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Background

• Machine learning problems

• Empirical risk minimization with independence
feature label mapping

loss function

number of samples

min

What if the data are not independent?

model parameter



Risk Minimization

• True risk in machine learning

• Empirical risk minimization

• Generalization error

min

min

(1)

(2)

Zhang, Tong. "Data Dependent Concentration Bounds for Sequential Prediction Algorithms." In COLT, pp. 173-187. 2005.
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Problem Definition

• Empirical risk minimization (ERM)

• Solution

• Square loss

– Gaussian distribution in model errors

• Tools

– SVM

– Neural networks

min



From ERM to Deep Learning

• Model of feedforward neural network

• Batch learning

• First order and second order in optimization

min

� �, � = �� × ���� × �� × �
�



First Order Method

• Gradient (a vector)

• Cons
– Time consuming for each iteration

– Not linear convergence rate

• Convex case: � �
� with � being the total iteration

• Acceleration case: � �
��

– How to set the learning rate

• Pros
– Exact gradient information

mapping is pre-defined

Nesterov, Yurii. Introductory lectures on convex optimization: A basic course. Vol. 87. Springer Science & 
Business Media, 2013.



Second Order Method

• Hessian matrix (a square matrix)

• Cons

– Ill-conditioning of matrix (zero eigenvalue)

– Time consuming in each iteration, or even failure, 
in calculating the inverse of Hessian matrix

• Pros

– linear convergence rate

• Strongly convex case: �(��) with 0 < � < 1

 !," =
#$!
#�"

� = �(ln(�')) with ( being the accuracy 



Update Rules

• First order method

• Second order method

�)*� = �) − +$)

�)*� = �) − )��$)

Learning rate

1. Optimal learning rate

2. The inverse is not easily to solve

3. Estimation error of Hessian leads to 

large deviation in training of deep models



Taylor Series Approximation

• Function approximation

• ERM problem



SGD in Deep Learning 

• Stochastic gradient descent (SGD)

• Pros

– Improve the efficiency in each iteration

• Cons

– Noise in the estimation of gradient

�)*� = �) − +$,)
$,) is calculated based on: 1) one sample (online 

learning); 2) a small subset of samples (mini batch)

How to deal with this issue?



An Ideal Assumption

• Gradient in (conditional) expectation

$) = E[$,)] $) = E[$,)|1)��]
Why this assumption works?



An Ideal Assumption

• Gradient in (conditional) expectation

• Stochastic (convex) optimization

– Convex convergence rate: �( ��)
– Acceleration rate: � �

� for strongly convex and 

smooth function

$) = E[$,)]

min	5 � = 1
�6E

7

!8�
[9)(�)]

Shalev-Shwartz, Shai, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. "Stochastic Convex Optimization." In COLT. 2009.

Hazan, Elad, and Satyen Kale. "Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex 
optimization." Journal of Machine Learning Research 15, no. 1 (2014): 2489-2512.
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A Realistic Assumption

• Gradient in (conditional) expectation

• Stochastic (convex) optimization

– Convex convergence rate: �( ��)
– Acceleration rate: � �

� for strongly convex and 

smooth function

$) = E[$,)]

min	5 � = 1
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Shalev-Shwartz, Shai, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. "Stochastic Convex Optimization." In COLT. 2009.

Hazan, Elad, and Satyen Kale. "Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex 
optimization." Journal of Machine Learning Research 15, no. 1 (2014): 2489-2512.

$) = E[$,)|1)��]

E $,) − $) ≤ :



An Illustration

• A Comparison of GD and SGD

https://am207.github.io/2017/wiki/gradientdescent.html

GD: O(1/T)



An Illustration

• A Comparison of GD and SGD

https://am207.github.io/2017/wiki/gradientdescent.html

SGD: O(1/T^0.5)



Ill-Conditioning of Objectives

• Ill-conditioning is general in deep models

– Metric: condition number

– Large ; means ill-condition

; = <=>?  <=@A( )	

Largest eigenvalue of 

Hessian matrix

https://distill.pub/2017/momentum/



Momentum

• Classical method

Polyak, Boris T. "Some methods of speeding up the convergence of iteration methods." USSR 
Computational Mathematics and Mathematical Physics 4, no. 5 (1964): 1-17.
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https://distill.pub/2017/momentum/

A new vector
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Momentum Intuition

• Classical method

Sutskever, Ilya, James Martens, George Dahl, and Geoffrey Hinton. "On the importance of initialization and 
momentum in deep learning." In International conference on machine learning, pp. 1139-1147. 2013.

B)*� = CB) − +$) �) , C ∈ [0,1]
�)*� = �) + B)*�

CB

−+$(�)
�

CB − +$(�)
�)*�

−+$(�)

�

�)*�
SGD Momentum



Momentum Intuition

• Classical method

• Pros

– Partially solve ill-conditioning

– Help to adjust the learning rate

– Faster convergence, and less oscillation

– Set C = 0, we have GD/SGD

• Cons

– A new parameter

B)*� = CB) − +$) �) , C ∈ [0,1]
�)*� = �) + B)*�



Nesterov Accelerated Gradient

• Update rules

• Convergence rate in convex case 

– �(1/��)

B)*� = CB) − +$) �) + CB) , C ∈ [0,1]
�)*� = �) + B)*�

Nesterov, Yurii. "A method of solving a convex programming problem with convergence rate O (1/k2)." 
In Soviet Mathematics Doklady, vol. 27, no. 2, pp. 372-376. 1983.



Momentum in Deep Learning

• Some deep models

– SGD cannot obtain good performance

– Try momentum technique

• Random initialization

– Good performance in FNN and RNN

– Constant initialization leads to failure of training

Sutskever, Ilya, James Martens, George Dahl, and Geoffrey Hinton. "On the importance of initialization and 
momentum in deep learning." In International conference on machine learning, pp. 1139-1147. 2013.



Function Properties in Optimization

• Revisit SGD

�)*� = �) − +$,)
What if g has some 

good properties?



Function Properties in Optimization

• Revisit SGD

• Bernstein condition

• Convergence rate

– �(�
GHI
�HI��) with J ∈ [0,1]

�)*� = �) − +$,)

Van Erven, Tim, Peter D. Grünwald, Nishant A. Mehta, Mark D. Reid, and Robert C. Williamson. "Fast rates in 
statistical and online learning." Journal of Machine Learning Research 16 (2015): 1793-1861.

E K L! , M! , �) � ≤ : E K L! , M! , �) − K L! , M! , �∗ O

Optimal parameter



Holderian Error Bound

• Local Holderian error bound

• Convergence rate

– �(�
GHI
�HI��) with J ∈ [0,1]

||�) − �∗|| ≤ P E K L! , M! , �) − E K L! , M! , �∗ O

Xu, Yi, Qihang Lin, and Tianbao Yang. "Stochastic Convex Optimization: Faster Local Growth Implies Faster 
Global Convergence." In International Conference on Machine Learning, pp. 3821-3830. 2017.

Can one design deep models 

to have this property?



Discussions

• ERM problem in deep models

• Optimization to solve ERM problem

• SGD and momentum

• Function properties help to solve optimization
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