fall into Scenario 2. Suppose that
we designate (A,C) as the star’s main edge; accordingly, this necessitates adding the constraint
(A,AB, λ) to DC′. The second star has center G and pellets E and F . As G ∈ T , we fall into
Scenario 1, where no constraints are added to DC′. The third bullet processes the non-trivial source
SCC {H, I, J}. As mention in Example 4.4, this SCC has root I; furthermore, E∗ has an in-coming
edge (I,H) of H and an in-coming edge (I, J) of J . For (J,H), we add (J, JH, λ) to DC′; for (I, J),
however, we add nothing because it is the main edge of the SCC (see Example 4.4). The last bullet
processes the sole vertex D in J . After identifying its (only) in-coming edge (B,D) in E∗, we add
(B,BD, λ) to DC′.

The final DC′ is therefore

{(∅, AB,m), (∅, AC,m), (∅, CB,m), (∅, BD,m), (∅, DC,m), (∅, EG,m), (∅, FG,m), (∅, GD,m),
(∅, HD,m), (∅, JH,m), (∅, HI,m), (∅, IJ,m), (A,AB, λ), (J, JH, λ), (B,BD, λ)}.

The constraint dependency graph GDC′ is shown in Figure 5c.

The rest of the proof will show polymat(DC′) = Θ(polymat(DC)). Since DC′ ⊂ DC, we have
polymat(DC′) ≥ polymat(DC) (the reason behind this can be found in the proof of Lemma 4.6).
It remains to show that polymat(DC′) = O(polymat(DC)). As DC′ is acyclic, the discussion of
Section 2 tells us that log(polymat(DC′)) is the optimal value of the dual modular LP defined by
DC′. Next, we will construct a feasible solution to that dual modular LP under which the LP’s
objective function equals(

(n3 + |S|) · logm
)
+ (n1 + n2 + n4 − 2n3 − |S|) · log λ. (42)

As the optimal value of the dual modular LP cannot exceed (42), it follows that polymat(DC′) is
O(mc1+|S| · λn1+n2+n4−2n3−|S|), which is O(polymat(m,λ, P )) = O(polymat(DC)) due to (41).

Recall that the dual modular LP associates every constraint (X ,Y, NY|X ) ∈ DC′ with a variable
δY|X . We determine these variables’ values according to the rules below.

• For every constraint (X ,Y, λ) ∈ DC′, set δY|X = 1.
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• Consider each directed star in Σ∗ and again distinguish two cases.

– Scenario 1: The star contains only one edge or its center is in T . In this case, set
δ{X,Y }|∅ = 1 for every edge (X,Y ) in the star.

– Scenario 2: The star contains more than one edge and has a center X ∈ S. Recall
that the set DC′ has a constraint (∅, {X,Y },m) for the star’s main edge (X,Y ). Set
δ{X,Y }|∅ = 1.

• Consider each non-trivial source SCC. Recall that DC′ contains a constraint (∅, {X,Y },m)
for the main edge (X,Y ) of the SCC. Set δ{X,Y }|∅ = 1.

The other variables that have not yet been mentioned are all set to 0.

Example 4.6. For our running example, the variable δY|X of each (X ,Y, NY|X ) ∈ DC′ is decided
as follows. The first bullet sets δAB|A, δJH|J , and δBD|B to 1. The second bullet inspects the
two directed stars in Σ∗. The first directed star has center A ∈ S1 (recall from Example 4.3 that
S1 = {A}) and petals {B,C}. As the star’s main edge is (A,C) (designated in Example 4.5), we
set δAC|∅ = 1. The second directed star of Σ∗ has center G ∈ T1 (recall from Example 4.3 that
T1 = {G}) and petals {E,F}. Thus, we set δGE|∅ = δGF |∅ = 1. The third bullet examines the
non-trivial source SCC {H,J, I}, whose main edge is (I, J) (as decided in Example 4.4). We thus
set δIJ |∅ = 1. The remaining variables δAB|∅, δBC|∅, δBD|∅, δCD|∅, δGD|∅, δHD|∅, δJH|∅, and δHI|∅ are
all set to 0.

It is straightforward to verify that all the constraints of the dual modular LP are satisfied. To
confirm that the objective function indeed evaluates to (42), observe:

• There are n3 + |S| constraints of the form (∅, {X,Y },m) with δ{X,Y }|∅ = 1, where S and n3

are defined in (33) and (39), respectively. Specifically, n3 of them come from the roots of
the non-trivial source SCCs, and |S| of them come from the directed stars in Σ∗ (combining
Scenarios 1 and 2).

• There are n1 + n2 + n4 − 2n3 − |S| of the form ({X}, {X,Y }, λ) with δ{X,Y }|{X} = 1, where
n1, n2, and n4 are defined in (37), (38), and (40), respectively. Specifically, (i) n1 − 2n3 of
them come from the non-main edges of the non-trivial source SCCs, (ii) n4− |S| of them come
from the non-main edges in the stars that have a center vertex in S and have at least two
edges, and (iii) n2 of them come from the vertices in J .

Example 4.7. We will demonstrate that the variable values chosen in Example 4.6 fulfill all the
constraints of the dual modular LP. Clearly, all the variable values are non-negative. Thus, it
remains to verify the following for each vertex Z ∈ VP :∑

(X ,Y,NY|X )∈DC

such that Z∈Y\X

δY|X ≥ 1.

For Z = A (resp., C,E, F,G, I, and J), the above holds because δAC|∅ (resp., δAC|∅, δGE|∅, δGF |∅,
δGF |∅, δIJ |∅, and δIJ |∅) equals 1. For Z = B (resp., H and D), the above holds because δAB|A (resp.,
δJH|J and δBD|B) equals 1.

There are n3 + |S| = 1 + 3 = 4 constraints of the form (∅, {X,Y },m) that satisfy δ{X,Y }|∅ = 1:
they are (∅, AB,m), (∅, AC,m), (∅, GD,m), and (∅, FG,m). Moreover, n1 + n2 + n4 − 2n3 − |S| =
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4 + 3 + 1 − 2 − 3 = 3 constraints of the form ({X}, {X,Y }, λ) satisfy δ{X,Y }|{X} = 1: they are
(J, JH, λ), (A,AB, λ), and (B,BD, λ). Among them, (i) n1 − 2n3 = 1 constraint — (J, JH, λ) —
comes from the (only) non-main edge of the non-trivial source SCC {H, I, J}, (ii) n4 − |S| = 1
constraint — (A,AB, λ) — comes from the petal B of the star whose center is A, and (iii) n2 = 1
constraint — (B,BD, λ) — comes from the vertex D ∈ J .

With the above variable values, the dual modular LP’s objective function evaluates to 4 logm+
3 log λ, i.e., the value in (42).

We now conclude the whole proof of Theorem 4.2.

5 Concluding Remarks

Our new sampling algorithms imply new results on several other fundamental problems. We will
illustrate this with respect to evaluating a join Q consistent with an acyclic set DC of degree
constraints. Similar implications also apply to subgraph sampling.

• By standard techniques [10,13], we can estimate the output size OUT up to a relative error
ϵ with high probability (i.e., at least 1 − 1/INc for an arbitrarily large constant c) in time

Õ( 1
ϵ2

polymat(DC)
max{1,OUT}) after a preprocessing of O(IN) expected time.

• Employing a technique in [13], we can, with high probability, report all the tuples in join(Q)
with a delay of Õ( polymat(DC)

max{1,OUT}). In this context, delay refers to the maximum interval between
the reporting of two successive result tuples, assuming the presence of a placeholder tuple at
the beginning and another at the end.

• In addition to the delay guarantee, our algorithm in the second bullet can, with high probability,
report the tuples of join(Q) in a random permutation. This means that each of the OUT!
possible permutations has an equal probability of being the output.

All of the results presented above compare favorably with the current state of the art as presented
in [13]. This is primarily due to the superiority of polymat(DC) over AGM (Q). In addition, our
findings in the last two bullet points also complement Ngo’s algorithm as described in [30] in a
satisfying manner.

Appendix

A Linear Programming

The material of this section can be found in most textbooks (e.g., [27]) on linear programming (LP)
and is included for self-containment reasons.

Suppose that A is an n×m matrix, c is an n× 1 matrix (a.k.a., an n-dimensional vector), and
b an m× 1 matrix (a.k.a., an m-dimensional vector). Consider an LP of the form:

find an n× 1 matrix x to maximize cTx subject to Ax ≤ b and x ≥ 0 (43)

where x ≥ 0 means that every component of x must be at least 0. The duality of the above LP has
the form:

find an m× 1 matrix y to minimize bTy subject to ATy ≥ c and y ≥ 0. (44)
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We will refer to (43) as the primal form and to (44) as the dual form.

The strong duality theorem states that the primal form returns a finite optimal value if and only
if the dual form returns the same optimal value.

The optimal x maximizing cTx — we will refer to x as an optimal solution to the LP — in
the primal LP has a geometric property. Let us regard x as an n-dimensional point in Rn. Then,
the constraints Ax ≤ b and x ≥ 0 define a feasible region for the point x. The feasible region
is a polyhedron, formally defined as the intersection of a finite number of halfspaces in Rn. The
polyhedron, in general, can be unbounded. However, if the LP has a finite optimal value, then an
optimal solution to the LP can be found at a vertex of the polyhedron.

Similar geometric interpretations also apply to the dual LP, except that y should be regarded as
an m-dimensional point in Rm. The feasible region is a polyhedron defined by ATy ≥ c and y ≥ 0.
If the LP has a finite optimal value, then an optimal solution y can be found at a vertex of the
polyhedron.

We will also need the complementary slackness theorem. Let us write out the detailed components
of b and c as b = (b1, b2, ..., bm) and c = (c1, c2, ..., cn). Denote by ui the i-th row of A and by vj

the j-th column of A; note that ui and vj are n- and m-dimensional vectors, respectively. Assume
that x∗ = (x∗1, x

∗
2, ..., x

∗
n) is an optimal solution to the primal LP (43). The complementary slackness

theorem states that the dual LP (44) has an optimal solution y∗ = (y∗1, y
∗
2, ..., y

∗
m) satisfying the

following conditions:

• If x∗j > 0, then vT
j · y = cj for j ∈ [n].

• If vT
j · y > cj , then x∗j = 0 for j ∈ [n].

• If y∗i > 0, then uT
i · x∗ = bi for i ∈ [m].

• If uT
i · x∗ < bi, then y∗i = 0 for i ∈ [m].

B Implementing ADC-Sample with Indexes

Recall that A1, A2, ..., Ak form a topological order of the attributes in GDC. As defined in (7), V0 = ∅
and Vi = {A1, ..., Ai} for i ≥ 1.

We preprocess each constraint (X ,Y, NY|X ) ∈ DC as follows. Let R ∈ Q be its main guard, i.e.,
R = RF (X ,Y). For each i ∈ [k] and each tuple w ∈ Πschema(R)∩Vi

(R), define

RY(i,w) = {u[Y] | u ∈ R,u[schema(R) ∩ Vi] = w}

which we refer to as a fragment.

During preprocessing, we compute and store RY(i,w) for every i ∈ [k] and w ∈ Πschema(R)∩Vi
(R).

Next, we will explain how to do so for an arbitrary i ∈ [k]. First, group all the tuples of R by the
attributes in schema(R)∩Vi, which can be done in O(IN) expected time by hashing. Then, perform
the following steps for each group in turn. Let w be the group’s projection on schema(R) ∩ Vi. We
compute the group tuples’ projections onto Y and eliminate duplicate projections, the outcome
of which is precisely RY(i,w) and is stored using an array. With hashing, this requires expected
time linear to the group’s size. Therefore, the total cost of generating the fragments RY(i,w) of all
w ∈ Πschema(R)∩Vi

(R) is O(IN) expected. We also build a hash table such that given any i ∈ [k]
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and tuple w ∈ Πschema(R)∩Vi
(R), we can retrieve the starting address and size of RY(i,w) in O(1)

time. The cost of building this hash table is O(IN) expected.

After the above preprocessing, given any i ∈ [k], constraint (X ,Y, NY|X ) ∈ DC, tuple w over
Vi−1, and value v ∈ dom, we can compute reldegX ,Y(w, v) defined in (8) in constant time. For
convenience, let R = RF (X ,Y). To compute |ΠY(R ⋉ w)| (the denominator of (8)), first obtain
w1 = w[schema(R) ∩ Vi−1]. Then, ΠY(R ⋉ w) is just the fragment RY(i − 1,w1), which has
been pre-stored. The size of this fragment can be retrieved using w1 in O(1) time. Similarly,
to compute |σAi=v(ΠY(R ⋉w))| (the numerator of (8)), we can first obtain w2, which is a tuple
over schema(R) ∩ Vi that shares the values of w1 on all the attributes in schema(R) ∩ Vi−1 and
additionally uses value v on attribute Ai. Then, σAi=v(ΠY(R⋉w)) is just the fragment RY(i,w2),
which has been pre-stored. The size of this fragment can be fetched using w2 in O(1) time.

As a corollary, given any i ∈ [k], tuple w over Vi−1, and value v ∈ dom, we can compute
reldeg∗(w, v) and constraint∗(w, v) — defined in (9) and (10), respectively — in constant time.

It remains to explain how to implement Line 4 of ADC-sample (Figure 3). Here, we want to
randomly sample a tuple from ΠY◦(RF (X ◦,Y◦) ⋉wi−1). Again, for convenience, let R = RF (X ◦,Y◦).
Obtain w′ = wi−1[schema(R) ∩ Vi−1]. Then, ΠY(R ⋉ wi−1) is just the fragment RY(i − 1,w′),
which has been stored in an array. The starting address and size of the array can be acquired using
w′ in O(1) time, after which a sample can be drawn from the fragment in constant time.

C Proof of Lemma 4.1

Recall that P = (VP , EP ) is a directed graph. Let P ′ = (VP ′ , EP ′) be the undirected counterpart
of P , namely, VP ′ = VP and EP ′ contains an (undirected) edge {X,Y } if and only if (X,Y ) ∈ EP

or (Y,X) ∈ EP . Set m′ = m/|EP | and λ′ = λ/|EP |. Let DC′ be the rule collection output by
Build-DC(m′, λ′, P ).

The collection DC′ is a type of “simple” degree constraints as classified by Suciu [37], who proved
the existence of a joint Q satisfying:

• the schema graph of Q is P ′;

• each relation of Q has at most m′ tuples;

• |join(Q)| = Ω(polymat(DC′)).

For each attribute X ∈ VP , we use actdom(X) to denote the active domain of X in Q, which
includes all the X-values appearing in at least one relation of Q, or formally:

actdom(X) = {x ∈ dom | ∃R ∈ Q,u ∈ R : X ∈ schema(R),u(X) = x}.

We assume that the attributes have disjoint active domains, namely, actdom(X)∩actdom(Y ) = ∅
for any different X,Y ∈ V . This loses no generality because we can always prefix each value with
the name of its attribute.

Now, construct a graph G = (V,E) as follows:

• V =
⋃

X∈V actdom(X).

• Consider each relation R ∈ Q, and suppose that it has schema {X,Y }. For each tuple u ∈ R,
we add to E (i) an edge from vertex u(X) to vertex u(Y ) if (X,Y ) ∈ EP , and (ii) an edge
from vertex u(Y ) to vertex u(X) if (Y,X) ∈ EP .
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It is clear that G can have at most m′ · |Q| = m′ · |EP | = m edges. Furthermore, each vertex in
G can have a degree at most λ′ · |EP | = λ. To explain why, let us consider an arbitrary vertex
x ∈ V , which let us assume is a value from actdom(X). If x has an out-neighbor y ∈ V — which
let us assume comes from actdom(Y ) — then (i) some relation R ∈ Q must contain a tuple u with
u(X) = x and u(Y ) = y, and (ii) (X,Y ) is an edge in EP . As DC′ contains a degree constraint
({X}, {X,Y }, λ′), there can be at most λ′ different choices for y. It thus follows that the degree of
x in G cannot exceed λ′ · |Q| = λ′ · |EP |= λ.

Next, we argue that G has at least |join(Q)| = Ω(polymat(DC′)) occurrences of P . Consider an
arbitrary tuple u ∈ join(Q). It is easy to verify that, for any edge (X,Y ) ∈ EP , there exists an edge
(u(X),u(Y )) in G. Hence, G contains an occurrence with the edge set {(u(X),u(Y )) | (X,Y ) ∈ EP }.
As no two tuples in join(Q) correspond to the same occurrence (their occurrences must differ in at
least one vertex), the number of occurrences must be at least |join(Q)|.

It remains to show that polymat(DC′) = Ω(polymat(DC)). This is a corollary of Lemma C.1
that we will establish next.

C.1 A Property of Polymatroid Bounds under Degree Constraints

This subsection serves as a proof of the following lemma.

Lemma C.1. Fix a positive constant α ≥ 1. Consider any join Q with the schema graph G = (V, E)
and a set DC of degree constraints. Construct another set DC′ of degree constraints as follows:

DC′ = {(X ,Y, NY|X /α) | (X ,Y, NY|X ) ∈ DC}. (45)

Then, we must have

polymat(DC′) ≥ ρ · polymat(DC) (46)

where ρ is a positive value that depends only on GDC (the constraint dependency graph), and the
constant α.

Given a constraint (X ,Y, NY|X ) ∈ DC, we will refer to NY|X as the constraint’s threshold. The
lemma indicates that the value ρ has nothing to do with the threshold fields of the constraints in
DC.

The starting point of our proof is the observation that the polymatroid bound on a degree-
constraint set is the optimal value of an LP. To compute polymat(DC), for example, we need to
find a set function h ∈ ΓV (see Section 2 for the definition of ΓV) maximizing h(V) while satisfying
h(Y) − h(X ) ≤ logNY|X for every (X ,Y, NY|X ) ∈ DC. We can view h as a vector h in a 2|V|-
dimensional space where each “dimension” corresponds to a distinct subset X of V. Accordingly,
the “coordinate” of h on the dimension X equals the value of h(X ). Thus, log(polymat(DC)) is the
value returned by the following LP:

find an n× 1 matrix h to maximize cTh subject to Ah ≤ b and h ≥ 0 (47)

where n = 2|V|, c is a “one-hot” vector with coordinate 1 on the dimension V but coordinate 0 on
all other dimensions, and Ah ≤ b captures the following constraints:

(zero-grounded) h(∅) ≤ 0 (48)

(monotone) h(X )− h(Y) ≤ 0 ∀X ,Y satisfying X ⊂ Y ⊆ V (49)
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(submodular) h(X ∪ Y) + h(X ∩ Y)− h(X )− h(Y) ≤ 0 ∀X ,Y ⊆ V (50)

(degree constraint) h(Y)− h(X ) ≤ logNY|X ∀(X ,Y, NY|X ) ∈ DC (51)

We do not need to calculate precisely the number m of rows in A except to note that

• m is a finite value dependent on V and |DC|, and

• every row corresponds to a distinct constraint listed above.

The following facts are immediate:

• F1: the matrix A has nothing to do with the threshold fields of the constraints in DC, but is
determined by GDC (the constraint dependency graph).

• F2: The vector b takes value logNY|X at each row corresponding to a constraint of the form
(51), and value 0 at all other rows.

• F3: The LP’s optimal value log(polymat(DC)) is finite because polymat(DC) ≤ AGM (Q).

The LP in (47) is in the primal form (the reader may wish to revisit Appendix A before proceeding).
Its dual counterpart is:

LPDC: find an m× 1 matrix y to minimize bTy subject to ATy ≥ c and y ≥ 0. (52)

The following observations apply to LPDC:

• The vector y is in Rm, where each dimension corresponds to a distinct constraint in (48)-(51).
The feasible region of LPDC is the polyhedron below:

Ψ = {y | ATy ≥ c and y ≥ 0}. (53)

• The optimal value of LPDC is log(polymat(DC)), i.e., same as the primal LP, due to fact F3
and the strong duality theorem.

• Let yDC be an optimal solution to LPDC. The point yDC is a vertex of the feasible region. If we
denote by yDC[Y|X ] the coordinate of yDC on the dimension corresponding to the constraint
(X ,Y, NY|X ) ∈ DC, facts F2 and F3 tell us:

log(polymat(DC)) =
∑

(X ,Y,NY|X )∈DC

yDC[Y|X ] · logNY|X . (54)

Let us now turn our attention to polymat(DC′). By the same reasoning, we know that
log(polymat(DC′)) is the optimal value of the following LP:

find an n× 1 matrix h to maximize cTh subject to Ah ≤ b′ and h ≥ 0 (55)

where

• the vector c is the same as that in (47);

• Ah ≤ b′ captures the constraints (48)-(51) except that the value logNY|X in (51) is now
replaced with log(NY|X /α)
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• the matrix A is the same as that in (47).

The dual form of (55) is:

LPDC′ : find an m× 1 matrix y to minimize b′
T
y subject to ATy ≥ c and y ≥ 0. (56)

Note that the feasible region of LPDC′ is the same polyhedron Ψ in Rm given by (53).

The optimal value of LPDC′ is log(polymat(DC′)). If yDC′ be an optimal solution to LPDC′ , then
— just like (54) — we have:

log(polymat(DC′)) =
∑

(X ,Y,NY|X /α)∈DC′

yDC′ [Y|X ] · log(NY|X /α)

which yields∑
(X ,Y,NY|X /α)∈DC′

yDC′ [Y|X ] · logNY|X = log(polymat(DC′)) + logα
∑

(X ,Y,NY|X /α)∈DC′

yDC′ [Y|X ]. (57)

Because the optimal value of LPDC′ is finite, the point yDC′ must be a vertex of the polyhedron Ψ
in (53). Let us introduce the quantity below obtained by examining all vertices of Ψ:

β = max
vertex y of Ψ

∑
(X ,Y,NY|X /α)∈DC′

y[Y|X ].

From (53) and fact F1, we know that β depends only on the constraint dependency graph GDC of
DC. It thus follows from (57) that∑

(X ,Y,NY|X /α)∈DC′

yDC′ [Y|X ] · logNY|X ≤ log(polymat(DC′)) + β logα. (58)

Finally, we relate LPDC′ to LPDC. Starting from the fact that yDC′ may not be an optimal
solution to LPDC, we derive:

bTyDC′ ≥ log(polymat(DC))⇒∑
(X ,Y,NY|X /α)∈DC′

yDC′ [Y|X ] · logNY|X ≥ log(polymat(DC))⇒

(using (58)) log(polymat(DC′)) + β logα ≥ log(polymat(DC))⇒
polymat(DC′) ≥ polymat(DC)/(2β · α).

Thus, setting ρ = 1/(2β · α) completes the proof of Lemma C.1.

D Proof of Lemma 4.4

As in the statement of Theorem 4.2, we use dmax
P to represent the maximum out-degree of a vertex

in P . Furthermore, the values of m and λ satisfy m ≥ |EP | and λ ≥ dmax
P .

We consider the dual of LP(+):

dual LP(+) maximize
∑

X∈V νX subject to

(I) νX + νY ≤ logm for each (X,Y ) ∈ EP

(II) νY ≤ log λ for each (X,Y ) ∈ EP

(III) νX ≥ 0 for each X ∈ VP
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Let {ν∗X |X ∈ VP } be an optimal solution to the dual LP(+). By the strong duality theorem, the
optimal value of the LP(+) is

∑
X∈VP

ν∗X .

Next, we will show that there exists a data graph G satisfying the following properties:

• G has at most m edges.

• The out-degree of each vertex in G is at most λ;

• G contains Ω(exp2(
∑

X∈VP
ν∗X)) occurrences of P .

The number of occurrence of P in G cannot exceed F(m,λ, P ). Hence, the existence of G indicates
exp2(

∑
X∈VP

ν∗X) = O(F(m,λ, P )), meaning that
∑

X∈VP
ν∗X — the optimal value of the LP(+) —

is at most O(1) + logF(m,λ, P ), as claimed in the lemma.

We will construct the desired graph G = (V,E) as follows.

• For each vertex X ∈ VP , create a vertex set VX with max{⌊exp2(ν∗X)/|EP |⌋, 1} vertices. After
that, set V (the vertex set of G) to

⋃
X∈VP

VX .

• For each edge (X,Y ) ∈ EP , create an edge set EX,Y = {(u, v)|u ∈ VX , v ∈ VY }. After that,
set E (the edge set of G) to

⋃
(X,Y )∈EP

EX,Y .

For each (X,Y ) ∈ EP , the number of edges between VX and VY is

|VX | · |VY | = max{⌊exp2(ν∗X)/|EP |⌋, 1} ·max{⌊exp2(ν∗Y )/|EP |⌋, 1},

which is at most the maximum between the four values below:

• 1

• ⌊exp2(ν∗X)/|EP |⌋

• ⌊exp2(ν∗Y )/|EP |⌋, and

• ⌊exp2(ν∗X)/|EP |⌋ · ⌊exp2(ν∗Y )/|EP |⌋.

Proposition D.1. All the four values above are bounded by m/|EP |.

Proof. First, 1 ≤ m/|EP | due to m ≥ |EP |. Second, ⌊exp2(ν∗X)/|EP |⌋ ≤ exp2(ν
∗
X + ν∗Y )/|EP | ≤

m/|EP |, where the first inequality is because ν∗Y ≥ 0, and the second inequality is by the constraint
set (I) in the dual LP(+). Third, ⌊exp2(ν∗Y )/|EP |⌋ ≤ exp2(ν

∗
X + ν∗Y )/|EP | ≤ m/|EP |, where the first

inequality is because ν∗X ≥ 0. Finally, ⌊exp2(ν∗X)/|EP |⌋ · ⌊exp2(ν∗Y )/|EP |⌋ ≤ exp2(ν
∗
X + ν∗Y )/|EP | ≤

m/|EP |.

Therefore, the total number of edges in G is at most |EP | ·m/|EP | = m.

The out-degree of each vertex X in G is
∑

(X,Y )∈EP
|VY | =

∑
(X,Y )∈EP

max{⌊exp2(ν∗Y )/|EP |⌋, 1},
which is at most the maximum between dmax

P and

dmax
P · max

(X,Y )∈EP

exp2(ν
∗
Y )/|EP |

(by constraint set (II) of LP (+)) ≤ dmax
P · exp2(log λ)/|EP |,

= λ · dmax
P /|EP |

34



≤ λ

Hence, the maximum degree of the vertex in G is at most λ.

An occurrence of P in G can be formed by mapping each vertex X ∈ VP to an arbitrary vertex
in VX . Hence, the number of occurrences of P in G is at least∏

X∈VP

max{1, ⌊exp2(ν∗X)/|EP |⌋} ≥
∏

X∈VP

exp2(ν
∗
X)/(2|EP |)

= exp2

( ∑
X∈VP

ν∗X

)
/(2|EP |)|VP |

= Ω
(
exp2

( ∑
X∈VP

ν∗X

))
which completes the proof.

E Proof of Lemma 4.7

We will show that there exists a data graph G = (V,E) satisfying the following conditions:

• G has at most m edges;

• The out-degree of each vertex in G is at most λ.

• G has Ω(mn3+|S| · λn1+n2−2n3+n4−|S|) occurrences of P .

As G ∈ G(m,λ) (see the definition in (25)), the number of occurrences of P in G cannot exceed
F(m,λ, P ) (see the definition in (26)). The existence of G implies F(m,λ, P ) = Ω(mn3+|S| ·
λn1+n2−2n3+n4−|S|).

Bipartite Fractional Edge-Cover Decompositions. Before constructing G, we make a connec-
tion between the fractional edge-cover decomposition and the vertex-pack LP. Denote the directed
bipartite subgraph induced by S and T as Gbp = (S ∪ T , Ebp), where Ebp includes all edges in EP

between the vertices in S and those in T (every such edge must be directed from S to T by the
definitions of S and T ). Consider the following vertex-pack LP for Gbp :

verex-pack LP maximize
∑

X∈S∪T νX subject to

νX + νY ≤ 1 for each (X,Y ) ∈ Ebp
νX ≥ 0 for each X ∈ S ∪ T

We will prove the next lemma in Section E.1.

Lemma E.1. Given any fractional edge-cover decomposition Σ∗ of Gbp, we can find an optimal
integral solution {ν∗X | X ∈ S ∪ T } to the above vertex-pack LP satisfying:

1. ν∗X = 0 or 1 for each X ∈ S ∪ T .

2. For each directed star in Σ∗ having at least two edges, ν∗X = 0 for the center vertex X and
ν∗Y = 1 for each petal vertex Y .

3. For each directed star in Σ∗ with only one edge (X,Y ), ν∗X + ν∗Y = 1.
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Basic Definitions and Useful Inequalities. Fix an optimal solution {ν∗X | X ∈ S ∪T } promised
by Lemma E.1. Define

S1 = {X ∈ S | ν∗X = 0}
S2 = S \ S1
T1 = {X ∈ T | ν∗X = 0}
T2 = T \ T1.

Conditions 2 and 3 of Lemma E.1 tell us that Σ∗ has exactly |S2|+ |T2| edges, and thus

|T2| − |S1| = |T2|+ |S2| − (|S2|+ |S1|) = n4 − |S|. (59)

Recall (from the statement of Theorem 4.2) that dmax
P represents the maximum out-degree of a

vertex in P ; furthermore, the values of m and λ satisfy m ≥ |EP | and λ ≥ dmax
P . In the subsequent

discussion, we assume m ≥ 4|EP |2 (otherwise, λ ≤ m = O(1) such that mn3+|S| ·λn1+n2+n4−2n3−|S| =
O(1), in which case we can construct the desired G as G = P ).

Define:

m′ = ⌊m/|EP |⌋
λ′ = ⌊λ/dmax

P ⌋

λ∗ =

{
λ′ if m′ ≥ λ′2

⌊
√
m′⌋ otherwise

s = max{⌊m′/λ′2⌋, 1}

Note that m′, λ′, λ∗, and s are at least 1.

Proposition E.2. The following inequalities are true:

s · λ∗2 ≤ m′ (60)

λ∗ · dmax
P ≤ λ (61)

λ < m′ (62)

⌊
√
m′⌋ = Ω(λ) (63)

Furthermore, if m′ < λ′2, then

m/λ2 < 2|EP |/(dmax
P )2. (64)

Proof. Inequality (60) holds because s · λ∗2 ≤ max{⌊m′/λ′2⌋ · λ′2, (⌊
√
m′⌋)2} ≤ m′. Inequality (61)

holds because λ∗ · dmax
P ≤ λ′ · dmax

P ≤ λ. Inequality (62) holds because

m′ > m/|EP | − 1

(as λ ≤
√
m in Lemma 4.7) ≥ λ ·

√
m/|EP | − 1

(as m ≥ 4|EP |2) ≥ λ ·
√
4|EP |2/|EP | − 1

= 2λ− 1

which is at least λ because λ ≥ 1.

To prove (63), first note that
√
m′ =

√
⌊m/|EP |⌋ ≥

√
⌊4|EP |⌋ ≥ 2
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where the first inequality used m ≥ 4|EP |2. Hence

⌊
√
m′⌋ ≥

√
m′/2 =

√
⌊m/|EP |⌋/2

(as m ≥ |EP |) ≥
√

m/(2|EP |)/2

(as m ≥ λ2) ≥ λ/2√
2|EP |

= Ω(λ).

Finally, Inequality (64) follows from the derivation below:

m′ < λ′2

⇒ m

|EP |
− 1 <

( λ

dmax
P

)2

(as m ≥ 4|EP |2) ⇒
m

2|EP |
<

( λ

dmax
P

)2

which yields m/λ2 < 2|EP |/(dmax
P )2.

Construction of G. Next, we explain how to create the desired graph G = (V,E). The construction
of V starts with three steps.

• For each vertex X ∈ I (see the definition of I in (35)), create s sets of vertices — denoted
as V 1

X , V 2
X , ..., V s

X — each having λ∗ vertices. Let VX be the union of these s sets; thus,
|VX | = s · λ∗.

• For each vertex X ∈ S1, create a set VX of ⌊m′/λ∗⌋ vertices. We have |VX | ≥ 1 because of
(62) and λ∗ ≤ λ. For each vertex X ∈ S2, create a set VX of m′ vertices.

• For each vertex X ∈ T1, create a singleton set VX having only one vertex. For each vertex
X ∈ T2 ∪ J (see the definition of J in (36)), create a set VX of λ∗ vertices.

Then, V =
⋃

X∈VP
VX .

To create the edge set E of G, we process each edge (X,Y ) of P as follows:

• If X ∈ I and Y ∈ I, build a set Ei
X,Y — for each i ∈ [s] — containing an edge from every

vertex in V i
X to every vertex in V i

Y . Define EX,Y =
⋃s

i=1E
i
X,Y .

• Otherwise, build a set EX,Y containing an edge from every vertex in VX to every vertex in VY .

Then, E =
⋃

(X,Y )∈EP
EX,Y .

Number of Edges in G. Note that EP cannot contain edges of the following types:

(a) an incoming edge to a vertex in S;

(b) an edge from a vertex in S to a vertex in J ;

(c) an edge from a vertex in S2 to a vertex in T2.

Edges of types (a) and (b) cannot exist due to the definitions of S and J . Assume that an edge
(X,Y ) of type (c) exists in EP . By the definitions of S2 and T2, we know that ν∗X ̸= 0 and ν∗Y ̸= 0.
Thus, condition 1 of Lemma E.1 tells us ν∗X = ν∗Y = 1. However, ν∗X + ν∗Y = 2 > 1 violates the first
constraint of the vertex-pack LP.

It thus follows that every edge of EP belongs to one of the following 6 categories:
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(1) the edge is from a vertex in I to another vertex in I (both vertices must be in the same SCC
of P );

(2) the edge is from a vertex in S1 to a vertex in T2;

(3) the edge is from a vertex in S2 to a vertex in T1;

(4) the edge is from a vertex in S1 to a vertex in T1;

(5) the edge is from a vertex in I to a vertex in T ∪ J .

(6) the edge is from a vertex in T ∪ J to another vertex in T ∪ J .

We are ready to count the number of edges in G. Recall that E is the union of EX,Y of all
(X,Y ) ∈ EP . We will show that, for every (X,Y ) ∈ EP , the size of EX,Y is bounded by m′. As a
result, the number of edges in G is

∑
(X,Y )∈EP

|EX,Y | ≤ |EP | ·m′ ≤ m, as desired.

We will analyze |EX,Y | based on the category of (X,Y ). For each category-(1) edge (X,Y ),

|EX,Y | =
∑
i∈[s]

|V i
X | · |V i

Y | = s · λ∗2

which is at most m′ by (60). For an edge (X,Y ) ∈ EP of category (2)-(6), the size of EX,Y is
|VX | · |VY |. Specifically:

• For category (2), |EX,Y | = ⌊m′/λ∗⌋ · λ∗ ≤ m′.

• For category (3), |EX,Y | = m′ · 1 = m′.

• For category (4), |EX,Y | = ⌊m′/λ∗⌋ · 1 ≤ m′.

• For category (5), |EX,Y | = (s · λ∗) · λ∗ ≤ m′, where the inequality is due to (60)

• For category (6), |EX,Y | ≤ λ∗ ·λ∗ ≤ m′, where the last inequality is due to the definition of λ∗.

Maximum Out-Degree of G. Next, we will verify that the out-degree of each vertex in G is at
most λ. For each vertex in the set V i

X where X ∈ I and i ∈ [s], its out-degree is∑
(X,Y )∈EP s.t. X and Y
are in the same SCC

|V i
Y |+

∑
(X,Y )∈EP
s.t. Y ∈T ∪J

|VY | ≤ λ∗ · dmax
P ≤ λ

where the last inequality used (61). Now, consider a vertex v ∈ VX where X ∈ VP \ I. As each
out-neighbor of X is in T ∪ J , the out-degree of v is∑

(X,Y )∈EP
s.t. Y ∈T ∪J

|VY | ≤ λ∗ · dmax
P ≤ λ.

Number of Occurrences of P in G. To complete the proof of Lemma 4.7, it remains to show
that G has many occurrences of P . We can form a distinct occurrence of P in G as follows:

• for each non-trivial source SCC, pick an integer i ∈ [s] and then map each vertex X in this
SCC to an arbitrary vertex in V i

X ;

• for each vertex X ∈ VP \ I, map X to an arbitrary vertex in VX .
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Hence, the number of occurrences of P in G is at least

sn3 · (λ∗)n1 · (⌊m
′

λ∗ ⌋)
|S1| · (m′)|S2| · (λ∗)|T2| · (λ∗)n2 . (65)

If m′ ≥ λ′2, (65) is equal to

(⌊m
′

λ′2 ⌋)
n3 · (λ′)n1 · (⌊m

′

λ′ ⌋)
|S1| · (m′)|S2| · (λ′)|T2| · (λ′)n2

(as m′/λ′2 ≥ 1 implies m′/λ′ ≥ 1) ≥ (
m′

2λ′2 )
n3 · (λ′)n1 · (m

′

2λ′ )
|S1| · (m′)|S2| · (λ′)|T2| · (λ′)n2

= 2−n3−|S1| · (m′)n3+|S| · (λ′)n1−2n3−|S1|+|T2|+n2

(as m′ = Ω(m), λ′ = Ω(λ)) = Ω(mn3+|S| · λn1+n2−2n3+|T2|−|S1|)

(by (59)) = Ω(mn3+|S| · λn1+n2−2n3+n4−|S|).

If m′ < λ′2, (65) is equal to

1n3 · (⌊
√
m′⌋)n1 · (⌊ m′

⌊
√
m′⌋
⌋)|S1| · (m′)|S2| · (⌊

√
m′⌋)|T2| · (⌊

√
m′⌋)n2

(by (64)) ≥ (
m · (dmax

P )2

λ2 · 2|EP |
)n3 · (⌊

√
m′⌋)n1 · (⌊ m′

√
m′
⌋)|S1| · (m′)|S2| · (⌊

√
m′⌋)|T2| · (⌊

√
m′⌋)n2

(as ⌊
√
m′⌋ ≥

√
m′/2) = Ω

(
(
m

λ2
)n3 · (

√
m′)n1 · ( m′

√
m′

)|S1| · (m′)|S2| · (
√
m′)|T2| · (

√
m′)n2

)
(by (63)) = Ω

(
(
m

λ2
)n3 · λn1 · ( m′

√
m′

)|S1| · (m′)|S2| · λ|T2| · λn2
)

(by
√
m′ ≤ λ′ ≤ λ) = Ω

(
(
m

λ2
)n3 · λn1 · (m

′

λ
)|S1| · (m′)|S2| · λ|T2| · λn2

)
(by m′ = Ω(m)) = Ω(mn3+|S| · λn1+n2−2n3+|T2|−|S1|)

(by (59)) = Ω(mn3+|S| · λn1+n2−2n3+n4−|S|).

We now complete the proof of Lemma 4.7.

E.1 Proof of Lemma E.1

The dual of the vertex-pack LP is the following “edge-cove LP”:

edge-cover LP minimize
∑

e∈Ebp we subject to∑
e∈Ebp ,X∈e

we ≥ 1 for each X ∈ S ∪ T

we ≥ 0 for each e ∈ Ebp

Let {w∗
e | e ∈ Ebp} be the fractional edge-cover of Gbp corresponding to Σ∗, namely, w∗

e = 1 for each
edge e in Σ∗, and w∗

e = 0 for each edge e ∈ Ebp \ Σ∗. By the definition of fractional edge-cover
decomposition, {w∗

e | e ∈ Ebp} is an optimal solution to the edge-cover LP.

Given {w∗
e | e ∈ Ebp}, we can apply the complementary slackness theorem (see Appendix A) to

obtain an optimal solution {ν ′X | X ∈ S ∪ T } to the vertex-pack LP satisfying:
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• ν ′X + ν ′Y = 1 for each edge (X,Y ) ∈ Σ∗ (because w∗
(X,Y ) > 0);

• ν ′X = 0 for each center vertex X of a directed star in Σ∗ having at least two edges (because∑
X∈ew

∗
e > 1);

It follows from the above that ν ′X = 1 for each petal vertex X of a directed star in Σ∗ having at
least two edges.

Now we construct the desired solution {ν∗X | X ∈ S ∪ T } to the vertex-pack LP:

• ν∗X = ν ′X for each vertex of a directed star in Σ∗ having at least two edges;

• For each directed star in Σ∗ with only one edge (X,Y ), if ν ′X ≤ 0.5, set ν∗X = 0 and ν∗Y = 1;
otherwise, set ν∗Y = 0 and ν∗X = 1.

It is obvious that the set {ν∗X | X ∈ S ∪ T } thus constructed satisfies the three conditions stated in
Lemma E.1. To prove the lemma, it remains to show that {ν∗X | X ∈ S ∪ T } is an optimal solution
to the vertex-pack LP.

By our construction, ν∗X ≥ 0 for each X ∈ S ∪ T . Next, we argue that ν∗X + ν∗Y ≤ 1 for each
edge (X,Y ) ∈ Ebp . Assume that there exists an edge (X,Y ) ∈ Ebp with ν∗X + ν∗Y > 1, meaning
ν∗X = ν∗Y = 1 (because ν∗X and ν∗Y are either 0 or 1). As ν∗X = 1, one of the following must apply:

• X is a petal vertex of a directed star in Σ∗ having at least two edges; in this case, ν ′X = 1.

• X is a vertex of a directed star in Σ∗ having only one edge; in this case, ν ′X > 0.5.

Similarly, as ν∗Y = 1, one of the following must apply:

• Y is a petal vertex of a directed star in Σ∗ having at least two edges; in this case, ν ′Y = 1.

• Y is a vertex of a directed star in Σ∗ having only one edge; in this case, ν ′Y ≥ 0.5.

Hence, ν ′X + ν ′Y must be strictly greater than 1, which, however, contradicts the fact that {ν ′X |
X ∈ S ∪ T } is a solution to vertex-pack LP.

We can now assert that {ν∗X | X ∈ S ∪ T } is an optimal solution to the vertex-pack LP because∑
X∈S∪T ν∗X =

∑
X∈S∪T ν ′X and {ν ′X | X ∈ S ∪ T } is an optimal solution to the vertex-pack LP.
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