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The Basic Idea Srenan SRR
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In recurrent neural networks (RNNs): ™ AL

ho(t+ 1) = f(Who(t) 4 Cz(t))

)

e The usual weights: They encode knowledge over the entire
training dataset through gradient descent algorithm

e Slow varying, storing long term information about input
and output mapping
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The Basic Idea Ordinary RNN

w

In recurrent neural networks (RNNSs):

ho(t+ 1) = f(Who(t) 4 Cz(t))
e Hidden states or activity vectors: They act as a limited
working memory storing the current sequence information

e Change at every timestep
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The Basic Idea

How about short-term memory?
e Where do we store the temporary information?
e The hidden states have to remember the history of the

current sequence but they also have to integrate
appropriate memory content for the final classifier



The Basic ldea

e The slow weight: slow varying, storing long term
information

e The fast weight: rapid learning but also decaying rapidly,
storing sequence specific temporary information



The Basic Idea

e The slow weight: slow varying, storing long term
information

e The fast weight: rapid learning but also decaying rapidly,

storing sequence specific temporary information
e Hinton and Plaut, 1987, Using fast weights to deblur old memories
e Schmidhuber, 1993, Reducing the ratio between learning
complexity and number of time varying variables in fully recurrent
nets
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Ordinary RNN
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ho(t +1) = f(Whe(t) 4 Cx(t))
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Fast weights RNN
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h(t+1) = f((Wh(t) +Cz(t)| + A(t)ho(t + 1))




Fast weights RNN
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—p Fast weights

hs1(t +1) = F(IWh(2) + Cx(t)] + A(t)hs(t + 1))
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Hopfield Network and Associative Learning

e Fast weights update rule:
A(t) = MA(t — 1) + nh(t)h(t)T

e Embedding a Hopfield network inside an RNN
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Computation Efficiency

e Revisit the fast weights update rule:

A(t) = MA(t — 1) + nh(t)h(t)!

e Summation of rank-one matrices A4() =0

A(t) =n Z—: A Th(T)h(T)T
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Computation Efficiency

e Fast weights computation is equivalent to attention to the
past:

T=1

A(t)hs(t+1) =1 X Th(r)[h(1)Ths(t + 1)]

=1
Attention

e Store hidden vectors instead of the fast weight matrix
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Attention to the recent past

e Fast weights computation is equivalent to attention to the
past:

AWho(t +1) = 'S XTh(r)h(r)Tha (¢ + 1)

T=1
Attention

e Fast weights is a biologically plausible implementation of
the attention mechanism
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Application: associative retrieval
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Application: associative retrieval
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Application: associative retrieval

Input string Target
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Application: associative retrieval

# of recurrent units

Model R=20 R=50 R=100
IRNN 62.11% 60.23% 0.34%
LSTM 60.81% 1.85% 0%
A-LSTM 60.13% 1.62% 0%
Fast weights 1.81% 0% 0%

g

Negative log likelihood
—

e

=il

o

—  A-LSTM 5ui
— IRNN 50

~— LSTM 50
FW 50

ey
(=

40 60 B0 100 120 140
Updates x 5000

18



Application: recursive vision task
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Classify facial expression from 48x48 images into six categories:
{neutral, smile, surprise, squint, disgust and scream}
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def get_facial_expression(face):
expression = None

for facialFeature in face:

featureExpression = get_facial_expression(facialFeature)
expression = integrate_expression(expression, featureExpression)
I
return expression
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Application: recursive vision task

facial features

def get_facial_expression(face):
expression = None

for facialFeature in face:

featureExpression = get_facial_expression(facialFeature)
expression = integrate_expression(expression, featureExpression)

I
return expression
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Application: recursive vision task
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sub-facial features facial features

def get_facial_expression(face):
expression = None

for facialFeature in face:

featureExpression = get_facial_expression(facialFeature)
expression = integrate_expression{expression, featureExpression)
I
return expression
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Application: recursive vision task
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Application: recursive vision task
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Application: recursive vision task
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Application: recursive vision task
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IRNN LSTM ConvNet

Fast Weights

Test accuracy 81.11 81.32  88.23

86.34
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Application: improving RL agents
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Conclusion

e Fast weights provide a powerful internal storage
mechanism for RNNs

e Fast associative weights retrieves information by attracting new states
of the hidden units towards similar recent hidden states

e Layer normalization makes this kind of attention works much better

e Hidden states are freed up to learn appropriate representation for the
final classifier

e Fast weights can be applied to solve recursive tasks without explicitly
storing copies of hidden states
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