
Rank-GeoFM: A Ranking based Geographical Factorization
Method for Point of Interest Recommendation

Xutao Li1 Gao Cong1 Xiao-Li Li2 Tuan-Anh Nguyen Pham1 Shonali Krishnaswamy2

1School of Computer Engineering, Nanyang Technological University, Singapore.
{lixutao@, gaocong@, pham0070@e.}ntu.edu.sg

2Institute for Infocomm Research(I2R), A∗STAR, Singapore.
{xlli, spkrishna}@i2r.a-star.edu.sg

ABSTRACT
With the rapid growth of location-based social network-
s, Point of Interest (POI) recommendation has become an
important research problem. However, the scarcity of the
check-in data, a type of implicit feedback data, poses a se-
vere challenge for existing POI recommendation method-
s. Moreover, different types of context information about
POIs are available and how to leverage them becomes an-
other challenge. In this paper, we propose a ranking based
geographical factorization method, called Rank-GeoFM, for
POI recommendation, which addresses the two challenges.
In the proposed model, we consider that the check-in fre-
quency characterizes users’ visiting preference and learn the
factorization by ranking the POIs correctly. In our mod-
el, POIs both with and without check-ins will contribute to
learning the ranking and thus the data sparsity problem can
be alleviated. In addition, our model can easily incorpo-
rate different types of context information, such as the ge-
ographical influence and temporal influence. We propose a
stochastic gradient descent based algorithm to learn the fac-
torization. Experiments on publicly available datasets under
both user-POI setting and user-time-POI setting have been
conducted to test the effectiveness of the proposed method.
Experimental results under both settings show that the pro-
posed method outperforms the state-of-the-art methods sig-
nificantly in terms of recommendation accuracy.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Filtering
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1. INTRODUCTION
Recently, location-based social networks (LBSN) have e-

merged, such as Foursquare. These online systems enable
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people to check in and share their experiences with friends
when they visit a point of interest (POI), e.g., restaurant,
shopping mall and coffee bar. These networks are growing
at an unprecedented pace. Taking Foursquare as an ex-
ample, it had attracted 45 million users with more than 5
billion check-ins until January 2014. The huge volume of
data contains valuable information about POIs, and human
preference, which can be exploited for POI recommendation
[1].

POI recommendation aims at learning the users’ visiting
preferences and recommending a user the POIs that s/he
may be interested in but has never visited. This task is im-
portant and meaningful, as it not only helps local residents
or tourists to explore interesting unknown places in a city,
but also creates the opportunities for POI owners to increase
their revenues by finding and attracting potential visitors.

POI recommendation is challenging for two reasons. First,
the check-in data in LBSN is very sparse, and thus recom-
mendation methods suffer from the data scarcity problem.
The check-in data is usually represented as a user-POI ma-
trix, shown as in Figures 1(a) and 1(b). As we will see in the
experiments, the density of check-in matrix is usually less
than 0.5%. Moreover, when considering context-aware POI
recommendation, the user-POI check-in data (matrix) needs
to be separated and represented as a tensor, e.g., as shown
in Figures 1(c) and 1(d) for time-aware POI recommenda-
tion. This will make the data more sparse, and the density of
the check-in tensor in experiments is less than 0.05%, which
is extremely small compared to 1.2% for Netflix data [2].
Worse still, the check-in is a type of implicit feedback [11],
which makes the POI recommendation more difficult. Dif-
ferent from conventional movie rating data, where users ex-
plicitly denote their “like” or “dislike” to an item with differ-
ent rating scores, the check-ins offer only positive examples
that a user likes, and the POIs without check-ins, marked
as “?” in Figures 1(a) and 1(c), are either unattractive or
undiscovered but potentially attractive. In other words, we
need to infer his/her preference and non-preference based
on the check-in data. Most of the existing POI recommen-
dation methods [22, 3, 14, 9, 7, 12] overlook data scarcity
and implicit feedback facts, and adapt conventional memory
or model-based collaborative filtering for POI recommenda-
tion. Therefore, these methods suffer from the data scarcity
problem.

Second, in POI recommendation, different types of con-
text information are available, e.g., geographical coordinates
of POIs, time stamps of check-ins, friendship of users, cat-
egories of POIs, etc. It is important to exploit context in-
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Figure 1: An example of check-in data of three users
in two scenarios.

formation to improve the recommendation accuracy. For
example, geographical coordinates, as an important type of
context information which is not available in conventional
recommendation tasks, are exploited for POI recommenda-
tion [22, 15, 3], since users have a much higher probability
to visit nearby POIs [22, 15]. Previous work [22, 3, 12,
11] develops different approaches to exploiting the differen-
t types of context information. However, these approaches
are usually developed for a particular type of context and
it is difficult to generalize them to handle another type of
context information.
In this paper, we propose a new ranking based factor-

ization method for the POI recommendation problem. We
consider obtaining factorizations in a ranking way because
of two reasons: on the one hand it works better for implic-
it feedback data [16], and on the other hand the sparsity
problem can be alleviated because both visited (positive ex-
amples) and unvisited POIs will contribute to the learning
of a ranking function. Specifically, we assume that the high-
er the check-in frequency is, the more the POI is preferred
by a user; and the unvisited POIs are less preferred than
the visited ones. Instead of fitting the check-in frequency as
conventional matrix factorization based methods do, we fit
the users’ preference rankings for POIs to learn the latent
factors of users and POIs. In our proposed method, the un-
visited POIs also contribute to the learning, which will help
alleviate the sparsity problem.
In addition to addressing the data scarcity issue, our fac-

torization model can easily incorporate different types of
context information. In the proposed method, we compute
the recommendation score of a POI by the sum of pair-
wise interaction scores between it and each context variable
considered. This enables us to easily incorporate different
types of context information by simply including more inter-
action scores. The pairwise prediction also unifies the way
to handle matrix and tensor data. That is, the POI recom-
mendation and context-aware POI recommendation can be
handled with one unified framework.
Our contributions in this paper can be summarized as

follows:

• We propose a new Ranking based Geographical Facto-
rization Method (called Rank-GeoFM) for POI recom-

mendation, which addresses the data scarcity problem
and incorporates the geographical influence, an impor-
tant type of context information.

• To optimize the objective function of the Rank-GeoFM,
we use the stochastic gradient descent method. How-
ever, there are two difficulties in calculating stochas-
tic gradient descents. First, the objective function is
indifferentiable. To address this issue, we propose a
continuous approximation to the objective function.
Second, to calculate the stochastic gradients, we need
compute the prediction scores of all POIs, which costs
heavy computations. To tackle this issue, we develop
a sampling based fast learning scheme to calculate the
gradients.

• The proposed method can be generalized easily when
other types of context information are available. We
take temporal information as an example, and demon-
strate how our model can be used to incorporate it for
time-aware POI recommendation.

• Extensive experiments on two real-life datasets Foursquare
and Gowalla demonstrate that Rank-GeoFM outper-
forms the state-of-the-art methods significantly for both
POI recommendation and time-aware POI recommen-
dation in terms of accuracy.

The rest of this paper is organized as follows: In Section
2, we briefly review related work. In Section 3, we introduce
the proposed method. The experimental results are given in
Section 4. Finally, we conclude the paper in Section 5.

2. RELATED WORK

2.1 POI Recommendation
POI Recommendation. Memory-based collaborative

filtering (CF) techniques, such as user-based CF and item-
based CF, are exploited for POI recommendation. Ye et al.
[22] adopt linear interpolation to incorporate both the social
and geographical influences into the user-based CF frame-
work for POI recommendation. Their experimental results
show that user-based CF outperforms item-based CF for
POI recommendation, incorporating the geographical influ-
ence into the user-based CF model can significantly improve
the recommendation accuracy, and the social influence has
little impact on the performance. Levandoski et al. extend
item-based CF method by considering the travel distance as
penalty [9].

Memory-based CF methods easily suffer from the data s-
parsity problem, since the user-user or item-item similarities
need to be calculated based on the common check-ins. When
the check-ins are scarce, two users or items will share very
few common check-ins and thus the resulting similarities are
unreliable for making effective recommendations.

Model-based CF techniques are also exploited for POI rec-
ommendation. Noulas et al. [14] find that matrix factoriza-
tion (MF) performs worse than user-based CF and item-
based CF for POI recommendation. In their work, conven-
tional MF method for explicit feedback data is applied to
POI recommendation, which thus is not suitable and delivers
bad performance. Based on the observation that individual’s
check-in locations are usually around several centers, Cheng
et al. [3] propose a Multi-center Gaussian Model to compute



the geographical influence and then combine it heuristically
with MF for POI recommendation. In this approach, MF
is performed by fitting nonzero check-ins only and thus it
suffers from the data sparsity issue easily. Liu et al. [12]
propose a geographical probabilistic factor analysis frame-
work, namely GTBNMF, which incorporates geographical
influence and textual influence based on the Bayesian Non-
negative Matrix Factorization (BNMF). However, the BN-
MF is performed by fitting both zero and nonzero check-ins,
which might not be reasonable because zero check-ins may
be missing values and should not be fitted directly. All these
factorization methods do not exploit the implicit feedback
property of POI recommendation.
Recently, considering the check-ins as implicit feedbacks,

Lian el al. [11] propose a model, namely GeoMF, based on
Weighted Matrix Factorization (WMF), and the geographi-
cal influence is incorporated into WMF. The method fits the
nonzero check-ins by using large weights and zero check-ins
by using smaller weights. Although assigning large weights
can highlight nonzero check-ins, directly fitting zero check-
ins may not be very reasonable because zero check-ins may
be missing values. Moreover, because of the limitation of
WMF, it is not easy to generalize the method to other types
of context information.
Context-aware POI recommendation. Most of the

aforementioned methods for POI recommendation exploit
the geographical influence in making recommendations. How-
ever, their approaches of handling the geographic influence
cannot handle other types of context information. Time
is another important type of context, and time-aware POI
Recommendation aims to recommend POIs for a user at a
given time. Yuan et al. propose a method called UTE+SE,
which extends the user-based CF to incorporate both the
temporal and geographical effects with a linear combination
framework [24]. Yuan et al. further propose a graph based
method, called BPP, for time-aware POI recommendation
[25], which makes recommendations by preference propaga-
tion on a graph constructed from the check-in data. BP-
P [25] performs better than UTE+SE [24]. In addition,
Gao et al. [7] study the temporal effect on the POI recom-
mendation, but not the time-aware POI recommendation.
They develop a regularized nonnegative matrix factorization
method but they do not consider the geographical influence.
Other types of contexts utilized in POI recommendation

include category of POI [13], text description of POI [23, 12,
10, 8, 26], and currently-visited POI [4, 6].

2.2 Ranking based Learning Criteria
Bayeasian personalized ranking (BPR) [16] is a famous

ranking-based objective criterion, which can produce promis-
ing performance for implicit feedback problems when com-
bined with matrix factorization model. BPR learns the
ranking models based on pairwise comparison of items such
that the Area Under the ROC Curves (AUC) can be maxi-
mized. It gives equal weights to each item pair [19, 21]. Or-
dered Weighted Pairwise Classification (OWPC) [20] is an-
other recently proposed loss metric for ranking. The method
considers ranking as a set of pairwise classification problems
and emphasizes the classifications at top-N positions by as-
signing higher weights. OWPC has been successfully applied
in text retrieval [20] and image annotation [21].
In this paper, we consider the POI recommendation based

on the OWPC criterion. Our proposed method differs from

Table 1: List of notations
U the set of users {u1, u2, · · · , u|U|}
L the set of POIs {ℓ1, ℓ2, · · · , ℓ|L|}
T the set of time slots {t1, t2, · · · , t|T |}
Lu the set of POIs that user u has visited
X = [xuℓ] a |U| × |L| user-POI check-in matrix
X = [xutℓ] a |U| × |T | × |L| user-time-POI check-in tensor
D1 the user-POI pairs: {(u, ℓ)|xuℓ > 0}
D2 the user-time-POI tuples: {(u, t, ℓ)|xutℓ > 0}
d(ℓ, ℓ′) the distance between POIs ℓ and ℓ′

Nk(ℓ) the set of k nearest POIs of ℓ
yuℓ recommendation score of POI ℓ for user u

the existing approaches [20, 21] in two aspects. First, ex-
isting OWPC is developed for ranking problem with binary
values, i.e., relevance or irrelevance, while in this paper we
extend the objective function to rank POIs with different
visiting frequencies, and provide the solutions for stochastic
gradient descent optimization. Second, we develop a gener-
al factorization method for POI recommendation, which is
able to exploit different types of context information.

3. PROPOSED METHOD
In this section, we present the proposed ranking based

factorization method for POI recommendation. We first
formulate the POI recommendation problem by a ranking
objective function, and then introduce how to optimize it.
Finally, we generalize the model for time-aware POI recom-
mendation.

We summarize the notations used in this paper in Table 1.
Then we define the POI recommendation problem as follows:

definition 1. POI recommendation: given a user u,
we recommend the POIs that s/he will like to visit, and are
not in Lu.

3.1 Ranking based Geographical Factorization

3.1.1 Preference Ranking Objective Function
In this subsection, we formulate our objective function

for POI recommendation. Due to the sparsity of check-in
data, we design objective function by fitting user’s prefer-
ence rankings for POIs, instead of fitting his/her check-in
frequencies as traditional factorization methods do.

First, we need to infer a user’s preference rankings for
POIs based on his/her check-in data. Intuitively, we assume
that the higher the check-in frequency is, the more the POI is
preferred by a user; and the unvisited POIs are less preferred
than the visited ones. In other words, for a given user u, POI
ℓ should be ranked higher than POI ℓ′ if xuℓ > xuℓ′ , where
xuℓ denotes the frequency that user u visited POI ℓ.

Based on the intuition, we develop a method to measure
the incompatibility between the inferred rankings and the
rankings produced by a factorization model. In particular,
for a given user u and POI ℓ, the incompatibility can be
measured by:

Incomp(yuℓ, ε) =
∑
ℓ′∈L

I(xuℓ > xuℓ′)I(yuℓ < yuℓ′ + ε) (1)

where I(·) is an indicator function, I(a) = 1 when a is true,
and 0 otherwise; ε is a positive number; yuℓ denotes the



recommendation score of POI ℓ for user u, which will be
calculated by a factorization model in this paper. We can
see Eq. (1) counts the number of POIs that are supposed to
be ranked lower than ℓ for user u according to the check-in
data, but ranked higher than ℓ by the factorization model.
Note that ε-margin is used to compute the rankings for the
factorization model, i.e., we consider that ℓ′ is ranked higher
than ℓ for user u only if yuℓ < yuℓ′ + ε. The Incomp(yuℓ, ε)
measures the number of POIs that are incorrectly ranked
higher than ℓ for user u, and we call it “ranking incompati-
bility” in this paper.
Next, we design our preference ranking objective function

for learning a factorization model. Specifically, a good fac-
torization method should minimize the ranking incompati-
bility as much as possible, and thus we propose the following
objective function for minimizing:

O =
∑

(u,ℓ)∈D1

E (Incomp(yuℓ, ε)) (2)

where E(·) is a function used to convert the ranking incom-
patibility Incomp(yuℓ, ε) into a loss:

E(r) =

r∑
i=1

1

i
(3)

and we define E(0) = 0.
In Eq. (2), we aggregate the losses incurred for all the

user-POI pairs in D1 to compute the overall loss. We note
that Incomp(yuℓ, ε), according to Eq. (1), is always equal
to zero for the user-POI pairs (u, ℓ) ̸∈ D1. Following OWPC
[20, 21], we adopt a smooth weighting scheme to convert
Incomp(yuℓ, ε) into a loss. Specifically, the function E(r)
in Eq. (3) embodies such a conversion. It can be seen that
E(r) calculates the sum over losses at each rank position
(from 1 to r) for the incorrectly-ranked POIs, where each
position i is assigned with a loss 1/i. For example, assume
we have Incomp(yuℓ, ε)=3, i.e., three POIs are incorrectly
ranked higher than POI ℓ for user u. The loss for this pair
(u, ℓ) is thus given by E(3) = 1 + 1

2
+ 1

3
.

One merit of our objective function is its ability to over-
come the data sparsity issue. According to Eq. (1), the rank-
ing incompatibility of a POI ℓ for a user is determined by
all the other POIs ℓ′ ∈ L, which are mostly unvisited POIs
(because a user often visits very few POIs). Therefore, the
unvisited POIs also contribute to learning the model, while
they are ignored in conventional MF. Hence, by leveraging
the objective function, we can address the sparsity problem
of check-in data, without directly fitting zero check-ins.

3.1.2 Geographical Factorization Method
In this subsection, we propose a geographical factor-

ization method for calculating the recommendation score.
Our factorization model is capable of characterizing the us-
er’s preferences over POIs. In addition, it also incorporates
the influence of the geographical context for POI recommen-
dation. On the one hand, we parameterize the latent factors
of users and POIs into a K-dimensional space as matrices
U(1) ∈ R|U|×K and L(1) ∈ R|L|×K , respectively. They are
used to model the user’s own preference as traditional ma-
trix factorization methods do. On the other hand, we intro-
duce one extra latent factor matrix U(2) ∈ R|U|×K for users,
and employ U(2) to model the interaction between users and
POIs for incorporating the geographical influence. To this

end, we further construct an |L|× |L| geographical influence
matrix W, where wℓℓ′ is the probability that POI ℓ is visited
given that POI ℓ′ has been visited. By following previous s-
tudies [22, 3, 12], we set wℓℓ′ = (0.5+d(ℓ, ℓ′))−1 if ℓ′ ∈ Nk(ℓ),
and 0 otherwise. Here we consider only k-nearest neighbors
Nk(ℓ) of each POI ℓ. The intuition behind the formula is
that users usually tend to visit nearby POIs. We normal-
ize each row of the matrix W such that

∑
ℓ′∈L wℓℓ′ = 1,

because it represents the influence probabilities.
Let Θ = {U(1),L(1),U(2)} denote the parameters of our

geographical factorization model. We will present the pro-
posed method of learning these parameters in Section 3.2.
Suppose that these parameters are already learned. Given
user u and POI ℓ, we compute recommendation score yuℓ as
follows:

yuℓ = u(1)
u · l

(1)
ℓ + u(2)

u ·
∑

ℓ∗∈Nk(ℓ)

wℓℓ∗ l
(1)
ℓ∗ (4)

where operator · denotes the inner product, and u
(1)
u rep-

resents the u-th row of matrix U(1). Similar notations are
used for other matrices. In Eq. (4), the first term models
the user-preference score, while the second term models
the geographical influence score that a user likes a POI
because of its neighbors.

To avoid the overfitting problem, we constrain the latent
factors of our model into a ball, which acts as a regularizer
[21]. Specifically, we have the following constraints:∥∥∥u(1)

u

∥∥∥
2
≤ C, u = 1, 2, . . . , |U| (5)∥∥∥l(1)ℓ

∥∥∥
2
≤ C, ℓ = 1, 2, . . . , |L| (6)∥∥∥u(2)

u

∥∥∥
2
≤ αC, u = 1, 2, . . . , |U| (7)

where C > 0 and 0 ≤ α ≤ 1 are hyperparameters. We
constrain the latent factors from U(1) and L(1) into a smal-
l ball with radius C, and constrain the latent factor from
U(2) into a smaller ball with radius αC. Here, we introduce
the hyperparameter α to balance the contributions of user-
preference and geographical influence scores. Using basic al-
gebra, we have |a · b| ≤ ∥a∥2 ∥b∥2 for any two vectors a and

b. Thus, we know that the user-preference score u
(1)
u · l(1)ℓ

is always in [−C2, C2]. As we have
∥∥∥∑ℓ∗∈Nk(ℓ) wℓℓ∗ l

(1)
ℓ∗

∥∥∥
2
≤∑

ℓ∗∈Nk(ℓ)
wℓℓ∗

∥∥∥l(1)ℓ∗

∥∥∥
2
≤

∑
ℓ∗∈Nk(ℓ) wℓℓ∗C = C, the geo-

graphical influence score u
(2)
u ·

∑
ℓ∗∈Nk(ℓ)

wℓℓ∗ l
(1)
ℓ∗ is thus in

[−αC2, αC2]. As a result, tuning the hyperparameter α can
balance the contributions of user-preference and geographi-
cal influence scores to the final recommendation score.

3.2 Optimization and Learning Algorithm
Next we present the proposed method of learning model

parameters Θ such that O in Eq. (2) is minimized. As O is
computed by summing the loss for each user-POI pair, we
adopt the stochastic gradient descent (SGD) method for op-
timization. That is, we aim to minimize E (Incomp(yuℓ, ε))
given each training instance (u, ℓ) ∈ D1. However, there
are two difficulties: (1) E (Incomp(yuℓ, ε)) is non-continuous
and indifferentiable, which makes it hard to optimize; (2) we
need to know Incomp(yuℓ, ε) for optimization; however, cal-
culating it is time-consuming. Next we introduce how to
address the two issues.



3.2.1 Continuous Approximation
In order to make E (Incomp(yuℓ, ε)) continuous over pa-

rameters Θ, we rewrite it as follows:

E (Incomp(yuℓ, ε)) · 1 (8)

= E (Incomp(yuℓ, ε))

∑
ℓ′∈L I(xuℓ > xuℓ′)I(yuℓ < yuℓ′ + ε)

Incomp(yuℓ, ε)

≈ E (Incomp(yuℓ, ε))

∑
ℓ′∈L I(xuℓ > xuℓ′)s(yuℓ′ + ε− yuℓ)

Incomp(yuℓ, ε)

where s(a) := 1
1+exp(−a)

is the sigmoid function, which is

used to approximate the indicator function. Based on the
rewriting, we can compute the stochastic gradient for up-
dating Θ. Specifically, we have

∂E (Incomp(yuℓ, ε))

∂Θ
(9)

≈ E (Incomp(yuℓ, ε))

∑
ℓ′∈L I(xuℓ > xuℓ′)

∂s(yuℓ′−yuℓ)

∂Θ

Incomp(yuℓ, ε)

= E (Incomp(yuℓ, ε))
∑
ℓ′∈L

I(xuℓ > xuℓ′)δuℓℓ′

Incomp(yuℓ, ε)

∂(yuℓ′ + ε− yuℓ)

∂Θ

where δuℓℓ′ = s(yuℓ′ + ε − yuℓ)(1 − s(yuℓ′ + ε − yuℓ)). We
note that Eq. (9) is not a standard gradient computation,
because E (Incomp(yuℓ, ε)) and Incomp(yuℓ, ε) also involve
Θ but we do not consider their derivatives. Our analogous
gradient calculation here follows the idea in [21]. Although
the stochastic gradient can be calculated by Eq. (9), it is
infeasible in practice. This is because both the summation
and Incomp(yuℓ, ε) in Eq. (9) require to compute the rec-
ommendation scores of all POIs as Eq. (4), which costs
O(K|L|k) operations and is time-consuming.
In the next subsection, we introduce a fast learning scheme

to address the issue.

3.2.2 Fast Learning Scheme
Our key idea of fast learning is to eliminate the summation

and estimate Incomp(yuℓ, ε) with a sampling method.
Let us first revisit Eq. (8). We can see from the first

equality in Eq. (8) that only incorrectly-ranked POI, i.e.,
the POI ℓ′ satisfying I(xuℓ > xuℓ′)I(yuℓ < yuℓ′ + ε) = 1,
contributes to the loss E (Incomp(yuℓ, ε)). Thus, Eq. (8)
can be reinterpreted as an expectation of the loss incurred
by a set of incorrectly-ranked POI samples, where each POI
sample ℓ′ incurs a loss:

Ē = E (Incomp(yuℓ, ε)) s(yuℓ′ + ε− yuℓ) (10)

and each POI sample has the probability 1
Incomp(yuℓ,ε)

to

be chosen. This motivates us to approximately calculate
the stochastic gradient by sampling one incorrectly-ranked
POI. In this case, we have

∂Ē

∂Θ
= E (Incomp(yuℓ, ε)) δuℓℓ′

∂(yuℓ′ + ε− yuℓ)

∂Θ
(11)

which is an approximation of Eq. (9). Apparently, the sum-
mation is eliminated.
To calculate gradients by Eq. (11), we still need to know

Incomp(yuℓ, ε). We compute its approximate value by sam-
pling one incorrectly-ranked POI. Specifically, given a user-
POI pair (u, ℓ), we repeat sampling one POI from L until
we obtain an incorrectly-ranked POI ℓ′ such that I(xuℓ >
xuℓ′)I(yuℓ < yuℓ′ + ε) = 1. Let n denote the number of

Algorithm 1: Rank-GeoFM

input : check-in data D1, geographical influence matrix W,
hyperparameters ε, C and α, and learning rate γ

output: model parameters Θ = {U(1),L(1),U(2)}
1 Initialize Θ with Normal distribution N (0, 0.01);
2 Shuffle the samples in D1 randomly;
3 repeat
4 for (u, ℓ) ∈ D1 do
5 Compute yuℓ as Eq. (4), and set n=0;
6 repeat
7 Sample a POI ℓ′;
8 Compute yuℓ′ as Eq. (4), and set n = n + 1;

until I(xuℓ > xuℓ′ )I(yuℓ < yuℓ′ + ε) = 1 or n > |L|;
9 if I(xuℓ > xuℓ′ )I(yuℓ < yuℓ′ + ε) = 1 then

10 η = E
(⌊

|L|
n

⌋)
δuℓℓ′ ;

11 g =

 ∑
ℓ∗∈Nk(ℓ′)

wℓ,ℓ∗ l
(1)

ℓ∗ −
∑

ℓ+∈Nk(ℓ)

wℓ,ℓ+ l
(1)

ℓ+

;

12 u(1)
u ← u(1)

u − γη(l
(1)

ℓ′ − l
(1)
ℓ );

13 u(2)
u ← u(2)

u − γηg;

14 l
(1)

ℓ′ ← l
(1)

ℓ′ − γηu(1)
u ;

15 l
(1)
ℓ ← l

(1)
ℓ + γηu(1)

u ;

16 Project the updated latent factors to enforce constraints

in Eqs. (5)∼(7), e.g., if
∥∥∥u(1)

u

∥∥∥
2
> C, then set

u(1)
u ← C

u
(1)
u∥∥∥∥u(1)
u

∥∥∥∥
2

;

until convergence;

17 return Θ = {U(1),L(1),U(2)}

sampling trials before obtaining such a POI ℓ′. Apparent-
ly, n follows a geometric distribution with parameter p =
Incomp(yuℓ,ε)

|L| . Since we know the expectation of a geometri-

cal distribution with parameter p is 1
p
, we have n ≈

⌊
1
p

⌋
=⌊

|L|
Incomp(yuℓ,ε)

⌋
. Thus, we can estimate Incomp(yuℓ, ε) ≈⌊

|L|
n

⌋
. Our idea here is similar to that used in [21] for a

different problem.
By using the estimation, we rewrite Eq. (11) by:

∂Ē

∂Θ
≈ E

(⌊
|L|
n

⌋)
δuℓℓ′

∂(yuℓ′ + ε− yuℓ)

∂Θ
(12)

The SGD based optimization can thus be performed as fol-
lows:

Θ← Θ− γ
∂Ē

∂Θ
(13)

where γ is the learning rate.
Using the gradient calculation in Eq. (12) can gain sig-

nificant speedups. The complexity of Eq. (9) is O(K|L|k)
while the complexity of Eq. (12) is O(Knk). In general, we
have n << |L| at the start of training and n < |L| when
the training reaches a stable phase. At the beginning, the
model is not well-trained and thus Incomp(yuℓ, ε) is often
large, which leads to a very small n, i.e., n << |L|; when
the training reaches a stable phase, it is expected that more
visited POIs are ranked correctly, and thus Incomp(yuℓ, ε)
becomes smaller and n will become a bit larger. However,
it is very unlikely that every visited POI is ranked correctly,
so in general we still have n < |L|. We find that the speedup
is in orders of magnitude in our experiments.

Moreover, with the analysis above, we know that E
(⌊

|L|
n

⌋)
is often large at the start of training, and it is decreasing



gradually as the training goes on. As E
(⌊

|L|
n

⌋)
acts as a

scaling factor for the gradient in Eq. (12), our model pa-
rameters in general will be updated with large steps at the
beginning, and then with gradually fine-tuning steps.
We summarize the proposed Ranking based Geographical

Factorization Method (Rank-GeoFM) in Algorithm 1. In
the algorithm, we iterate through all the user-POI check-in
pairs in D1 and update the latent factors until the procedure
converges (lines 3∼16). In each iteration, given a user-POI
pair, the sampling process is first performed so as to esti-
mate Incomp(yuℓ, ε) and obtain one POI sample (lines 6∼8).
Based on the estimation of Incomp(yuℓ, ε) and the sampled
POI ℓ′, we update the relevant latent factors by using S-
GD method (lines 9∼15). The norm constraints are checked
for the updated latent factors, and the ones violating the
constraints are projected (line 16).

3.3 Time-aware POI Recommendation
In this subsection, we use the temporal information as

an example context to illustrate how our method can be
easily generalized to incorporate other types of context. We
consider time-aware POI recommendation.

definition 2. Time-aware POI recommendation: giv-
en a user u and time slot t (e.g., 3:00pm∼4:00pm), we rec-
ommend the POIs that s/he will like to visit in this time
slot, and are not in Lu.

The objective function in Eq. (2) can be easily extended
to incorporate the temporal context. To calculate the rec-
ommendation score, we extend Eq. (4) with two additional
terms capturing the temporal factor. One term is tempo-
ral popularity score which indicates whether this POI is
popular in the time slot. The other term is referred to as
temporal influence score, which is based on the following
observation made in previous work [24, 25]: the popularity
of a POI at one time slot is always influenced by some close
or similar time slots, i.e., popularity are correlated among
close or similar time slots.
We introduce three more latent factor matrices besides

U(1), U(2) and L(1) for the two additional terms. Specif-
ically, we parameterize the latent factors of time slots as
a |T | × K matrix T; and parameterize another two laten-

t factor matrices L(2) and L(3) for POIs, where L(2) is to
model interactions with time slot for temporal popularity
score, and L(3) is to model interactions with close or similar
time slot for temporal influence score. We further construct
a |T | × |T | matrix M, where mtt∗ is the probability that
the popularity scores of POIs in time slot t are influenced
by those in time slot t∗. By following previous studies [24,
7], we compute mtt∗ as:

mtt∗ =

∑
u∈U

∑
ℓ∈L xutℓxut∗ℓ√∑

u∈U
∑

ℓ∈L x2
utℓ

√∑
u∈U

∑
ℓ∈L x2

ut∗ℓ

(14)

and we normalize M into a matrix such that each row is
a probability vector. Given a user u and time slot t, the
recommendation score of POI ℓ is computed as follows:

yutℓ = u(1)
u · l

(1)
ℓ + tt · l

(2)
ℓ + (15)

u(2)
u ·

∑
ℓ∗∈Nk(ℓ)

wℓℓ∗ l
(1)
ℓ∗ + l

(3)
ℓ ·

∑
t∗∈T

mtt∗tt∗

where the four terms indicate the user-preference score, tem-
poral popularity score, geographical influence score and tem-
poral influence score, respectively. We denote the parame-
ters of our factorization model in this setting as Θ = {U(1),L(1),

U(2),T,L(2),L(3)}. Similar to POI-user setting, norm con-
straints are imposed to prevent overfitting:

∥tt∥2 ≤ C, t = 1, 2, . . . , |T | (16)∥∥∥l(2)ℓ

∥∥∥
2
≤ C, ℓ = 1, 2, . . . , |L| (17)∥∥∥l(3)ℓ

∥∥∥
2
≤ βC, ℓ = 1, 2, . . . , |L| (18)

where 0 ≤ β ≤ 1 is to control the importance of temporal
influence in computing the recommendation score.

Algorithm 1 can be adapted easily for time-aware POI
recommendation. Specifically, we iterate through all user-
time-POI tuple in D2 to update the latent factors. Given
each (u, t, ℓ) ∈ D2, we keep sampling POIs until obtain one
POI ℓ′ satisfying I(xutℓ > xutℓ′)I(yutℓ < yutℓ′ + ε) = 1, and

again Incomp(yutℓ, ε) is estimated as
⌊

|L|
n

⌋
. The stochastic

gradient can be calculated similarly by:

∂Ē

∂Θ
≈ E

(⌊
|L|
n

⌋)
δutℓℓ′

∂(yutℓ′ + ε− yutℓ)

∂Θ
(19)

where δutℓℓ′ = s(yutℓ′+ε−yutℓ)(1−s(yutℓ′+ε−yutℓ)). Based
on it, the relevant latent factors are updated accordingly.

4. EXPERIMENTS
We conduct comprehensive experiments to evaluate the

performance of the proposed method for both POI recom-
mendation and time-aware POI recommendation.

4.1 Experimental Setup

4.1.1 Datasets
We use two real-world datasets [24]1 in our experiments.

One is the Foursquare check-in data made in Singapore be-
tween Aug. 2010 and Jul. 2011, and the other is the Gowalla
check-in data made in California and Nevada between Feb.
2009 and Oct. 2010. The Foursquare data comprises 194,108
check-ins made by 2,321 users at 5,596 POIs, and the Gowal-
la data comprises 456,988 check-ins made by 10,162 users at
24,250 POIs. Each check-in is associated with a time stamp.

For each user, we mask off 20% of his/her most recent
check-ins as testing set to evaluate the performance of dif-
ferent algorithms. The earliest 70% of check-ins are used as
training set, and the remaining 10% check-ins are used as
validation set. Based on the training sets, we construct a
user-POI matrix X with 73,011 and 210,894 nonzero entries
for Foursquare and Gowalla, respectively, which will be used
in the POI recommendation. The densities of X are 0.56%
and 0.085% for Foursquare and Gowalla matrices, respec-
tively. For time-aware POI recommendation, we split the
data into 24 hours (time slots), and then obtain a tensor
X with 91,228 and 244,580 nonzero entries for Foursquare
and Gowalla, respectively. The density of X are 0.029% and
0.0041% for the two data, respectively. We can see that both
matrix X and tensor X are very sparse.

1Available at http://www.ntu.edu.sg/home/gaocong/data
/poidata.zip



4.1.2 Metrics
We use two widely used metrics to evaluate the perfor-

mance of different recommendation algorithms, namely pre-
cision@N and recall@N (denoted by Pre@N and Rec@N),
where N is the number of recommended POIs.
For POI recommendation, given a user u, we compute

Pre@N and Rec@N as follows [22]:

Pre@N =
tpu

tpu + fpu
and Rec@N =

tpu
tpu + tnu

(20)

where tpu is the number of POIs contained in both the
ground truth and the top-N results produced by algorithms;
fpu is the number of POIs in the top-N results by algorithms
but not in the ground truth; and tnu is the number of POIs
contained in ground truth but not in the top-N results by
algorithms. The Pre@N (Rec@N) reported is an average of
precision(recall) values of all users [22].
For time-aware POI recommendation, given a user u and

a time slot t, we let tput, fput and tnut be a time-specific
extension of tpu, fpu and tnu, respectively. Then, at time t,
the Pre@N(t) and Rec@N(t) are calculated as follows [24]:

Pre@N(t) =

∑
u∈U tput∑

u∈U (tput + fput)
(21)

Rec@N(t) =

∑
u∈U tput∑

u∈U (tput + tnut)
(22)

As in [24, 25], the average Pre@N (Rec@N) is then reported
by averaging the precision(recall) values of all time slots. For
both metrics, we consider N=5, 10 and 20 in our experiments
respectively (by default N=5), as top recommendations are
more important.

4.1.3 Baseline methods
For POI recommendation, we compare our model with the

following baseline methods.

• UCF: This is user-based CF method, where user-user
similarity is calculated based on the check-in data.

• UCF+G: This method incorporates the geographical
influence into user-based CF in a linear interpolation
way [22], which is a representative method for POI
recommendation.

• PMF: Probabilistical matrix factorization [18] is a
well-known factorization developed for recommenda-
tion systems.

• BPR-MF: As our method is ranking-based factoriza-
tion, we also consider BPR-MF as a baseline, which
is the most popular ranking-based matrix factoriza-
tion with Bayesian Personalized Ranking criterion [16].
Note that this method has not been evaluated for POI
recommendation in previous work on POI recommen-
dation.

• GTBNMF: As mentioned in Section 2, GTBNMF is
a recent method for POI recommendation [12], which
combines Bayesian matrix factorization with the top-
ic model. In our data, no text information is available
and thus we only use the factorization part of this mod-
el to compare.

• GeoMF: GeoMF is the state-of-the-art method for
POI recommendation [11].

For time-aware POI recommendation, the following meth-
ods are used as baselines.

• UCF(+G): These are UCF and UCF+G described
above. Both of them do not make use of temporal
information and hence produce the same recommen-
dations for all the time slots.

• UTF: UTF is a user-based temporal collaborative fil-
tering method [5], which computes the similarity be-
tween users by weighting the check-ins with a time
decay function.

• UCLAF: UCLAF is a PARAFAC-based tensor de-
composition model, originally proposed to recommend
locations and activities with user-location-activity ten-
sor data [27], where Laplician regularization terms are
imposed on decompositions to incorporate extra infor-
mation. We apply this model to the tensor X , and use
the matrices W and M to construct Laplician regular-
ization terms for incorporating geographical influence
and temporal influence, respectively.

• PITF: This is a ranking-based tensor factorization
method [17], where the Bayesian Personalized Ranking
criterion is employed.

• LRT: This is a recently developed matrix factoriza-
tion method for POI recommendation with time infor-
mation [7]. LRT incorporates temporal influence by
constraining the latent factors of a user are similar in
two consecutive time slots.

• UTE+SE: As introduced in Section 2, this method u-
tilizes both the geographical influence and temporal in-
fluence for time-aware POI recommendation [24]. The
model is denoted by UTE when considering temporal
influence only, otherwise it is denoted by UTE+SE.

• BPP: This is the state-of-the-art method for time-
aware POI recommendation [25], which incorporates
both the geographical and temporal influences.

Among these methods, UTF, PITF and LRT do not exploit
the geographical influence.

4.2 Experimental Results

4.2.1 Parameter Tuning
In the experiments, we set the hyperparameters ε = 0.3

and C = 1.0 for all the data sets. For the learning rate γ,
we set a small value 0.0001 in our experiments to ensure
the generalization accuracy. For other parameters, we tune
them based on the validation set to find the optimal values,
and subsequently use them in the test set.

Figure 2(a) shows the performance of Rank-GeoFM un-
der both settings on both data sets as we vary parameter α
for geographical influence. We find that Rank-GeoFM per-
foms the best at α = 0.2 for POI recommendation on both
data, and performs the best at α=0.1 for time-aware POI
recommendation on both data. Figure 2(b) shows the per-
formance of Rank-GeoFM as we vary parameter k used in
the construction of geographical influence matrix. We can
see that the best performance is achieved at k = 300 for all
cases. Figure 2(c) demonstrates the effect of parameter β,
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Figure 2: Parameter tuning for Rank-GeoFM.

(a) Pre@N -Foursquare (b) Rec@N -Foursquare (c) Pre@N -Gowalla (d) Rec@N -Gowalla

Figure 3: Performance comparison on POI recommendation.

(a) Pre@N -Foursquare (b) Rec@N -Foursquare (c) Pre@N -Gowalla (d) Rec@N -Gowalla

Figure 4: Performance comparison on time-aware POI recommendation without geographical influence.

(a) Pre@N -Foursquare (b) Rec@N -Foursquare (c) Pre@N -Gowalla (d) Rec@N -Gowalla

Figure 5: Performance comparison on time-aware POI recommendation with geographical influence.



which is for temporal influence under time-aware POI rec-
ommendation. We can see that the best performance are
produced at β = 0.1 and β = 0.2 on Foursquare and Gowal-
la, respectively. Finally, we show the effect of dimension K
of latent factors on performance in Figure 2(d). We find
that the performance of Rank-GeoFM is insensitive to the
dimension K, and we use K = 100 in our experiments.

4.2.2 Results on POI Recommendation
Figures 3(a)–(d) show the performance of all the methods

on both datasets for POI recommendation. First, we can
see that memory-based methods UCF and UCF+G perform
worse than the other methods except for PMF, which are al-
l factorization based methods, and UCF+G improves UCF
due to the consideration of geographical influence. PMF
performs the worst because it is developed for explicit feed-
back data such as user-movie ratings. It is not suitable for
POI recommendation, where check-ins are implicit feedback-
s. This is in accordance with the finding in [14].
Among the other factorization based methods, the perfor-

mance of BPR-MF is very promising, although this method
cannot utilize the geographical influence, and has not been
employed for POI recommendation in previous work. The
reason is that BPR-MF, as a ranking-based factorization
method, is more appropriate for handling implicit feedback
data. We observe GeoMF performs better than GTBNM-
F. This is because GTBNMF conducts the factorization by
fitting the zero and nonzero entries in X equally, while Ge-
oMF solves the factorization by assigning higher weights to
nonzero entries, which is more suitable for implicit data.
We can see that the proposed Rank-GeoFM consistently

outperforms the state-of-the art method GeoMF. The im-
provements, in terms of Pre@5, are more than 41.6% and
10% on Foursquare and Gowalla datasets, respectively. The
reason is that GeoMF addresses the data sparsity problem
by fitting both nonzero and zero check-ins with different
weights, which is less reasonable than our ranking methodol-
ogy because zero check-ins may be missing values and should
not be fitted directly. Rank-GeoFM/G denotes our model
without considering the geographical influence. It can be
seen that Rank-GeoFM/G performs better than BPR-MF,
a ranking based MF method without considering geograph-
ical influence. This may be attributed to our ranking objec-
tive function. Moreover, we observe Rank-GeoFM improves
Rank-GeoFM/G by 30.3% and 10.5% in terms of Pre@5 on
both datasets, respectively, due to the incorporation of geo-
graphical influence.
Finally, we note that all improvements of our method over

baselines are statistically significant in terms of paired t-test
with p-value < 0.01.

4.2.3 Results on Time-aware POI Recommendation
Figures 4(a)–(d) show the performance of all the methods

for time-aware POI recommendation when the geographical
influence is not utilized. Among all memory-based methods,
UCF performs worse than UTF and UTE because it does not
capture the correlations between time slots. Although both
UTF and UTE consider the correlations between time slots,
UTF still performs worse than UTE because UTE smooths
the check-in data for handling data sparsity issue.
Among the factorization methods UCLAF, PITF and L-

RT, LRT performs the worst because it obtains the factoriza-
tion by fitting the nonzero entries in tensor X , which suffers
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Figure 6: Learning rate comparison of Rank-GeoFM
with and without fast learning. Each square denotes
ten iterations and each circle denotes one. Each it-
eration comprises the updates for all user-POI pairs.

from the sparsity problem significantly. The performance of
UCLAF is also not good because the method fits both ze-
ro and nonzero entries in X , which is not very reasonable.
PITF performs the best among the three and its perfor-
mance is also very promising compared to other methods.
The reason is that PITF is a ranking-based factorization
method that can alleviate the sparsity problem. Moreover,
we observe that the graph-based method BPP, which is the
state-of-the-art method, outperforms all the memory-based
and factorization based baseline methods.

Rank-GeoFM/G denotes our model with temporal influ-
ence but without geographical influence. We observe our
model consistently outperforms the state-of-the-art method
BPP, which is 13.7% and 16.2% better than BPP, in terms
of Pre@5, on Foursquare and Gowalla, respectively. Rank-
GeoFM/T/G denotes our model without considering both
the temporal and geographical influences. We observe Rank-
GeoFM/T/G always outperforms another ranking-based me-
thod PITF. Moreover, due to the incorporation of tempo-
ral influence, we observe Rank-GeoFM/G improves Rank-
GeoFM/T/G by 10.6% and 13.1% in terms of Pre@5 on
both data, respectively.

Figures 5(a)–(d) show the performance of the methods
incorporating the geographical influence further. Note that
we report the results only for the methods that can utilize
geographical influence. It shows that Rank-GeoFM outper-
forms all the other methods by 13.1% and 15.3%, in terms
of Pre@5, on Foursquare and Gowalla, respectively.

We note that all improvements of our method over base-
lines are statistically significant in terms of paired t-test with
p-value < 0.01.

4.2.4 Comparison of Rank-GeoFM with and without
Fast Learning Scheme

We compare the learning rate of Rank-GeoFM with and
without the fast learning scheme introduced in Section 3.2.2.
Figure 6 shows the result, where Foursquare data is taken as
an example for the comparison. Rank-GeoFM without fast
learning scheme means we use Eq. (9) to calculate gradients
and perform updates in Algorithm 1. We observe Rank-
GeoFM (with fast learning scheme) finishes 1000 iterations
of updates in 19 hours while the counterpart without fast
learning scheme finishes only 5 iterations. Rank-GeoFM ob-
tains a well-trained model within 8 hours, which leads to
the best performance, while the counterpart cannot build
an acceptable model after 19 hours of training. This re-
sult demonstrates the efficiency as well as necessity of using



fast learning scheme. Moreover, we find that the first 500
iterations of Rank-GeoFM take 5.5 hours, while the next
500 iterations take 13.5 hours. The reason is that at the s-
tart of training, POIs are not well-ranked by our model and
thus it takes less time to sample an incorrectly-ranked POI;
however, as the training process goes on, the ranking be-
comes better and we need more time to sample an incorrect
one. Interestingly, we also find there is a dip in precision af-
ter around 100 iterations for Rank-GeoFM. The observation
may be because our learning procedure is transiting from

coarse search to fine tuning, i.e., E
(⌊

|L|
n

⌋)
(or the magni-

tude of gradient) is decreasing from a large value to a small
one.

5. CONCLUSIONS
In this paper, we propose a ranking based factorization

method, Rank-GeoFM, for POI recommendation. In the
proposed model, we learn the factorization by fitting the
user’s preference rankings for POIs, which alleviates the
data sparsity problem. Extensive experimental results on
both POI recommendation and time-aware POI recommen-
dation show that Rank-GeoFM outperforms the state-of-
the-art methods significantly.
Rank-GeoFM is very flexible to incorporate context in-

formation. In the future, it would be interesting to investi-
gate with Rank-GeoFM how the other context information
impacts the performance of POI recommendation. For ex-
ample, if we know the category of each POI ℓ is cat(ℓ), the
recommendation score in Eq. (4) can be modified as follows
to incorporate this information:

yuℓ = u(1)
u · l

(1)
ℓ + u(2)

u ·
∑

ℓ∗∈Nk(ℓ)

wℓℓ∗ l
(1)
ℓ∗ + u(3)

u · ccat(ℓ)

where ci is the latent factor of category i and the last term in
this equation denotes the interaction score between category
cat(ℓ) and user u. We will leave this as our future work.
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