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Whole-Session Relevance
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Typical search model :

Present results maximizing relevance to
current query

Context can improve search.

Time and user effort
matter! [Smucker&Clarke,2012]

Instead :

Present results maximizing relevance to

current and future (in-session) queries




Whole-Session Relevance
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Typical search model :

Present results maximizing relevance to
current query

Context can improve search.

Time and user effort
matter! [Smucker&Clarke,2012]

Instead :

Present results maximizing relevance to

current and future (in-session) queries

Snow Leopards in Zoos.

rSnow Leopards Pictures and Videos.

Satisfy users up-front!
Pre-fetch apropos content



Intrinsic Diversity

* Traditional (extrinsic) diversity:

— Ambiguity in user intent.

* Intrinsic Diversity [Radlinski et al’09]
— User wants diverse results i.e., diversity intrinsic to need.
— Single topical intent but diverse across different aspects.
— Seen in previous example.

 Traditional diversification methods not well-suited:

— Need to diversify across aspects of a single intent
not user intents.

— Observed empirically as well.



Significance of Intrinsic Diversity
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Example ID session
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Our Contributions

1. Mining ID sessions from post-hoc behavioral
analysis in search logs.

2. Learning to predict initiator queries of ID
sessions.

3. Given initiator query, rank results targeting
whole-session relevance and also predict which
content to pre-fetch.



Our Contributions

1. Mining ID sessions from post-hoc behavioral
analysis in search logs.



Mining ID sessions from logs

* Would like authentic ID session instances.
* Mine from query logs of a search engine.
* Hypothesize ID Sessions to be:

1. Longer: User explores multiple aspects.

2. Topically Coherent: Aspects should be topically
related.

3. Diverse in Aspects: Not just simple reformulations.

* Proposed algorithm is a series of filters.



ID Extraction Algorithm: Key Steps

1. Query Filtering

* facebook

* remodeling ideas

* ideas for remodeling
* cost of typical remodel
* hardwood flooring

* cnn news

* earthquake retrofit

* paint colors

e dublin tourism

e kitchen remodel

* nflscores

remodeling ideas
ideas for remodeling
cost of typical remodel
hardwood flooring

earthquake retrofit
paint colors

dublin tourism
kitchen remodel

e Remove common queries, auto-generated
queries, long queries. Collapse duplicates.




ID Extraction Algorithm: Key Steps

2. Ensure topical coherence

 remodeling ideas

* ideas for remodeling
e cost of typical remod
 hardwood flooring

e earthquake retrofit

* paint colors O

 dublintourism ©
e kitchen remodel * kitchen remodel

colors

 Remove successor queries topically unrelated to initiator.

 >=1 common result in top 10 (ensures semantic relatedness
w/o requiring ontology).



ID Extraction Algorithm: Key Steps

3. Ensure diversity in aspects

* remodeling ideas * remodeling ideas

* jdeas for remodeling

e cost of typical * cost of typical
remodel

* hardwood flooring
* earthquake retrofi
* paint colors

e kitchen remo

* Restrict syntacti
among success

e Used character-base



ID Extraction Algorithm: Key Steps

4. Ensure minimum length

* remodeling ideas

e cost of typical
remodel

* hardwood flooring
e earthquake retrofit
* paint colors

e kitchen remodel

>=2
distinct
aspects?

4

* Ensure minimum number of (syntactically) distinct
successor queries i.e., aspect threshold.




Evaluating Extraction

Previously unstudied problem.

— Thus quantitatively evaluated by 2 annotators.

Annotated 150 random sessions:

— 75 selected by algorithm (as ID) + 75 unselected sessions.

Annotator Agreement Algorithm Accuracy

79% 73.7% (Prec:73.9%)

Use this as (noisy) supervision:
— Sessions selected called ID. Others called regular.

Given enough data, learner can overcome label
noise (If unbiased) [Bartlett et al '04].



Statistics of Extraction Process

e Started with 2 months log data:
— 51.2 M sessions (comprising 134M queries)

* Running the extraction algorithm leads to 497K
sessions (comprising 7M queries)

 Accounts for 1% of sessions but 4.3% of time
spent searching.



Our Contributions

2. Learning to predict initiator queries of ID
sessions.



Predicting ID Initiation

e Can alter retrieval for ID sessions:

— Example: Prefetch content/use different ranker ..
— Hence need to identify ID initiation.

* Given (initiator) query, binary classification
problem: Is the session ID or Regular?

* Novel prediction task:

— New type of query and session being analyzed.



ID Initiation Classification

* Labels produced by extraction algorithm.
e Balanced dataset: 61K unique queries (50K train)
* Used linear SVMs for classification
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* Can achieve 80% precision@20% recall.



Digging Deeper: ID Initiation Features

* 5 types of features:

Textual B.O.W. (Unigram) counts
Query-Statistics e.g. # Words
POS Part-of-speech tag counts
ODP Categories 5 Most probable ODP classes

Query-Log Based Statistics e.g. Avg. session length
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e Text, Stats and Query-Log features most useful.



Linguistic Characterization of ID Queries

* Measured Log-Odds-Ratio (LOR) of orms 22
linguistic features: facts .
Higher LOR = dinID ——

— Higher = more pronounced in ideas  0.92

gueries.
— List-like nouns appear more commonly. information 1.64
— Broad information-need terms as well. manual  1.18

— Question words (e.g. who, what, where) Question W 0.41
and proper nouns (e.g. Kelly Clarkson,

P N 04
Kindle) quite indicative of being ID. oper

— Plural nouns (e.g. facets, people) Plural N  0.13
favored to singular nouns (e.g. table). Singular N -0.05



Our Contributions

3. Given initiator query, rank results targeting
whole-session relevance and also predict which
content to pre-fetch.



Ranking for ID sessions

Problem: Given initiator query, rerank to
maximize whole-session relevance.

First to jointly satisfy current and future queries.
Need to identify content to pre-fetch.

Rank results by associating each with an aspect.

Candidate pool of aspects generated using related
gueries.



Ranking Algorithm

* Given query q:
Produce ranking d,,d,.. (with associated aspects q,,q.,..)

Documents should be relevant to query g.
Document d; should be relevant to associated aspect g;.
Aspects should be relevant to ID task initiated by q.

Aspects should be diverse.

B w e

* Objective :
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i—1



Breaking Down the Objective - 1

m
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 Document relevance to query.

* Trained Relevance model (with 21 simple features)
using Boosted Trees.



Breaking Down the Objective - 2

T
: E ,., BDvivig; Q)
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* Document relevance to aspect.

— Represents/Summarizes the aspect.

e Can be estimated with same relevance model R



Breaking Down the Objective - 3

Argmax 4, q,)--(dn.an) Z“.f‘f - R(di|q) - R(di|q:) -
i—1

* Aspect Diversity + Topical Relevance.
* MMR-like objective

Div(q:, Q) = A - Sim(q:, Snip(q))
— (1 — A) max Sim(Snip(q;), Snip(g;)).

J =<1

 Submodular Objective:
— Optimize using efficient greedy algorithm.
— Constant-factor approximation.



Performance on Search Log Data

* Measured performance as ratio (to baseline ranker)
* Baseline is the commercial search engine service.
* Relevance-based: ranking with R(d|q).

e |D Session SAT clicks used as relevant docs.

@3 @10 @1 @3 @10

Relevance- 1.00 0.94 0.97 1.00 0.97 0.98 1.00 0.97 0.99
Based

Proposed 1.10 1.09 1.09 1.10 1.10 1.10 1.09 1.10 1.11
Method



Other Findings on Search Log Data
Robust: Very few sessions drastically hurt.

Similar performance on using sessions classified as
ID (by the SVM)

Even more improvements (30-40%) on using
interactivity (based on simple user model).

A good set of aspects can greatly help: 40-50%
increase w/o interactivity; 80-120% with it.



Performance on TREC data

* Also ran experiments using public dataset:
— TREC 2011 Session data
— 63/76 annotated as ID.
— Absolute (not relative) performance values reported.

METHOD DCG@1 | DCG@3

Baseline

Proposed 0.71 1.39 2.41



Contributions Recap

First study of Intrinsic Diversity for Web Search.
Method to mine ID examples from logs.
Characterized and predicted ID initiation.

Presented ranking algorithm for ID sessions
maximizing whole-session relevance.



Toward Whole-Session Relevance

e Retrieval quality can be directly improved to
reduce time spent manually querying aspects.

* Presented results can serve as an easy way of
summarizing aspects.

e Structuring results to enable users to interactively
explore aspects is a step towards this goal.
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Scope and Applicability

* Clearly not feasible for all kinds of sessions!

* So what can we handle?
— Breadth-oriented sessions.
— Exploratory sessions.
— Comparative sessions.

* Intrinsic Diversity:

— Underlying information need tends to be of one of
the above forms.




ID Initiation Classification

Balanced dataset: 61K unique queries (50K train)
* Used linear SVMs for classification
* 5 types of features:

Text B.O.W. (Unigram) counts 100%
Stats e.g. # Words 10 81%
POS Part-of-speech tag counts 37 100%
ODP 5 Most probable ODP classes 219 25%

QLOG e.g. Avg. session length 55 44%



Examples: Misclassified as ID

 Precision Level indicates where on the
spectrum it lies.

Precision | Queries

adobe flash player 10 activex
bing maps

=90 live satellite aerial maps
how old is my house

port orchard jail roster
was is form 5498

~90 java file reader example
free ringtones downloads
life lift
top pit masters in the state
~80 promag 53 user manual

pky properties llc nj




Examples: Misclassified as Regular

 Precision Level indicates where on the
spectrum it lies.

Precision | Queries

assisted living coppell texas and sandy lake
WWW jSu com

~B65 "visions dpsnc net res mychecks"
uab graduation announcements
examples of reception invitations
~62 ndc

mla handbook online

wedding notary public seffner fl
redshedtoys

~60 sunrealty

uranium natural state




Feature-Wise Errors

 Misclassifications for different feature sets.

Table VII. Regular queries at high precision levels for different feature sets.

Feature | Examples
Text [nebraska state income tax return forms] [what are different
types of plaids] [free diet plans]
Stats [how old is my house]l [live satellite aerial maps] [this is
how i dew it] [bing maps]
ODP [texas press association]
QLOG [entertainment in kansas] [ im a g lyrics] [winchester gun
safes] [juegos de futboll]




Effect of Training Size

 More the data, the better.
Effect of Train Size
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Effect of class bias

* No longer balanced dataset.

Effect of Class Bias
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Training effect of class bias

* No longer balanced dataset.
 Train and Test have different class ratios.

Effect of Training Setting with Bias
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All-Query Classification

* Learning to classify if ANY query in a session is
part of ID session or not.

e Can be used for identifying when ID is over (or
off-topic query).

Precision-Recall Graph
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Training Relevance Function

e Used 20k queries.

* Optimized for
NDCG@5.

Query Length
Website Log(PageRank)
Baseline Ranker Reciprocal Kank
) (if in top 10)
Length

URL

# of Query Terms Covered
Fraction of Query Covered
TF Cosine sim
LM Secore(KLD)
Jaceard
Boolean AND Match
Boolean OR Match

Anchor (Weighted)

Same as URL

Anchor (Unweighted)

TH-Cosine Sim
KLD Score




