
Deep Feedforward
Networks

Han Shao, Hou Pong Chan, and Hongyi Zhang

Deep Feedforward
Networks

• Goal: approximate some function

• e.g., a classifier, maps input to a class

• Defines a mapping and learns the value
that results in the best approximation

y = f

⇤(x)
x

y

y = f(x; ✓) ✓

f⇤

Neuron

• Takes inputs and produce a single outputn

inputs weights sum activation function

output

x1

x2

xn

1

⌃ g... ...

w1

w2

wn

b

bias

Neuron

output =

output

x1

x2

xn

1

⌃ g... ...

w1

w2

wn

b

bias

inputs weights sum activation function

Neuron

output

x1

x2

xn

1

⌃ g... ...

w1

w2

wn

b

bias

inputs weights sum activation function

output =

nX

i=1

xiwi

Neuron

output

x1

x2

xn

1

⌃ g... ...

w1

w2

wn

b

bias

inputs weights sum activation function

output =

nX

i=1

xiwi + b

Neuron
activation function

output

x1

x2

xn

1

⌃ g... ...

w1

w2

wn

b

bias

inputs weights sum activation function

output = g(

nX

i=1

xiwi + b)

Neuron
activation function

output = g(w

T
x+ b)

output

x1

x2

xn

1

⌃ g... ...

w1

w2

wn

b

bias

inputs weights sum activation function

x = [x1, ..., xn]
T

w = [w1, ..., wn]
T

Common Activation
Functions

g(z) = tanh(z)g(z) = �(z)

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0

z

0

g
(
z
)

=
m

a
x
{0

,z
}

Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
However, the function remains very close to linear, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.

175

z

Sigmoid Hyperbolic

z

z

g(z) = max{0, z}

Rectified-Linear (ReLu)

�(z) =
1

1 + e�z

Figure from Deep Learning Book

Two-layer Neural Networks
• Two-layer neural networks model linear classifiers

• e.g., logistic regression

x1

x2

xn

...

input layer output layer

y

y = �(wT
x+ b)x

However, many real-world
problems are non-linear!

Example: Learning the XOR
• XOR function:

• Operation on two binary values, and

• If exactly one of them is 1, returns 1

• Else, returns 0

• Goal: Learn a function that correctly performs on

x1 x2

X = {[0, 0]T , [0, 1]T , [1, 0]T , [1, 1]T }

Example: Learning the XOR

• Cannot use a linear model to fit the data

• Need a three-layer neural network

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 1

x
1

0

1

x
2

Original x space

0 1 2

h
1

0

1

h
2

Learned h space

Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left)A linear model applied directly to the original input cannot implement the XOR
function. When x

1

= 0, the model’s output must increase as x
2

increases. When x
1

= 1,
the model’s output must decrease as x

2

increases. A linear model must apply a fixed
coefficient w

2

to x
2

. The linear model therefore cannot use the value of x
1

to change
the coefficient on x

2

and cannot solve this problem. (Right)In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]

> and x = [0, 1]

> to a single point in feature space, h = [1, 0]

>.
The linear model can now describe the function as increasing in h

1

and decreasing in h
2

.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

173

Figure from Deep Learning Book

Example: Learning the XOR
• Define a three-layer neural network (one hidden layer)

x

input layer output layer

x1

x2

y
h1

h2

hidden layer

h = g(UT
x+ c)

Perform linear regression on the learned space

Use ReLu
g(z) = max{0, z}

y = wTh+ b

Example: Learning the XOR

• Can use a linear model to fit the data in the learned space

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 1

x
1

0

1

x
2

Original x space

0 1 2

h
1

0

1

h
2

Learned h space

Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left)A linear model applied directly to the original input cannot implement the XOR
function. When x

1

= 0, the model’s output must increase as x
2

increases. When x
1

= 1,
the model’s output must decrease as x

2

increases. A linear model must apply a fixed
coefficient w

2

to x
2

. The linear model therefore cannot use the value of x
1

to change
the coefficient on x

2

and cannot solve this problem. (Right)In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]

> and x = [0, 1]

> to a single point in feature space, h = [1, 0]

>.
The linear model can now describe the function as increasing in h

1

and decreasing in h
2

.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

173

Figure from Deep Learning Book

Deep Feedforward Network
• Add more hidden layers to build a deep architecture

• The word “deep” means many layers

• Why going “deep”?

x1

x2

xn

...

input layer output layer

y
...

hidden layers

...
...

...
...

Shallow Architecture
• A feedforward network with a single hidden layer can

approximate any function

• But the number of hidden units required can be very large

• O(N) parameters are needed to represent N regions

• e.g., represent the following k-NN classifier

Figure from kevinzakka.github.io

Deep Architecture
• Greater expressive power

• A feedforward network with piece-wise linear activation
functions (e.g., ReLu) can represent functions with a
number of regions that is exponential in the depth of
the network [Montufar et al. 2014]

• Better generalization

• Empirically results show that greater depth results in
better generalization for a wide variety of tasks

Better Generalization with
Greater Depth

• Transcribe multi-digit numbers from photographs of
addresses [Goodfellow et al. 2014d]

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

3 4 5 6 7 8 9 10 11

Number of hidden layers

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

T
e
s
t

a
c
c
u
r
a
c
y

(
p
e
r
c
e
n
t
)

Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
et al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.

Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W , every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce
the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in chapter 9, use specialized patterns of sparse connections
that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural
network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.

202

LayersFigure from Deep Learning Book

Large Shadow models over
fit more

• Transcribe multi-digit numbers from photographs of
addresses [Goodfellow et al. 2014d]

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters

⇥10

8

91

92

93

94

95

96

97

T
e
s
t

a
c
c
u
r
a
c
y

(
p
e
r
c
e
n
t
)

3, convolutional

3, fully connected

11, convolutional

Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow et al. (2014d) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).

203

Figure from Deep Learning Book

Training
• Commonly used loss functions:

• Squared loss:

• Cross-entropy loss:

• Use gradient-based optimization algorithms to learn the
parameters

Empirical distribution

Use it when the output is a probability distribution

l(✓) =
1

2
E
x,y⇠P̂data

||x� f(x; ✓)||2

l(✓) = �E
x,y⇠P̂data

log f(x; ✓)

Output Units
• Suppose the network provides us hidden features

• Linear Units:

•

• No activation function

• Usually used to produce the mean of a conditional
Gaussian

• Do not saturated, good for gradient based algorithm

y = wTh+ b

h

y
... ...

Output Units
• Sigmoid Units

•

• Usually used to predict a Bernoulli distribution

• e.g., binary classification, output

• Saturated when is close to 1 or 0 because it is exponentiated

• Should use cross-entropy loss as training loss

y = �(wTh+ b)

P (class = 1|x)

y

Undergoes the exp in the sigmoid

l(✓) = �E
x,y⇠P̂data

log f(x; ✓)

g(z) = �(z)

Output Units
• Softmax Units

•

• Output a probability distribution over a discrete variable with
possible values

•

• Softmax is a generalisation of sigmoid

• Squashes the values of a -dimensional vector

• Suffers from saturation, should use cross-entropy loss

softmax(z)i =
exp(zi)P
j exp(zi)

y = softmax(WTh+ b)

k

k

... ...

y1

yk

...

, y 2 Rk,W 2 Rd⇥k

Hidden Units
• Rectified-Linear Units

•

•

• Excellent default choices

• The derivative remains 1 whenever the unit is active

• Easy to optimise by gradient-based algorithms

• Drawback: cannot take gradient when activation is 0

g(z) = max{0, z}

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0

z

0

g
(
z
)

=
m

a
x
{0

,z
}

Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
However, the function remains very close to linear, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.

175

h = g(UT
x+ c)

...
... ...

Figure from Deep Learning Book

Hidden Units
• Generalization of ReLU

•

• Leaky ReLu [Maas et al. 2013]

• Fixes ,

• Parametric ReLu [He et al. 2015]

• Treat as a learnable parameter

• Occasionally performs better than ReLu

g(↵, z) = max(0, z) + ↵min(z, 0)

g(z) = max(0, z) + 0.01min(z, 0)↵ = 0.01

↵

g(z)

Hidden Units
• Sigmoid Units

•

• Hyperbolic Tangent Units

•

• Both of them have widespread saturation

• Use them as hidden units in feedforward 
network are discouraged

y = �(UT
x+ c)

y = tanh(UT
x+ c) g(z) = tanh(z)

g(z) = �(z)

z

z

Demo
• Task - digit recognition (a classification task)

• Dataset - notMNIST

• Setup

• Training set - 200000 pics

• Validation set - 10000 pics

• Test set - 18724 pics

• Measurement - accuracy

