Using Fast Weights to Attend to the Recent Past

Wang CHEN

Using Fast Weights to Attend to the Recent Past

Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Leibo, Catalin Ionescu University of Toronto Google

n Eu

link1

The Basic Idea

Ordinary RNN

In recurrent neural networks (RNNs):

 The usual weights: They encode knowledge over the entire training dataset through gradient descent algorithm

 Slow varying, storing long term information about input and output mapping

link1

The Basic Idea

In recurrent neural networks (RNNs):

Ordinary RNN

$$h_0(t+1) = f(Wh_0(t) + Cx(t))$$

- Hidden states or activity vectors: They act as a limited working memory storing the current sequence information
 - Change at every timestep

link1

The Basic Idea

How about short-term memory?

- Where do we store the temporary information?
- The hidden states have to remember the history of the current sequence but they also have to integrate appropriate memory content for the final classifier

Ι

The Basic Idea

- The slow weight: slow varying, storing long term information
- The fast weight: rapid learning but also decaying rapidly, storing sequence specific temporary information

The Basic Idea

- The slow weight: slow varying, storing long term information
- The fast weight: rapid learning but also decaying rapidly, storing sequence specific temporary information
 - Hinton and Plaut, 1987, Using fast weights to deblur old memories
 - Schmidhuber, 1993, Reducing the ratio between learning complexity and number of time varying variables in fully recurrent nets

Ordinary RNN

$$h_0(t+1) = f(Wh_0(t) + Cx(t))$$

Fast weights RNN

$$h(t+1) = f([Wh(t) + Cx(t)] + A(t)h_0(t+1))$$

Fast weights RNN

$$h_{s+1}(t+1) = f([Wh(t) + Cx(t)] + A(t)h_s(t+1))$$

Hopfield Network and Associative Learning

Fast weights update rule:

$$A(t) = \lambda A(t-1) + \eta h(t)h(t)^{T}$$

Embedding a Hopfield network inside an RNN

Computation Efficiency

Revisit the fast weights update rule:

$$A(t) = \lambda A(t-1) + \eta h(t)h(t)^{T}$$

• Summation of rank-one matrices A(0) = 0

$$A(t) = \eta \sum_{\tau=1}^{\tau=t} \lambda^{t-\tau} h(\tau) h(\tau)^{T}$$

Computation Efficiency

Fast weights computation is equivalent to attention to the past:

$$A(t)h_s(t+1) = \eta \sum_{\tau=1}^{\tau=t} \lambda^{t-\tau} h(\tau) [h(\tau)^T h_s(t+1)]$$
Attention

Store hidden vectors instead of the fast weight matrix

Attention to the recent past

Fast weights computation is equivalent to attention to the past:

$$A(t)h_s(t+1) = \eta \sum_{\tau=1}^{\tau=t} \lambda^{t-\tau} h(\tau) [h(\tau)^T h_s(t+1)]$$
 Attention

 Fast weights is a biologically plausible implementation of the attention mechanism

Application: associative retrieval

c9k8j3f1 ?? c

Ŧ

Application: associative retrieval

I

Application: associative retrieval

Input string Target c9k8j3f1??c 9 j0a5s5z2??a 5

I

Application: associative retrieval

							0		11
ts	uni	t	en	IT	CI	re	1	0	#
	uiii	L	CII	ш		10	1	U	#

	II OT TOORITOTIC GITTED			
Model	R=20	R=50	R=100	
IRNN	62.11%	60.23%	0.34%	
LSTM	60.81%	1.85%	0%	
A-LSTM	60.13%	1.62%	0%	
Fast weights	1.81%	0%	0%	

Application: recursive vision task

Classify facial expression from 48x48 images into six categories: {neutral, smile, surprise, squint, disgust and scream}


```
def get_facial_expression(face):
    expression = None

for facialFeature in face:
    featureExpression = get_facial_expression(facialFeature)
        expression = integrate_expression(expression, featureExpression)
    return expression
```


Application: recursive vision task

I

	IRNN	LSTM	ConvNet	Fast Weights
Test accuracy	81.11	81.32	88.23	86.34

Application: improving RL agents

Conclusion

- Fast weights provide a powerful internal storage mechanism for RNNs
 - Fast associative weights retrieves information by attracting new states of the hidden units towards similar recent hidden states
 - Layer normalization makes this kind of attention works much better
 - Hidden states are freed up to learn appropriate representation for the final classifier
 - Fast weights can be applied to solve recursive tasks without explicitly storing copies of hidden states