Introduction to Deep
Reinforcement Learning

Shenglin Zhao
Department of Computer Science & Engineering

The Chinese University of Hong Kong

Outline

* Background

* Deep Learning

* Reinforcement Learning

* Deep Reinforcement Learning

 Conclusion

Outline

* Background

Milestone Issues

* NIPS 2013, DeepMind, Playing Atari with Deep Reinforcement Learning,
https://arxiv.org/abs/1312.5602

* Nature cover paper 2015, DeepMind, Human-level control through deep
reinforcement learning, www.nature.com/articles/nature 4236

* Nature cover paper 2016, DeepMind, Mastering the game of Go with deep
neural networks and tree search, www.nature.com/articles/naturel 696

Reinforcement Learning in a nutshell

RL is a general-purpose framework for decision-making
» RL is for an agent with the capacity to act
» Each action influences the agent’'s future state
» Success is measured by a scalar reward signal

» Goal: select actions to maximise future reward

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Deep Learning in a nutshell

DL is a general-purpose framework for representation learning

» Given an objective

» Learn representation that is required to achieve objective

» Directly from raw inputs

» Using minimal domain knowledge

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Deep Reinforcement Learning: Al = RL + DL

We seek a single agent which can solve any human-level task

» RL defines the objective

» DL gives the mechanism

» RL + DL = general intelligence

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Examples of Deep RL@DeepMind

» Play games: Atari, poker, Go, ...
» Explore worlds: 3D worlds, Labyrinth, ...

» Control physical systems: manipulate, walk, swim, ...

» Interact with users: recommend, optimise, personalise, ...

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Outline

* Background
* Deep Learning

Deep Learning = Learning Representations/Features

* Traditional Model

hand-crafted “Simple” Trainable
— —_—
Feature Extractor Classifier
Trainable Trainable
E— —
Feature Extractor Classifier

http://www. cs. nyu. edu/ yann/talks/lecun—-ranzato—icml2013. pdf

Deep Representations

» A deep representation is a composition of many functions

X —> .. > h,
ce e Wn

w1

Y

>y > |/

» |ts gradient can be backpropagated by the chain rule

ﬂ { ,':72 , :‘ hn __‘\
gl Ox ol 7" ZMn—1 g Shn ol
ox ohy T oh, dy
owy | Bwn
al al
ow1q T dwp

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Deep Neural Network

A deep neural network is typically composed of:

» Linear transformations
hiy1 = Why
» Non-linear activation functions

hit2 = f(hk+1)

» A loss function on the output, e.g.

» Mean-squared error [= ||y* — }’H2
» Log likelihood / = log P [y*]

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Example-CNN

9™ | " f(r) gt —) dr

Convolutional Operator

Discrete Form (F+g)n] = Y flm]gln —m]
11210 2 (2|7
ol1lo| K [5]0]7 =

Matrix Element-wise Multiplication

http://xrds. acm. org/blog/2016/06/convolutional —neural-networks—cnns—illustrated-explanation/

Example-CNN

Pixel representation of filter Visualization

https://adeshpande3. github. io/adeshpande3. github. io/A-Beginner’ s—Guide—-To-Understanding—Convolutional-Neural-Networks/

Example-CNN

Original image What we find

0 0 0 30 0 0 0

0 0 0 30 0 0 0

0 0 0 30 0 0 0

" 0 0 0 30 0 0 0

https://adeshpande3. github. io/adeshpande3. github. io/A-Beginner’ s—Guide-To-Understanding—Convolutional-Neural-Networks/

Example-CNN

Low-Level Mid-Level High-Level Trainable
Feature Feature Feature Classifier

http://www. cs. nyu. edu/" yann/talks/lecun—ranzato—icml2013. pdf

Outline

* Background
* Deep Learning

* Reinforcement Learning

Reinforcement Learning

Computer Science

Engineering) Neuroscience

Mathematics - . [Psychology

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Agent and Environment

cbservation / ALY ppy) ot » At each step t the agent:
L ' S v 5 € oo * » Executes action a;
" » Receives observation oy
» Receives scalar reward r;
» The environment:
» Receives action a;
» Emits observation o;.1
- » Emits scalar reward r;oq
Environment

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

State

» Experience is a sequence of observations, actions, rewards
O1,11,41, -+, d¢t—1,0¢, I't
» The state is a summary of experience
St — f(ols ri,di, ..., dt—1. Ot rt)
» In a fully observed environment
St = f(Ot)

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Major Components

» An RL agent may include one or more of these components:

» Policy: agent's behaviour function
» Value function: how good is each state and/or action
» Model: agent’s representation of the environment

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Policy

» A policy is the agent’'s behaviour

» It is a map from state to action:
» Deterministic policy: a = 7(s)
» Stochastic policy: w(als) = P[als]

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Value Function

» A value function is a prediction of future reward
» “How much reward will | get from action a in state s?”

» (V-value function gives expected total reward

» from state s and action a
» under policy 7
» with discount factor ~

Q7(s,a) =E [rt—l—l T Y42 T+ ’7"2rt+3 + .. | s a]
Bellman equation

Q™(s,a) =Eg » [r +vQ7(s".d) | s, 4]

http://icml.cc/201 6/tutorials/deep_rl_tutorial.pdf

Optimal Case

» An optimal value function is the maximum achievable value

Q*(s.a) = max Q™(s.a) = QT (s. a)
T
» Once we have Q™ we can act optimally,
77 (s) = argmax Q7 (s, a)
a
» Optimal value maximises over all decisions. Informally:
R*(s,a) = rey1 + 7 Max 42 + % max req3 + ...

t+1 a2

= ry1 +° r;'lax Q*(5t+lf 3t+1)
t+1

» Formally, optimal values decompose into a Bellman equation

R*(s,a) =Ey |[r+v max Q*(s’,d') | s, a
a/

http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

Approaches to Reinforcement Learning

Value-based RL

» Estimate the optimal value function Q*(s, a)

» This is the maximum value achievable under any policy
Policy-based RL

» Search directly for the optimal policy 7*

» This is the policy achieving maximum future reward
Model-based RL

» Build a model of the environment

» Plan (e.g. by lookahead) using model

http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

RL Example

* Assumption
* Suppose we have 5 rooms in a building connected by doors
* The outside of the building can be thought of as one big room (5)

* Target
* Put an agent in any room, and from that room, go outside the building

d e y & N
\r—\ 5 @' 13 j:@ Goal State

http://mnemstudio.org/path-finding-qg-learning-tutorial.htm

RL Example

Q-learning for the RL Problem

* Assuming rewards for each step, the goal is to reach the state with
the highest reward.

* Terms— state: room, action: move decision, reward: 0 or 100

RL Problem Markov Decision Process

Environment)4\ f \ 5
Reward \ N
\ 100

0| |0
\Act on « 0 / .
} 2 A 3 100 Goal State
: 0 ks y
100
0 | 0 /
— 0
O=—=04

http://mnemstudio.org/path-finding-g-learning-tutorial.htm

/

Q-learning for the RL Problem

Q-value Table

Reward Table

Action

Action

il

0

State

(|

0
1 -1 -1 -1

-1 -1 -1
-1 -1 -1

State

0 100
0
0

0
0 80 100

0 o4
0 o4

0

—1

0 -1 100

0 -1
-1

-1
-1

0 -1 100

0 -1 -1

0 100

0
0

0 0
-1 -1

-1
0
-1

O =l N <

Q-learning for the RL Problem

* Q-table is the brain of our agent, representing the memory of what
the agent has learned through experience.

* The agent starts out knowing nothing, the matrix Q is initialized to
zero.

* Simple transition rule of Q learning,

O(state, action) = Rlstate, action) + Gamma * Nax Q(next state, all actions)

http://mnemstudio.org/path-finding-g-learning-tutorial.htm

Q-learning for the RL Problem

The Q-Learning algorithm goes as follows:
1. Set the gamma parameter, and environment rewards in matrix E.
2. Initialize matrix Q to zero.
3. For each episode:
select a random initial state.
Do While the goal state hasn’ t been reached.

select one among all possible actions for the current state.

Using this possible action, consider golng to the next state.

Get maximum @ value for this next state based on all possible actions.

Compute: Q(state, action) = R{state, action) + Gamma * Max_Q(next state, all actions)

e Set the next state as the current state.

End Do

End For

http://mnemstudio.org/path-finding-g-learning-tutorial.htm

Q-learning for the RL Problem

* Example
 |nitial state: room |, action: move to 5

Qi{state, action) = R(state, action) + Gamma * Max _Q(next state, all actions)]

Q(1, 5) = R{1, 5) + 0.8 * Max Q(5, 1), Q(5, 4), Q(5, 5)] = 100 + 0.8 * 0 = 100

01 2 3 45 0 1 2 3 4 5
00000 0 0 ofo o 0 0o 0 o
1{000000 1o o o 0o 0 o
O= 2000000 j> O= 210 0 0 0 0100
T 31000000 310 0 0 0 0 0
41000000 410 0 00 00
sloooo oo 5000 00 0

http://mnemstudio.org/path-finding-q-learning-tutorial.htm

Q-learning for the RL Problem

* Example
* |nitial state: room 3, action: move to |

Q(state, action) = R(state, action) + Gamma * Nax _Q(next state, all actions).

Q@3,1)=0+0.8* 100 = 80

__ 2.

-~

{(\
A

||
h BwW o
=== R=R== =
OO -
OCOO0OOOOO M
OO0 W
OCOoOO0OOO

P

=)
R=R=R=I= ==
o0 O o o o o O
o0 O O O o O
o O O O O O 9
o o o o o o W
o oo oo o, W

h = o 9 - O

http://mnemstudio.org/path-finding-g-learning-tutorial.htm

Q-learning for the RL Problem

e
oS oo o —
e
Socood &
[—
-
S oSS W

0 100
30 100

C O~ OO O I
cRoPRPRow

h = W 9 = O

XL
-

http://mnemstudio.org/path-finding-g-learning-tutorial.htm

51

64

64

80

80
80 | 64
100
> 100 |:. Goal State
100
64 | 80
80

Outline

* Background

* Deep Learning

* Reinforcement Learning

* Deep Reinforcement Learning

 Conclusions

Deep Reinforcement Learning

Deep Reinforcement
Learning Learning
Deep
Reinforcement
Learning

4

» Use deep network to represent value function / policy / model
» Optimise value function / policy /model end-to-end

» Using stochastic gradient descent

http://videolectures.net/rldm2015 silver reinforcement learning/

Deep Q-learning
LETTER

Human-level control through deep reinforcement
learning
Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',

Martin Riedmiller', Andreas K. Fidjeland'. Georg Ostrovski', Stig Petersen', Charles Beattie', Amir Sadik’, loannis :\monoglou'.
Helen Kingl. Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

doi:10.1038/nature14236

Deep Q-Network (DQN)

DQN Architecture

Q-value

Q-value 1 Q-value 2 Q-value n

Network

N

State

Action

Naive formulation of deep Q-network

'\T/’

Network

State

DQN in DeepMind paper

https://www. nervanasys. com/demystifying—deep-reinforcement—learning/

DQN Architecture

Layer Input Filter size | Stride Num filters | Activation | Output
conv1 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 | 4x4 2 64 RelLU 9x9x64
conv3 O9x9x64 3x3 1 64 RelLU 7X7x64
fc4 7x7x64 512 RelLU 512

fch 512 18 Linear 18

https://www. nervanasys. com/demystifying—deep-reinforcement—learning/

DON

Loss function i . 2
L = 5[1' + maz,Q(s',a") — Q(s,a)]
\—-———\/——_/ ‘\f-—/
target prediction

Q-table update algorithm

1. Do a feedforward pass for the current state s to get predicted Q-values for all actions.

2. Do a feedforward pass for the next state s' and calculate maximum overall network outputs
max 5 Q(s’, a').

3. Set Q-value target for action to r + ymax ;- Q(s’, 3') (use the max calculated in step 2). For all
other actions, set the Q-value target to the same as originally returned from step 1, making the error
O for those outputs.

4. Update the weights using backpropagation.

https://www. nervanasys. com/demystifying—deep-reinforcement—learning/

Exploration-Exploitation

initialize replay memory D
initialize action-value function Q with random weights
observe initial state s
repeat
select an action a
with probability & select a random action
otherwise select a = argmax,;,-Q(s,a’)
carry out action a
observe reward r and new state s’
store experience <s, a, r, s8’> in replay memory D

sample random transitions <ss, aa, rr, ss’> from replay memory D
calculate target for each minibatch transition

if ss’ is terminal state then tt = rr
otherwise tt = rr + ymax,-Q(ss’, aa’)
train the Q network using (tt - Q(ss, aa))? as loss
s = s'

until terminated

Value lteration

» Represent value function by deep Q-network with weights w
R(s.a,w) = Q" (s, a)

» Define objective function by mean-squared error in Q-values

— 2_
L(w)=E r+~ max Q(s’,a", w) — Q(s.a. w)
a/
i target _
» Leading to the following Q-learning gradient
OL(w) __ 1o 9Q(s.a. w)
S E {(r + 7 max Q(s'.a",w) — Q(s.a, w) o

BL(W)

» Optimise objective end-to-end by SGD, using

Policy Iteration

» Represent value function by Q-network with weights w

» Define objective function by mean-squared error in Q-values

— 2_
Lw)=E||r+~Q(s'.a".w) — Q(s.a.w)
i ta:get 1
» Leading to the following Sarsa gradient
OLW) _ B (r 4 ~Q(s". &', w) — Q(s, 2, w)) 2(5:2:%)
ow ow

» Optimise objective end-to-end by SGD, using

R(s.a,w) = Q" (s, a)

w

AL(w)
“Ow

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated

http://videolectures.net/rldm2015 silver reinforcement learning/

DON

DQN provides a stable solution to deep value-based RL

1. Use experience replay

» Break correlations in data, bring us back to iid setting
» Learn from all past policies
» Using off-policy Q-learning

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients

http://videolectures.net/rldm2015 silver reinforcement learning/

Experience Replay

To remove correlations, build data-set from agent's own experience

» Take action a; according to e-greedy policy
» Store transition (S;, a¢, rr1.S¢01) in replay memory D
» Sample random mini-batch of transitions (s, a, r,s’) from D

» Optimise MSE between Q-network and Q-learning targets, e.g.

2
L(w)=Es;,, oD <r + 7 max Q(s",a'.w) — Q(s. a. W))

d

http://videolectures.net/rldm2015 silver reinforcement learning/

Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

» Compute Q-learning targets w.r.t. old, fixed parameters w—

r+~ max Q(s’,a’", w™)
a/

» Optimise MSE between Q-network and Q-learning targets

2
L(w)=Es,,s~D (r + 7 max Q(s".a'.w™) — Q(s. a. vv)>

» Periodically update fixed parameters w™ < w

http://videolectures.net/rldm2015 silver reinforcement learning/

Reward/Value Range

» DQN clips the rewards to [—1, +1]
» This prevents Q-values from becoming too large

» Ensures gradients are well-conditioned

http://videolectures.net/rldm2015 silver reinforcement learning/

in Atar

DQN Results

%000€ %000F %009 %005 %00F %00€ %00C %001 %0
L | ._ —: | | | | | |

ak3 ajeauq
Jejnel
)iqisol4
SPI0JBISY
uewoed sy
Buimog
yung aanoq
1sanbeag
aimuap
ualy
Jepiuy
pley Jaay
1519H yueg
apadiua)
puewwo) Jaddoyd
JOM JO prezi
8U0Z 3peg
Xuajsy
‘OY¥3H
O ves.0
Kao0H 80|
umoQ pue dn
Aquaq Buiysy
oJnpu3
25| oid By
femaaly
wzor | seisew ng-Buny
wzu | weyyueiny
ot EZ | sepny weeg
%z Y | ssepeau| soedg
sees [T | Buod
puog sawer
SIuua)
oosebuey
1| Jauuny peoy
JInessy
[Iruy
Sweo siy | sweN
¥ely uowaq
saydo9
Jaquiy) Azes
shuepy
yueloqoy
Jsuung Jeis
noyea.g
buixog
IIequd 03PIA

|0Ad|-uBWNY MOjeq
BAOQE JO |8AB|-UBWINY JB

abuanay s ewnzajuop

DQN Atari Demo

DQN paper

wWww.nature.com/articles/naturel14236

DQN source code:
sites.google.com/a/deepmind.com/dgn/

Conclusion

» RL provides a general-purpose framework for Al
» RL problems can be solved by end-to-end deep learning
» A single agent can now solve many challenging tasks

» Reinforcement learning + deep learning = Al

Demo

References

* http://karpathy.github.io/2016/05/3 1/rl/

* https://gym.openai.com/docs/rl

* https://www.nervanasys.com/demystifying-deep-reinforcement-
earning/

* http://mnemstudio.org/path-finding-g-learning-tutorial.htm

* http://videolectures.net/rldm2015_silver reinforcement learning/

* http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

