Using Fast Weights to Attend to the Recent Past

Wang CHEN

Poster #191 Tue

Using Fast Weights to Attend to the Recent Past

Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Leibo, Catalin lonescu
University of Toronto
Google

Joal Leibo atalin

e
Hinton lonescu

5
[N

The Basic Idea Srenan SRR

ho(t+1) ho(t +2)

In recurrent neural networks (RNNs): ™ AL

ho(t+ 1) = f(Who(t) 4 Cz(t))

)

e The usual weights: They encode knowledge over the entire
training dataset through gradient descent algorithm

e Slow varying, storing long term information about input
and output mapping

Poster #191 Tue

The Basic Idea Ordinary RNN

w

In recurrent neural networks (RNNSs):

ho(t+ 1) = f(Who(t) 4 Cz(t))
e Hidden states or activity vectors: They act as a limited
working memory storing the current sequence information

e Change at every timestep

Poster #191 Tue

The Basic Idea

How about short-term memory?
e Where do we store the temporary information?
e The hidden states have to remember the history of the

current sequence but they also have to integrate
appropriate memory content for the final classifier

The Basic ldea

e The slow weight: slow varying, storing long term
information

e The fast weight: rapid learning but also decaying rapidly,
storing sequence specific temporary information

The Basic Idea

e The slow weight: slow varying, storing long term
information

e The fast weight: rapid learning but also decaying rapidly,

storing sequence specific temporary information
e Hinton and Plaut, 1987, Using fast weights to deblur old memories
e Schmidhuber, 1993, Reducing the ratio between learning
complexity and number of time varying variables in fully recurrent
nets

Poster #191 Tue

Ordinary RNN

h{,(:‘+ 1) hg(t‘+ 2)

O O

w O W " O

O O

O O

o of
z(t) z(t+1)

ho(t +1) = f(Whe(t) 4 Cx(t))

Poster #191 Tue

Fast weights RNN
»|(t) ho(t +1) Lh(t‘+ 1) ho(t + 2)
O O O O
O W N O A(t) O W O —p Fast weights
o[lo[|o gle
O Ol O O

A
C C

z(t) z(t+ 1)

h(t+1) = f((Wh(t) +Cz(t)| + A(t)ho(t + 1))

Fast weights RNN

—_
~

——l

1) ho(t+2)

) |holt+1) tlttﬂ) hSr-l(t'*'l)I—:"(t'*'
ol | ol ol Yol o
O| w| |Ol4a®|O]|4® - |O|4® |O
o o ol - "lo[o
ol o] Mo 10| ™o

C‘_A_

z(t)

z(t+ 1)

Poster #191 Tue

—p Fast weights

hs1(t +1) = F(IWh(2) + Cx(t)] + A(t)hs(t + 1))

10

Poster #191 Tue

Hopfield Network and Associative Learning

e Fast weights update rule:
A(t) = MA(t — 1) + nh(t)h(t)T

e Embedding a Hopfield network inside an RNN

11

Poster #191 Tue

Computation Efficiency

e Revisit the fast weights update rule:

A(t) = MA(t — 1) + nh(t)h(t)!

e Summation of rank-one matrices A4() =0

A(t) =n Z—: A Th(T)h(T)T

Poster #191 Tue

Computation Efficiency

e Fast weights computation is equivalent to attention to the
past:

T=1

A(t)hs(t+1) =1 X Th(r)[h(1)Ths(t + 1)]

=1
Attention

e Store hidden vectors instead of the fast weight matrix

13

Poster #191 Tue

Attention to the recent past

e Fast weights computation is equivalent to attention to the
past:

AWho(t +1) = 'S XTh(r)h(r)Tha (¢ + 1)

T=1
Attention

e Fast weights is a biologically plausible implementation of
the attention mechanism

14

Application: associative retrieval

c9k8;3f1 7?7 ¢

Poster #191 Tue

15

Application: associative retrieval

c9k8j3fl 7?7 ¢ —9

Poster #191 Tue

16

Poster #191 Tue

Application: associative retrieval

Input string Target
c9k&3f17?7c 9
j0as5s5z277a 5

Poster #191 Tue

Application: associative retrieval

of recurrent units

Model R=20 R=50 R=100
IRNN 62.11% 60.23% 0.34%
LSTM 60.81% 1.85% 0%
A-LSTM 60.13% 1.62% 0%
Fast weights 1.81% 0% 0%

g

Negative log likelihood
—

e

=il

o

— A-LSTM 5ui
— IRNN 50

~— LSTM 50
FW 50

ey
(=

40 60 B0 100 120 140
Updates x 5000

18

Application: recursive vision task

i —

Classify facial expression from 48x48 images into six categories:
{neutral, smile, surprise, squint, disgust and scream}

Poster #191 Tue

19

def get_facial_expression(face):
expression = None

for facialFeature in face:

featureExpression = get_facial_expression(facialFeature)
expression = integrate_expression(expression, featureExpression)
I
return expression

Poster #191 Tue

20

Application: recursive vision task

facial features

def get_facial_expression(face):
expression = None

for facialFeature in face:

featureExpression = get_facial_expression(facialFeature)
expression = integrate_expression(expression, featureExpression)

I
return expression

Poster #191 Tue

21

Application: recursive vision task

.—-I»-- 4

sub-facial features facial features

def get_facial_expression(face):
expression = None

for facialFeature in face:

featureExpression = get_facial_expression(facialFeature)
expression = integrate_expression{expression, featureExpression)
I
return expression

Poster #191 Tue

22

Application: recursive vision task

O
w O

O
w 10O
O
O

-

>

O
O
(i

Poster #191 Tue

23

Poster #191 Tue

Application: recursive vision task

Q

O O
w O w(()
_"’Q\O Ol |0 [O O

ol NOlw|Olw|O o/o

oFloFoP0

i o| o] |o] |0 Ci

cf
-

atd

Poster #191 Tue

Application: recursive vision task

O] OL‘O ol Thse
A(t)
40Ow|Olw|Olw|O| | |O 4
- O*OKOKQ‘ SN —» Pop(fast weights)
i Ol |0 |O| [O] € Cﬁ

>
e

I

Application: recursive vision task

Poster #191 Tue

IRNN LSTM ConvNet

Fast Weights

Test accuracy 81.11 81.32 88.23

86.34

26

Application: improving RL agents

Poster #191 Tue

Conclusion

e Fast weights provide a powerful internal storage
mechanism for RNNs

e Fast associative weights retrieves information by attracting new states
of the hidden units towards similar recent hidden states

e Layer normalization makes this kind of attention works much better

e Hidden states are freed up to learn appropriate representation for the
final classifier

e Fast weights can be applied to solve recursive tasks without explicitly
storing copies of hidden states

28

