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ABSTRACT
We study the problem of learning personalized user models from rich
user interactions. In particular, we focus on learning from clustering
feedback (i.e., grouping recommended items into clusters), which
enables users to express similarity or redundancy between different
items. We propose and study a new machine learning problem for
personalization, which we call collaborative clustering. Analogous
to collaborative filtering, in collaborative clustering the goal is to
leverage how existing users cluster or group items in order to predict
similarity models for other users’ clustering tasks. We propose a
simple yet effective latent factor model to learn the variability of
similarity functions across a user population. We empirically eval-
uate our approach using data collected from a clustering interface
we developed for a goal-oriented data exploration (or sensemaking)
task: asking users to explore and organize attractions in Paris. We
evaluate using several realistic use cases, and show that our approach
learns more effective user models than conventional clustering and
metric learning approaches.

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—Clus-
tering; H.5.2 [Information Storage and Retrieval]: Information
Interfaces and Presentation—User Interfaces; I.2.6 [Computing
Methodologies]: Artificial Intelligence—Learning

General Terms
Design, Experimentation, Human Factors

Keywords
Personalization, Clustering, Tensor Factorization

1. INTRODUCTION
How would you browse and organize attractions for a potential

trip to Paris? How would you organize research articles while con-
ducting a literature review? Such tasks are known as goal-oriented
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data exploration tasks, and the study of such “sensemaking” tasks is
an area of intense interest within the human-computer interaction
(HCI) community [21] as well as a plentiful source of new machine
learning challenges.

One natural way to facilitate these types of sensemaking tasks
is by using rich interfaces that allow users to interact more mean-
ingfully with the datasets of interest. In this paper, we focus on
modeling and learning from clustering interactions, which have
become an increasingly popular paradigm for developing effective
rich user interfaces (e.g., [5, 9, 2]) and have also seen commercial
adoption.1 In this setting, a user can cluster or group related items to-
gether, and obtain additional (personalized) recommendations based
on this existing clustering.

Two key technical issues arise when developing machine learning
approaches that are tailored to learning from clustering interaction
feedback. First, in order to learn a model over all items, we must
often learn from multiple users simultaneously, since each user typi-
cally only provides feedback on a small subset of items. However,
different users may have very different similarity preferences, which
typically requires learning multiple clustering models in order to
characterize a heterogeneous user population. Consider the example
in Figure 1, which shows how two users might organize attractions
in Paris. For such settings, conventional approaches that do not ac-
count for personal tastes cannot effectively learn similarity models
that are personalized to different users.

The second issue is that, for many applications, it can be difficult
to design content-based features that can effectively capture the sim-
ilarity preferences of different users. Consider again the example
in Figure 1. We find that “Luxembourg Gardens” and “River Seine”
are grouped in the same cluster by one user, and into different clus-
ters by the other user. It is unclear whether content-based features
alone – even those derived from semantically rich data sources such
as Wikipedia – can effectively capture such subtleties.

These two issues are both related to personalization. In conven-
tional recommendation settings, one popular approach for character-
izing the multi-user personalization problem is collaborative filtering
[16, 15]. In collaborative filtering, users provide feedback on an
absolute scale (e.g., like/dislike or star rating). Most approaches for
collaborative filtering are motivated by the intuition that even though
users have different preferences, many users share preferences with
other users. This intuition is often formalized by employing a latent
factor model that automatically learns a low-dimensional represen-
tation that reliably characterizes the space of user preferences.

In this paper, we propose and study a clustering analogue to
collaborative filtering, which we call collaborative clustering. Our

1E.g., http://www.pinterest.com.
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Figure 1: Showing clusterings from two hypothetical users.
The top user enjoys a good stroll, and groups the “River Seine”
with nice walking spots in the city. The bottom user is more
interested in art and architecture, and groups the “River Seine”
in a broader “Outdoors” category.

assumption is that, although different users have different similarity
preferences, most users share similarity preferences with other users.
To tackle this problem, we propose a latent factor model, which we
call “Latent Collaborative Clustering,” to automatically learn a low-
dimensional feature representation to reliably characterize the space
(or variability) of users’ similarity preferences. One interesting
aspect of our approach is that it inherits the benefits of both tensor
factorization as well as metric learning approaches (see Section 6).

We evaluate our approach using usage data collected from a clus-
tering interface we developed for the sensemaking task of exploring
and organizing attractions in Paris with the intention of planning a
trip there (see Section 5 for more details). We conduct our evalua-
tion based on several realistic use cases, and show that our approach
learns more effective user models than conventional clustering and
metric learning approaches. An implementation of our method as
well as our collected dataset is publicly available.2

2. COLLABORATIVE CLUSTERING
We now define the problem of collaborative clustering. Suppose

we have M users and N items. We assume each user has generated
a clustering on a subset of the N items.3 This type of preference
data can be naturally collected from rich interfaces that support
clustering (e.g., [9]). Figure 1 shows example clusterings that can
be collected from our user interface (see Section 5 and Figure 4 for
more details on our user interface and data collection process).

Our entire training data Y can be written as:

Y = {Ym}Mm=1 . (1)

We define each user’s feedback Ym as:

Ym =
{
Y 1
m, . . . , Y

Cm
m

}
, (2)

2See: http://projects.yisongyue.com/collab_cluster
3This is analogous to the assumption common in collaborative
filtering that each user has rated a subset of the items.

where each Y i
m denotes a set of items that user m has indicated

as belonging to the same group or cluster, and Cm indicates the
total number of groups for user m. We also use the notation Ȳm =
{Y 1

m∪ . . .∪Y Cm
m } to denote all the items that user m has clustered.

Similar to previous work on clustering with side information (e.g.,
[29, 13]), we model clustering feedback in the form of pairwise
must-link and cannot-link labels: for each user m and every pair of
items i, j ∈ Ȳm clustered by user m, define ymij = 1 if user m
groups items i and j into the same cluster, and ymij = −1 if user
m clusters items i and j into different clusters.

For example, the user in Figure 1(a) placed “Luxembourg Gar-
dens” and “River Seine” into different clusters, so we would assign

y“CityStroller′′,“LuxembourgGardens′′,“RiverSeine′′ = −1.

On the other hand, the user in Figure 1(b) placed the two attractions
into the same cluster, so we would assign

y“ArtEnthusiast′′,“LuxembourgGardens′′,“RiverSeine′′ = +1.

Our goal is to learn a similarity model F (m, i, j) such that:

∀m, ∀i, j ∈ Ȳm : F (m, i, j) ≈ ymij .

2.1 Predicting Cluster Memberships
Given a partial clustering of items Ym for user m, we are inter-

ested in having a model that can generalize to new items not yet
recommended (and thus not yet clustered) by user m. For simplic-
ity, we focus here on predicting the cluster membership of a single
unclustered item at a time.4

For any unclustered item i, we score its affinity to cluster c created
by user m as:

F (m, i, Y c
m) = mean{F (m, i, j) : j ∈ Y c

m}, (3)

and define c̄mi as the most likely cluster:

c̄mi = argmax
c∈{1,...,Cm}

F (m, i, Y c
m). (4)

We define our cluster prediction function for item i given partial
clustering Ym as predicting the cluster with highest affinity:

predict(i|m,Ym) =

{
c̄mi if F (m, i, Y c̄mi

m ) > 0

⊥ if F (m, i, Y c̄mi
m ) ≤ 0

, (5)

where ⊥ denotes “new cluster” or “none of the above.”
The two cases in (5) represent two types of generalization tasks.

The first case corresponds to a conventional setting where all clusters
are assumed known during evaluation. In this case, we simply
predict the cluster with highest affinity to the unclustered item.

The second case (predicting whether an item belongs to a nonex-
istent cluster), which is arguably more interesting, is motivated by
the intuition that recommending non-redundant items (i.e., those not
belonging to any existing cluster) maximizes the novel information
presented to the user. One appealing property of the affinity for-
mulation F (m, i, j) is that it naturally accommodates this type of
generalization – we simply predict ⊥ whenever item i has negative
affinity with all existing clusters.

A priori, it may seem difficult to learn to predict cluster mem-
berships for nonexistent clusters. We will present an approach that
explicitly models how clusters are different through the must-link
and cannot-link pairs across all users, thus allowing the resulting
model to generalize to nonexistent clusters (for any given user) in a
straightforward way.
4Predicting for multiple items simultaneously will lead to a more
structured prediction problem analogous to semi-supervised (or
transductive) clustering [4].

http://projects.yisongyue.com/collab_cluster


3. LATENT COLLABORATIVE CLUSTER-
ING

We now present a latent factor model, which we call “Latent Col-
laborative Clustering” (LCC), for learning the similarity function
F (m, i, j). Our approach can be viewed as both a natural cluster-
ing analogue of matrix factorization for collaborative filtering (see
Section 6.1), as well as a latent-variable extension of feature-based
metric learning for clustering (see Section 3.2 and Section 6.2).

Rather than relying on content-based features, we represent each
item i as a latent vector xi ∈ <D in a D-dimensional space; our
approach will learn each xi from the training data Y . We represent
each user m using a symmetric and positive semi-definite transform
(i.e., a metric) matrix Um ∈ <D×D � 0, which corresponds to how
user m finds items to be interrelated.

Model. We instantiate the similarity function F (m, i, j) as:

F (m, i, j) = x>i Umxj + b, (6)

where b ∈ < is a global offset term. This similarity model can be
viewed as a natural merging of latent factor and metric learning
approaches, and bears affinity to the pairwise interaction models
used in [27, 13].

Learning Objective. We estimate our model using training
data as described in (1) and (2). We formulate our training objec-
tive as finding item representations x = {xi}Ni=1, user transforms
U = {Um}Mm=1, along with a bias term b to minimize the squared
reconstruction error of the training data (subject to regularization),

L(U, x, b) = Rx(x) +Ru(U) +
∑
m

Lm, (7)

where Rx and Ru denote the regularization penalty terms for item
and user representations, respectively. Each Lm denotes the squared
reconstruction error for user m,

Lm =
1

2

∑
i,j∈Ȳm,i 6=j

βmij(F (m, i, j)− ymij)
2, (8)

where we use the weighting terms βmij to control how to balance the
relative importance of must-link and cannot-link training instances
(see Appendix A.3 for more details on how we set βmij). We also
tried other loss functions such as the hinge loss [18]; the choice of
loss functions did not greatly impact performance.

Regularization. When regularizing item representations x, we
use the standard L2 norm:

Rx(x) = λx

∑
i

‖xi‖2, (9)

here λx > 0 is a tunable hyperparameter. When regularizing user
transforms U, similar to [10] we regularize to the identity matrix:

Ru(U) = λu

∑
m

‖Um − σuID‖2Fro, (10)

where λu > 0 and σu ∈ [0, 1] are tunable hyperparameters. Intu-
itively, (10) can be interpreted as an assumption that, a priori, each
user places a small uniform weight on each latent dimension.

Optimization Problem. We also restrict each Um to be diago-
nal,5 which combined with Um � 0 implies that each Um ≥ 0.
This leads to the following optimization problem during training:

argmin
U, x, b :

each Um ≥ 0 and Um diagonal

L(U, x, b). (11)

5Note that learning a more general non-diagonal transform ma-
trix often does not improve clustering performance in conventional
feature-based metric learning approaches (cf. [31, 24]).

Note that, despite Um being diagonal, (11) is optimizing over a rich
class of three-way interaction models. By learning a common item
representation x, our LCC model can learn commonalities across
users in order to generalize each user’s similarity preferences to
unclustered items (for that user). Also note that we do not place any
constraints on the global offset term b.

Training. Note that (11) is convex with respect to each xi or Um,
but not jointly in x and U. We thus optimize (11) as a sequence of
alternating constrained convex optimization problems. Appendix
A describes in detail our optimization procedure. The form of
our learning problem yields closed form solutions, which makes
learning efficient. We also present a method to further speed up
training in Appendix A.4.

3.1 Illustrative Example
As an illustration, we trained our LCC model over all the usage

data Y we collected for our data exploration task of organizing
attractions in Paris (see Section 5 for details on how we collected
our usage data), resulting in item representations x for each attrac-
tion in our collection. Note that we did not use any content-based
features in training our model, but only used the partial clusterings
generated by our users. For each user depicted in Figure 1, we
computed a transform Um using that user’s clustering and the previ-
ously learned x. For each user, we then computed the most similar
attractions to “River Seine” according to the resulting similarity
function: F (m, “River Seine”, j).

Figure 2 shows the eight most similar attractions to “River Seine”
according to the two users’ estimated similarity functions. In Figure
1, the first user groups “River Seine” under “City Strolling,” whereas
the second user groups it under “Outdoors.” For the first user, the
eight attractions most similar to “River Seine” (Figure 2(a)) are all
conducive to city strolling. For the second user, the eight attractions
most similar to “River Seine” (Figure 2(b)) all correspond to outdoor
scenery. This example shows our model’s ability to directly learn
a latent representation of items that can capture the variability in
similarity preferences across users. We refer to Section 4 for a
quantitative evaluation.

3.2 Baselines & Extensions
Feature-Based Model. The most natural alternative to our ap-

proach is to use a feature-based model that utilizes an observable
feature representation of items (e.g., features can be mined from
a data source such as Wikipedia). In this case, our LCC learning
problem reduces to conventional (multi-task) metric learning prob-
lems with side information (i.e., each user is a task) [29, 31, 24,
10, 32, 20]. We now describe a natural feature-based variant of our
approach, which also serves as a baseline approach.

Let zi denote a feature representation of item i, let V = {Vm}Mm=1

denote the user models, and let b ∈ < again denote the global offset.
We define the analogous affinity function:

F (m, i, j) = z>i Vmzj + b. (12)

Our modified learning objective can be written as:

L(V) = Rv(V) + R̃v(V) +
∑
m

Lm, (13)

where Lm denotes the reconstruction error for user m (8), Rv de-
notes the per-user regularization term (analogous to (10)), and R̃v

denotes the multi-task regularizer that enables sharing of informa-
tion across each of the user tasks. We use the group regularization
penalty [11, 20],

R̃v(V) = λ̃v

∑
m

‖Vm − V̄ ‖2Fro,



(a) “City Stroller”

(b) “Art Enthusiast”

Figure 2: Showing the top eight most similar attractions to
“River Seine” with respect to the two users in Figure 1 (see
Section 3.1). For the top user (Figure 1(a)), the most similar
attractions are related to “City Strolling”. For the bottom user
(Figure 1(b), the most similar attractions are related to “Out-
doors”. See Section 3.1 for more details.

where V̄ = 1
M

∑
m Vm, although other multi-task regularization

terms are possible (e.g., [32]).
Transformed Feature-Based Model. We can further extend our

feature-based baseline (12) using a latent tranform SDz×D (which
is similar to the approach in [6]),

F (m, i, j) = z>i SVmS
T zj + b, (14)

where Dz denotes here the dimensionality of the observed features
zi, andD ≤ Dz denotes the latent dimensionality. Essentially, S>z
transforms the observed features z into a “latent” space whereas
our LCC model (6) directly learns the latent representation without
using observed features.

One potential advantage of this model over the feature-based
model is that it can fully model three-way interactions (between a
user and a pair of items) using a latent representation (however, the
model is limited to linear transforms of observable features). We
will regularize S using the squared norm

Rs(S) = λs‖S‖2.

Appendix A.6 gives a gradient descent formulation for training S.
Note that our LCC model is actually equivalent to having each

item i assigned a unique feature, i.e., zi = ei for ei being the canon-
ical unit vector along the i-th axis (so that Dz = M ). In this case,
we can establish an equivalence between LCC and the feature trans-
form as xi = Si where Si denotes the i-th column of S. The special

form of our LCC model yields significantly more efficient training
algorithms due to having closed form solutions (see Appendix A).
Furthermore, as we shall see in the experiments, it is unclear if
leveraging observable features yields improved performance over
directly learning a latent item representation in our problem setting.

Augmented LCC Model. The augmented LCC model is a natu-
ral extension that incorporates both latent and feature-based compo-
nents. We can combine (6) and (12) (or (14)) to yield:

F (m, i, j) = x>i Umxj + z>i Vmzj + b, (15)

and define the modified learning objective as L(U,V, x, b) =

Rx(x) +Ru(U) +Rv(V) + R̃v(V) +
∑
m

Lm. (16)

4. EXPERIMENTS
We evaluated our approach using usage data collected from a

clustering interface we developed for the data exploration task of
organizing attractions in Paris. Each user was asked to organize in
groups a small subset of 250 attractions in Paris (that they found
interesting), with the intention of planning a trip there. We refer to
Section 5 for more details regarding our user study. Overall, we col-
lected data from 218 users, with an average of 18.7 items clustered
and 4.5 clusters created per user. We evaluated both static as well as
dynamic prediction tasks, which we describe in the following.

4.1 Static Prediction Experiments

4.1.1 Experiment Setup
We conducted 5-fold cross validation using the collected usage

data. Each fold comprises approximately 125 training users, 50
validation users, and 43 test users. For each fold, we train all models
using the training set with a range of hyperparameter settings (in-
cluding regularization parameters and latent dimensions). We select
the best model based on prediction performance on the validation
set, and report performance on the test set.

For each user in the validation and test sets, at prediction time, we
split the attractions clustered by the user into an input clustering and
a held-out set. Each model is given the input clustering, and must
predict to which of the existing clusters (or none) each held-out
item belongs to. For our LCC model, the input clustering is used to
learn the user-specific transform U . For the feature-based models,
the input clustering is used to learn the user-specific V . Recall that
predictions are made via predict (5).

We evaluate three types of static prediction tasks:

• Hold 50%. We randomly hold out 50% of the attractions the
user clustered, and use the remaining clustered attractions as
the input to the model.

• Hold 25% per Cluster. We randomly hold out 25% of each
cluster the user created, and use the remaining clustered at-
tractions as the input to the model. This setting is analogous
to the first prediction task in Section 2.1, and is most analo-
gous to conventional clustering tasks where all clusters are
assumed to be known (i.e., none of the held out attractions
belong to a nonexistent cluster).

• Hold One Cluster. We randomly hold out an entire cluster
the user created, and use the remaining clustered attractions
as the input to the model. The model must predict that none of
the held out attractions belong to any existing clusters. This
setting is analogous to the second prediction task in Section
2.1 (where the goal is to predict ⊥), and is arguably the most
interesting task since it directly relates to predicting which
attractions have maximal novel information (to the user).



Table 1: Test set accuracy for various prediction tasks. Latent Collaborative Clustering (LCC) performs the best in all cases. Note
that conventional feature-based approaches are ill-suited for the HOLD ONE CLUSTER task (see Section 4.1.3).

MODEL HOLD 50% HOLD 25% PER CLUSTER HOLD ONE CLUSTER

Random 23.6% 19.6% 24.7%
Largest Cluster 30.1% 45.4% 0.0%

Feature 1 25.2% 26.1% 0.0%
Feature 2 35.1% 31.9% 0.1%

Transformed Feature 1 46.3% 56.1% 19.8%
Transformed Feature 2 31.1% 32.1% 0.7%

LCC 55.7% 61.9% 36.7%
Augmented LCC 53.8% 61.3% 34.1%

Table 2: Comparing test set accuracy of Latent Collaborative Clustering while performing model selection for different tasks (via
hyperparameter selection in validation set). Note that the LCC model in Table 1 corresponds to optimizing for HOLD 50%.

OPTIMIZATION CRITERION HOLD 50% HOLD 25% PER CLUSTER HOLD ONE CLUSTER

HOLD 50% 55.7% 61.9% 36.7%
HOLD 25% PER CLUSTER 55.6% 62.1% 37.7%

HOLD ONE CLUSTER 54.8% 61.1% 42.9%

4.1.2 Baselines
We generated two feature representations for training feature-

based baseline models (see Section 3.2).

• Feature 1. The first feature representation was constructed
using TF-IDF vectors [23] of the corresponding Wikipedia
articles. This resulted in 3,403 features, with each feature
corresponding to the TF-IDF value of a stem word.

• Feature 2. The second feature representation was constructed
using a crowd-sourced tagging task on Amazon Mechanical
Turk. This resulted in 39 binary features, which correspond
to whether human labelers considered each attraction to be
associated with the 39 tags (e.g., “Museum” or “Nature”). See
Section 5.2 for more details.

In addition, we also compare against two simpler baselines:

• Random. Predict an existing cluster or nonexistent cluster
uniformly and random.

• Largest Cluster. Always predict the largest existing cluster.

4.1.3 Static Prediction Results
Table 1 shows our main test results. For these results, we per-

formed hyperparameter selection for all approaches based on HOLD
50% prediction accuracy in the validation set. We see that our La-
tent Collaborative Clustering (LCC) models uniformly outperform
all baseline approaches. The Transformed Feature 1 Model was the
most competitive baseline, although it still performed significantly
worse than our LCC model, while being over 50 times slower to
train.6 We also note that the augmented LCC model (15) (trained
using Feature 2) actually performs worse compared to the standard
LCC model, which may be due to the augmented LCC model requir-
ing significantly more training data is required to learn a superior
model. These results suggest that directly learning a latent item rep-
resentation can be an effective approach for capturing the variability
of similarity preferences within a user population.

6The disparity in training time is due to our LCC modeling having
efficiently computable closed form solutions (see Appendix A.4),
whereas the Transformed Feature-Based model must resort to using
gradient descent (see Appendix A.6).
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Figure 3: Showing the number of clusters created in the Se-
quential Prediction Experiment (see Section 4.2).

The feature-based models perform especially poorly on the HOLD
ONE CLUSTER task (none of them outperformed the random base-
line). We hypothesize three reasons for their poor performance.
The first feature representation is very high dimensional, and thus
likely requires significantly more training data to learn a good model
(the Transformed Feature 1 model alleviates this issue somewhat
by projecting item representations into a low-dimensional space).
The second feature representation is likely not expressive enough to
capture users’ notions of dissimilarity, and as a consequence almost
always predicts that held-out items should belong to some existing
cluster (and hence rarely predicts ⊥). Finally, training data for in-
dividual users is sparse, so it may be more beneficial to identify
useful features of users rather than items (although such data was
not collected in our user study).

Table 2 shows the test accuracy of our LCC model as we vary
which prediction task we optimize for (via hyperparameter selection)
in the validation set. We observe that the HOLD 50% and HOLD
25% PER CLUSTER tasks are reasonably aligned, whereas one can
significantly boost performance for the HOLD ONE CLUSTER task
at a slight expense to the other tasks.

4.2 Sequential Prediction Experiments
We also conducted a simulated sequential prediction task:



• Maximize Number of Clusters. For each test user, the goal
is to iteratively recommend (unclustered) items in order to
maximize the number of clusters created by that user (ac-
cording to that user’s collected training labels). Intuitively,
this task measures a model’s ability to recommend interesting
items that the current user has not yet seen, and is related to
the static prediction task HOLD ONE CLUSTER. .

Procedurally, for a given model and user m, the following happens:

• The model is initialized with an empty clustering.

• The model iteratively selects the unclustered item i with the
lowest predicted affinity to any existing cluster, i.e., the item
i with the lowest F (m, i, c̄mi) (4) (which can also be inter-
preted as predicting the item i with the highest likelihood that
predict(i|m,Ym) = ⊥ (5)). Ties are broken arbitrarily.

• The selected item is clustered according to the user’s training
labels (either added to an existing cluster or made into a new
cluster).

Using the models selected in Section 4.1, we tested on users in
the held-out test set using the same setup as in Section 4.1.1. We
compared our LCC model against the following approaches:

• Transformed Feature 1. This model had the highest HOLD
ONE CLUSTER performance.

• Transformed Feature 2. This model had the second highest
HOLD ONE CLUSTER performance.

• Random. Randomly recommend an unclustered result.

Figure 3 shows the results. We observe that our LCC model
is able to adaptively help the user create more clusters than the
baselines. We further observe that the Transformed Feature 2 model
actually does not outperform random guessing. Like in the HOLD
ONE CLUSTER static prediction task, these results suggest that
our LCC approach of directly learning a latent item representation
can be an effective yet simple approach to making personalized
recommendations to help the user discover novel (i.e., previously
unseen) clusters.

5. USER STUDY DETAILS
We collected 250 attractions in Paris from the TripAdvisor web-

site.7 We then constructed two datasets based on these attractions
using human intelligence workers on Amazon Mechanical Turk.8

The first dataset is the clustering data Y (1) used for training and
evaluating our model. The second dataset is used to generate the
second feature representation described in Section 4.1.2.

5.1 Cluster Feedback
To collect clustered feedback Ym (2) from any given user, we

ask that user to use a clustering interface that we developed. Figure
4(a) shows the first screen shown to the user. The user is asked to
imagine that he or she is learning about and organizing attractions in
Paris for a hypothetical trip there, and to use our clustering interface
accordingly. The user study proceeds in four rounds, with each
round comprising the following two parts:

• Part 1. Shown in Figure 4(a), the first part asks the user to
select which of twelve randomly recommended attractions

7http://www.tripadvisor.com
8https://www.mturk.com/

(a) Part 1

(b) Part 2

Figure 4: Showing the two phases of clustering interface de-
veloped for the goal-oriented data browsing task of organizing
attractions in Paris.

the user finds interesting in the context of planning a hypo-
thetical trip to Paris.9 More popular attractions (i.e., those
ranked higher by TripAdvisor) have higher probability of
being recommended.

• Part 2. Shown in Figure 4(b), the second part asks the user to
organize the selected items from Part 1 into clusters. Clusters
created in previous rounds are carried over.

In total, 48 attractions are recommended to each user. Since our
focus is on learning from clustering feedback, we only retain items
that the users found interesting (and thus clustered).10 On average,
there are 18.7 clustered items and 4.5 clusters created per user.

Upon completion, we asked each user to self-report how well
they understood the instructions and how useful they thought their
generated clusterings would be for planning a hypothetical trip to
9Although we recommended results at random for data collection
purposes, it is straightforward to modify our user study to evalu-
ate adaptive recommendations algorithms (which were beyond the
scope of this work) that reason about the entire interactive session
and learn on-the-fly from user feedback.

10It would be interesting to develop models that jointly model both
interest and similarity preferences. Note that modeling user interest
is a conventional collaborative filtering problem.

http://www.tripadvisor.com
https://www.mturk.com/


Figure 5: Showing the questionnaire given to users after they
completed the clustering task.

Figure 6: Showing the tagging task for generating the second
feature representation described in Section 4.1.2.

Paris. Figure 5 shows our closing questionnaire. Since our goal is
to collect high-quality usage data from engaged users, we discarded
any results if the user reported that the instructions were unclear or
that the clusterings were useless. Overall, we retained approximately
80% of the user-generated clusterings for a total of 218.

5.2 Feature Tagging
We developed a tagging task to construct the second feature rep-

resentation described in Section 4.1.2. Figure 6 shows our tagging
interface. For each of the 250 attractions, we asked five human
annotators to select which of 39 pre-specified tags (shown in Figure
6) should be associated with that attraction. Annotators were asked
to select all tags that apply. We considered allowing users to spec-
ify their own tags, but that setup would dramatically increase the
complexity of the data processing due to matching tags with similar
meanings or spelling deviations.

We used this tagging data to construct a 39-dimensional binary
feature representation of the 250 attractions (with each dimension
corresponding to a tag). For each attraction, any tag that was se-
lected by at least 3/5 annotators received a positive value in the
corresponding binary feature, or otherwise a zero value.

6. RELATED WORK
Our work is motivated by recent advancements in the HCI com-

munity studying how to incorporate machine learning with rich user

interactions. In particular, we focused on learning from clustering
interactions [9, 2, 5]. In contrast to previous work, we aim to de-
velop a systematic approach to model the variability of similarity
functions contained within a user population.

The modeling approach most similar to LCC is Bayesian “crowd-
clustering” [13]. One key difference is that [13] assumes there is a
global (or consensus) set of atomic clusters (which different users
may merge into varying higher-level clusters). As such, [13] focuses
on recovering these atomic clusters from many higher-level partial
clusterings. In contrast, we focus on more subjective user tasks,
which are unlikely to yield agreed-upon atomic clusterings (e.g.,
organizing attractions in Paris based on personal interests).

Another related modeling approach is Bayesian clustered tensor
factorization (BCTF) [27]. One key difference is that, for BCTF,
pairwise relationships are not modeled symmetrically, which results
in non-metric per-task transform matrices. In contrast, our collab-
orative clustering problem is naturally modeled using symmetric
pairwise interactions that can be personalized to individual users
using a metric transform.

The actual term “collaborative clustering” is not new, and has
been used to refer to other clustering problems. For instance [14]
studied the problem where the input data is distributed across many
machines, and the machines must “collaborate” to arrive at a con-
sensus clustering. Another example is [12], who studied how to
combine ensembles of clusterings to make more robust predictions.
In contrast, we use the term as an analogue to collaborative filter-
ing. Another related work is [19], which uses latent representations
to predict multiple non-redundant clusterings (for one task). In
contrast, we focus on learning latent representations to capture the
clustering variability of a user population.

6.1 Connection to Tensor Factorization
Our approach (6) can be viewed as a tensor factorization problem

with missing values [1]. We can represent our training data Y (1) as
a 3-tensor Y ,

Ymij =

{
ymij if (i, j) ∈ Ȳm

? otherwise , (17)

where ? denotes a missing value (i.e., user m did not cluster item i
and/or item j).

Analogous to low-rank matrix (2-tensor) factorization approaches
for collaborative filtering, our problem can be viewed as finding a
low-rank 3-tensor factorization for collaborative clustering that has
minimal reconstruction error on Y . In particular, our model can be
viewed as a restricted form of the PARAFAC decomposition [1]:

Ymij ≈
D∑

d=1

γdumdxidxjd + b,

where each xi and um are unit vectors, and γd are positive weights.
Each xi corresponds to an item representation, and each um corre-
sponds to the diagonal of a user transform Um. In our model, rather
than constraining xi and um to be unit vectors and controlling for
magnitude via γ, we instead control the magnitudes of xi and um

(or Um) via regularization penalties Rx and Ru.11 We also enforce
um ≥ 0 to enforce each user model to be a metric transform.

6.2 Connection to Metric Learning
The problem of estimating user transforms Um and Vm is related

to (multi-task) metric learning problems under pairwise constraints
11The relationship between our latent factor model and the
PARAFAC decomposition is analogous to that of bi-Gaussian latent
factor models and the SVD in collaborative filtering [26, 22].



[29, 31, 24, 10, 32, 20]. Indeed, our feature-based baseline models
(see Section 3.2) are instances of multi-task metric learning using
a group regularization term [11, 20] (i.e., preferring all users to be
similar to the “average” user V̄ = (1/M)

∑
m Vm).

Although one could, in principle, employ more sophisticated
multi-task regularization penalties (e.g., [32]), we argue that the
more important limiting factor for many applications is in building
effective feature representations. Most multi-task metric learning
approaches offer only modest improvements in performance (cf.
[20, 32]). As we show in our empirical results, directly learning a
good latent representation can lead to dramatic improvements in
performance, while still being relatively efficient to train. We finally
note that most multi-task metric learning approaches are typically
designed for only a few tasks (typically less than 10), whereas our
approach was applied to hundreds of tasks (i.e., each user is a task).

7. CONCLUSIONS & DISCUSSION
We have presented a new learning problem tailored to learning

from clustering feedback called collaborative clustering, which can
be viewed as a clustering analogue to collaborative filtering. We
proposed a latent factor model to learn the space of clustering vari-
ability within a user population. We conducted empirical evaluations
based on usage data collected from a clustering interface developed
for a sensemaking task of exploring and organizing attractions in
Paris. Our results show that our approach significantly outperforms
conventional feature-based approaches on several realistic use cases.

In a sense, our approach for collaborative clustering is the sim-
plest one that inherits the benefits of both tensor factorization as
well as metric learning. It may be interesting to incorporate other
advancements in collaborative filtering, such as localized latent
embeddings, implicit feedback, and temporal dynamics [16, 15].

Another limitation of our approach is the inability to boost perfor-
mance by using a joint model of both latent and observed features.
Having a feature-based model is important for tackling the so-called
cold-start problem for brand-new items with no feedback. This limi-
tation may be due to the relatively simple linear content-based model
we employed. For instance, recent work in collaborative filtering
has demonstrated the ability to achieve the “best of both worlds” by
effectively combining a latent factor model with a content-based
(non-linear) topic model [30], and a similar approach may be fruitful
for collaborative clustering. It may also be that user features are
more useful than item features since training data per user is low.

Although we developed and validated our LCC approach for
learning personalized clustering models, we did not formally model
the full interactive setting where the system adaptively adjusts its
recommendations based on user feedback. This full interactive set-
ting can be considered as a type of interactive clustering problem.
The most relevant related work on interactive clustering are [5, 9],
although neither addressed how to model the end-to-end interaction
sequence.12 Other work such as [3] does provide guarantees for the
interactive setting, but assumes a very different (and less realistic)
interaction model where users must provide feedback on full clus-
terings of all items. Other adaptive clustering work include learning
a single similarity function via crowdsourcing [28].

The broader goal is to design personalization frameworks that
learn from multiple types of rich interactions (e.g., dynamic rankings
[8] and zoomable metro maps [25]), as well as reason about (and
optimize for) long-term user utility over entire interactive sessions.
Progress towards this goal will require a confluence of progress in in-

12E.g., learning personalized models, deciding whether to make
exploratory recommendations [17], and general reasoning about
long-term user utility over the entire interaction sequence.

Algorithm 1 Solving the learning problem (11) for LCC
1: input: S = {Ym}Mm=1, λx, λu, σu, D
2: N ← number of items
3: ∀m : Um ← ID , ~um ≡ diag(Um)
4: ∀i : xi ← random vector ∈ <D

5: while not converged do
6: b← (33)
7: for i = 1, . . . , N do
8: xi ← (18)
9: end for

10: for m = 1, . . . ,M do
11: ρ← const //e.g., ρ = 0.01

12: ~θ ← ~0
13: ~α← ~0
14: while ~um ← (23) has negative components do
15: ~θ ← max(~um + ~α, 0)

16: ~α← ~α+ ~um − ~θ
17: ρ← γρ //e.g., γ = 1.1
18: end while
19: end for
20: end while
21: return: (x,U, b)

terface design, interpreting implicit feedback, structured prediction,
and reinforcement learning.
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A. LEARNING PROCEDURE
We now show how to solve (11) for item representions x and user

transforms U by solving a sequence of alternating constrained con-
vex optimization problems. Note that solving for the user transforms
on observed features V can be solved analogously to U.

Each item representation xi can be solved in closed form when all
other components are fixed. Since each user model Um must lie in
the positive orthant Um ≥ 0, we solve for each Um via a sequence
of closed form solutions (that iteratively converge to Um ≥ 0).
Algorithm 1 shows our learning procedure. We also show how to
speed up computation under special cases in Appendix A.4.

A.1 Estimating Item Representations
We estimate each xi using closed-form coordinate descent. We

can write ∂L/∂xi as ,

λxxi +
∑
m

∑
j∈Ȳm,j 6=i

βmijUmxj(x
>
j Umxi + b− ymij).

Setting the above to 0 gives the optimal solution for xi,

xi =

(
λxID +

1

2

∑
m

Φm,i

)−1(
1

2

∑
m

φm,i

)
(18)

Φm,i = Um

 ∑
j∈Ȳm,j 6=i

βmijxjx
>
j

Um (19)

φm,i = Um

∑
j∈Ȳm,j 6=i

βmij(ymij − b)xj . (20)

A.2 Estimating User Transforms
For estimating a user’s transform Um, we first observe that:

x>i Umxj = ~u>m(xi ◦ xj),



Algorithm 2 Efficiently compute Φm,i (19) and φm,i (20).
1: input: item i
2: input: user m
3: Gm ←

∑
j∈Ȳm xjx

>
j //cache this globally

4: gm ←
∑

j∈Ȳm xj //cache this globally

5: Φm,i ← Vm
(

(s− tm)
∑

j∼mi xjx
>
j + tm(Gm − xixTi )

)
Vm

//see (27)
6: κ1 ← ((1− b)s+ (1 + b)tm)

∑
j∼mi xj

7: κ2 ← (1 + b)tm(gm − xi)
8: φm,i ← Vm(κ1 − κ2) //see (28)
9: return: (Φm,i, φm,i)

Algorithm 3 Efficiently compute Ψm (24) and ψm (25).
1: input: user m
2: Define Hm according to (30) //cache this globally
3: Define hm according to (32) //cache this globally
4: Ψm ← (s − tm)

(∑
j∼mi(xi ◦ xj)(xi ◦ xj)>

)
+ tmHm //see

(29)
5: ψm ← ((1 − b)s + (1 + b)tm)

∑
j∼mi(xi ◦ xj) − (1 + b)tmhm

//see (31)
6: return: (Ψm, ψm)

where ~um ≡ diag(Um) denotes the diagonal ofUm, and ◦ denotes
the Hadamard product.13 For each individual user (indexed by m),
we can write the corresponding component in (11) as

L̄(~um) ≡ λu‖~um − σu~1‖2

+ 1
2

∑
i,j∈Ȳm,i 6=j βmij

(
~u>m(xi ◦ xj) + b− ymij

)2
.

(21)

Using the Alternating Direction Method of Mulitipliers optimiza-
tion approach [7], we solve argmin~um≥0 L̄(~um) by iteratively solv-
ing a sequence of optimization problems of the form

L̄(k)(~um) = λu‖~um − σu~1‖2 + ρ(k)‖~um − ~θ(k) + ~α(k)‖2

+ 1
2

∑
i,j∈Ȳm,i 6=j βmij

(
~u>m(xi ◦ xj) + b− ymij

)2
,

(22)

where ρ(k) is an increasing scalar sequence, ~θ(k) is an intermediate
(always feasible) solution that converges to the constrained global
optimum, and ~α(k) can be interpreted as a “dual” variable for the
constraint ~um − ~θ(k) = 0. We can write ∂L̄(k)/∂~um as

λu(~um − σu~1) + ρ(k)(~um − ~θ(k) + ~α(k))

+
1

2

∑
i,j∈Ȳm,i 6=j

βmij(xi ◦ xj)
(

(xi ◦ xj)>~um + b− ymij

)
which yields an optimal solution for ~um as:

~um = A−1c (23)

A =
(
λu + ρ(k)

)
ID2 +

1

2
Ψm

c = λuσu~1 +
1

2
ψm + ρ(k)

(
~θ(k) − ~α(k)

)
Ψm =

∑
i,j∈Ȳm,i 6=j

βmij(xi ◦ xj)(xi ◦ xj)> (24)

ψm =
∑

i,j∈Ȳm,i 6=j

βmij(ymij − b)(xi ◦ xj). (25)

13In the case where Um is not restricted to be diagonal, we can
redefine ~um = vec(Um) as the vectorized (or “flattened”) D2 × 1
representation of Um, and replace ◦ with the Kronecker product ⊗.

We then update ρ(k), ~θ(k), and ~α(k) according to Lines 15-17 in
Algorithm 1 until convergence (which is guaranteed [7]).14 Note
that each computation of (23) is typically very fast since the latent
dimensionality D is typically not very large.

A.3 Balancing Must-Links vs Non-Links
Following [30], we balanced links and non-links via:

βmij =

{
s, if ymij = 1,
tm, if ymij = −1,

(26)

where s and tm are balancing parameters satisfying s, tm > 0.
From preliminary experiments, we set:

s = 1 and tm =
number of links for user m

number of total possible pairs for user m
.

This structure allows efficient learning for special cases of our model
(see Appendix A.4).

A.4 Efficient Learning
Efficiently estimating item representations. In order to effi-

ciently compute (18), we must efficiently compute:

Φm,i =
∑

j∈Ȳm,j 6=i

βmijxjx
>
j

φm,i =
∑

j∈Ȳm,j 6=i

βmij(ymij − b)xj ,

for each user m. We assume that each βmij is set according to
Section A.3. For each item i and user m, we can write Φm,i as:

(s− tm)
∑
j∼mi

xjx
>
j + tm

∑
j∈Ȳm,j 6=i

xjx
>
j , (27)

where i ∼m j indicates that item i and item j are grouped together
by user m. Thus, we can cache Gm ≡

∑
j∈Ȳm xjx

>
j to reduce the

computational cost of (27) to be proportional to the actual number
links seen in the clusters (which is typically much smaller than the
total number of possible links). Similarly, we can write φm,i as:

((1− b)s+ (1 + b)tm)
∑
j∼mi

xj − (1 + b)tm
∑

j∈Ȳm,j 6=i

xj . (28)

Again we can cache gm ≡
∑

j∈Ȳm xj to reduce the computational
complexity of (28) to be proportional to the actual number links seen
in the clusters. Algorithm 2 describes procedurally how to leverage
(27) and (28) to efficiently compute (19) and (20), respectively.

Efficiently estimating user transforms. In order to efficiently
compute (23), we must efficiently compute:

Ψm =
∑

i,j∈Ym,i6=j

βmij(xi ◦ xj)(xi ◦ xj)>

ψm =
∑

i,j∈Ym,i6=j

βmij(ymij − b)(xi ◦ xj).

Similar to computing the item representations as described above,
for each user m, we have:

Ψm =(s− tm)
∑
j∼mi

(xi ◦ xj)(xi ◦ xj)>

+ tm
∑

i,j∈Ȳm,j 6=i

(xi ◦ xj)(xi ◦ xj)>. (29)

14In practice, we iterate until ~um ≥ −ε for some small ε > 0, and
then project ~um ← max(~um, 0).



Define Xm = [xi]i∈Ȳm . Note that:

Hm ≡
∑

i,j∈Ȳm,j 6=i

(xi ◦ xj)(xi ◦ xj)>

=
(
XmX

>
m

)
◦
(
XmX

>
m

)
−
∑

j∈Ȳm

(xjx
>
j ) ◦ (xjx

>
j ), (30)

which can be computed in time linear in number of items clustered
by user m. Thus, (29) can be computed in time linear in the number
of observed links of user m. We also have for ψm:

ψm =((1− b)s+ (1 + b)tm)
∑
j∼mi

(xi ◦ xj)

− (1 + b)tm
∑

i,j∈Ȳm,j 6=i

(xi ◦ xj). (31)

Similarly, we note that:

hm ≡
∑

i,j∈Ȳm,j 6=i

(xi ◦ xj)

=

 ∑
j∈Ȳm

xj

 ◦
 ∑

j∈Ȳm

xj

− ∑
j∈Ym

(xj ◦ xj). (32)

Algorithm 3 describes procedurally how to leverage (29) and (31)
to efficiently compute (24) and (25), respectively.

A.5 Estimating Global Offset
Since the global offset b is not subject to regularization, we simply

estimate b as the mean deviation of each pairwise (dis-)similarity
scores in the training objective:

b = mean

∑
m

∑
i,j∈Ȳm

βmij(ymij − x>i Umxj)

 . (33)

A.6 Estimating Feature Transform
We now describe how to estimate the feature transform S for the

transformed feature-based model described in Section 3.2.
We can write the gradient ∂L/∂S as

λsS+
1

2

∑
m

∑
i,j∈Ym,i 6=j

βmij(F (m, i, j)−ymij)(ziz
>
j +zjz

>
i )SVm,

which does not yield a close-form solution due to F (m, i, j) having
quadratic interactions of S (unless each item has disjoint features
such that z>i zj = 0 when i 6= j, which is equivalent to our LCC
model). As such, we perform gradient descent using ∂L/∂S.
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