
Reducing the Sampling Complexity of Topic Models

Aaron Q. Li
CMU Language Technologies

Pittsburgh, PA
aaronli@cmu.edu

Amr Ahmed
Google Strategic Technologies

Mountain View, CA
amra@google.com

Sujith Ravi
Google Strategic Technologies

Mountain View, CA
sravi@google.com

Alexander J. Smola
CMU MLD and Google ST

Pittsburgh PA
alex@smola.org

ABSTRACT
Inference in topic models typically involves a sampling step
to associate latent variables with observations. Unfortu-
nately the generative model loses sparsity as the amount
of data increases, requiring O(k) operations per word for k
topics. In this paper we propose an algorithm which scales
linearly with the number of actually instantiated topics kd in
the document. For large document collections and in struc-
tured hierarchical models kd � k. This yields an order of
magnitude speedup. Our method applies to a wide variety
of statistical models such as PDP [16, 4] and HDP [19].

At its core is the idea that dense, slowly changing distri-
butions can be approximated efficiently by the combination
of a Metropolis-Hastings step, use of sparsity, and amortized
constant time sampling via Walker’s alias method.

Keywords
Sampling; Scalability; Topic Models; Alias Method

1. INTRODUCTION
Topic models are some of the most versatile tools for mod-

eling statistical dependencies. Given a set of observations
xi ∈ X , such as documents, logs of user activity, or com-
munications patterns, we want to infer the hidden causes
motivating this behavior. A key property in topic models
is that they model p(x) via a discrete hidden factor, z via
p(x|z) and p(z). For instance, z may be the cluster of a docu-
ment. In this case it leads to Gaussian and Dirichlet mixture
models [14]. When z is a vector of topics associated with in-
dividual words, this leads to Latent Dirichlet Allocation [3].
Likewise, whenever z indicates a term in a hierarchy, it leads
to structured and mixed-content annotations [19, 2, 4, 12].

1.1 Sparsity in Topic Models
One of the key obstacles in performing scalable inference is

to draw p(z|x) from the discrete state distribution associated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623756.

with the data. A substantial improvement in this context
was provided by [22] who exploited sparsity to decompose
the collapsed sampler [9] for Latent Dirichlet Allocation. As
a result the sampling cost can be reduced from O(k), the
total number of topics to O(kd + kw), i.e. the number kw of
topics occurring for a particular word w and kd for a partic-
ular document d. This insight led to an order of magnitude
improvement for sampling topic models, thus making their
implementation feasible at a large scale. In fact, the strat-
egy is sufficiently robust that it can be extended to settings
where the topic smoother depends on the words [15].

For small datasets the assumption kd+kw � k is well sat-
isfied. Unfortunately, as the number of documents grows, so
does the number of topics in which a particular word occurs.
In particular kw → k, since the probability of observing any
particular topic for a given word is rarely nonzero: Assume
that the probability of occurrence for a given topic for a
word is bounded from below by δ. Then the probability of
the topic occurring at least once in a collection of n docu-
ments is given by

1− (1− δ)n ≥ 1− e−nδ → 1 for n→∞.

From this it follows that kw = O(k) for n = O(δ−1 log k).
In other words, for large numbers documents the efficiencies
discussed in [22] vanish. This is troubling, since in many in-
dustrial settings n can be in the order of billions to trillions.
Consequently, with increasing amounts of data, the time to
process individual documents increases due to loss of spar-
sity, thus leading to a superlinear increase in runtime.

On the other hand, the topic-sparsity for a given document
essentially remains unchanged, regardless of the total num-
ber of related documents that are available. This is due to
the fact that the number of tokens per document is typically
less than O(k). For instance, microblogs contain only dozens
of words, yet admit to thousands of topics.1 This situation
is exacerbated when it comes to hierarchical and structured
topic models, since there the number of (sub)topics can grow
considerably more rapidly. Hence the use of sparsity is cru-
cial in designing efficient samplers.

1.2 Metropolis-Hastings-Walker Sampling
The present paper proposes a new decomposition of the

collapsed conditional probability, in conjunction with a

1Obviously, this approach would not work to infer topics for
Dostojevski’s War and Peace. That said, a plain topic model
is an unlikely candidate to represent very long documents.

Metropolis-Hastings [7] scheme and the use of the alias
method, introduced by Walker [20, 13], to amortize dense
updates for random variables. This method is highly ver-
satile. It defers corrections to the model and avoids renor-
malization. This allows us to apply it to both flat and hier-
archical models. Experimental evaluation demonstrates the
efficacy of our approach, yielding orders of magnitude accel-
eration and a simplified algorithm.

While we introduce our algorithm in the context of topic
models, it is entirely general and applies to a much richer
class of models. At its heart lies the insight that in many
inference problems the model parameters only change rela-
tively slowly during sampling. For instance, the location of
cluster centers, the definition of topics, or the shape of au-
toregressive functions, only change relatively slowly. Hence,
if we could draw from a distribution over k outcomes k times,
Walker’s alias method would allow us to generate samples in
amortized constant time. At the same time, the Metropolis
Hastings algorithm allows us to use approximations of the
correct probability distribution, provided that we compute
ratios between successive states correctly. Our approach is
to draw from the stale distribution in constant time and to
accept the transition based on the ratio between successive
states. This step takes constant time. Moreover, the pro-
posal is independent of the current state. Once k samples
have been drawn, we simply update the alias table. In honor
of the constitutent algorithms we refer to our technique as
the Metropolis Hastings Walker (MHW) sampler.

2. TOPIC MODELS
We begin with a brief introduction to topic models and the

associated inference problems. This includes a short motiva-
tion of sampling schemes in the context collapsed samplers
[9, 18] and of stochastic variational models [21]. It is followed
by a description of extensions to hierarchical models.

2.1 Latent Dirichlet Allocation
In LDA [3] one assumes that documents are mixture dis-

tributions of language models associated with individual
topics. That is, the documents are generated following the
graphical model below:

for all i

for all d

for all k

α θd zdi wdi ψk β

For each document d draw a topic distribution θd from a
Dirichlet distribution with concentration parameter α

θd ∼ Dir(α). (1)

For each topic t draw a word distribution from a Dirichlet
distribution with concentration parameter β

ψt ∼ Dir(β). (2)

For each word i ∈ {1 . . . nd} in document d draw a topic
from the multinomial θd via

zdi ∼ Discrete(θd). (3)

Draw a word from the multinomial ψzdi via

wdi ∼ Discrete(ψzdi). (4)

The beauty of the Dirichlet-multinomial design is that the
distributions are conjugate. This means that the multino-
mial distributions θd and ψk can be integrated out, thus
allowing one to express p(w, z|α, β, nd) in closed-form [9].
This yields a Gibbs sampler to draw p(zdi|rest) efficiently.
The conditional probability is given by

p(zdi|rest) ∝
(n−ditd + αt)(n

−di
tw + βw)

n−dit + β̄
. (5)

Here the count variables ntd, ntw and nt denote the num-
ber of occurrences of a particular (topic,document) and
(topic,word) pair, or of a particular topic respectively. More-
over, the superscript ·−di denotes said count when ignoring
the pair (zdi, wdi). For instance, n−ditw is obtained when ignor-
ing the (topic,word) combination at position (d, i). Finally,
β̄ :=

∑
w βw denotes the joint normalization.

At first glance, sampling from (5) appears to cost O(k)
time since we have k nonzero terms in a sum that needs to be
normalized. [22] devised an ingenious strategy for exploiting
sparsity by decomposing terms into

p(zdi|rest) ∝ βw
αt

n−dit + β̄
+ n−ditd

βw

n−dit + β̄
+ n−ditw

n−ditd + αt

n−dit + β̄

As can be seen, for small collections of documents only the
first term is dense, and more specifically,

∑
t αt/(n

−di
t + β̄)

can be computed from
∑
t αt/(nt + β̄) in O(1) time. That

is, whenever both ntd and ntw are sparse, sampling from
p(zdi|rest) can be accomplished efficiently. The use of packed
index variables and a clever reordering of (topic,count) pairs
further improve efficient sampling to O(kw + kd).

Stochastic variational inference [11] requires an analogous
sampling step. The main difference being that rather than
using ntw+βw

nt+β̄
to capture p(w|t) one uses a natural parameter

ηtw associated with the conjugate variational distribution.
Unfortunately this renders the model dense, unless rather
careful precautions are undertaken [11] to separate residual
dense and sparse components.

Instead, we devise a sampler to draw from p(zdi|rest) in
amortized O(kd) time. We accomplish this by using

p(zdi|rest) ∝ n−ditd

n−ditw + βw

n−dit + β̄
+
αt(n

−di
tw + βw)

n−dit + β̄
(6)

Here the first term is sparse in kd and we can draw from it
in O(kd) time. The second term is dense, regardless of the
number of documents (this holds true for stochastic varia-
tional samplers, too). However, the ’language model’ p(w|t)
does not change too drastically whenever we resample a sin-
gle word. The number of words is huge, hence the amount of
change per word is concomitantly small. This insight forms
the basis for applying Metropolis-Hastings-Walker sampling.

2.2 Poisson Dirichlet Process
To illustrate the fact that the MHW sampler also works

with models containing a dense generative part, we describe
its application to the Poisson Dirichlet Process [4, 16]. The
model is given by the following variant of the LDA model:

for all i

for all d
for all k

α θd zdi wdi ψt ψ0 β

In a conventional topic model the language model is sim-
ply given by a multinomial draw from a Dirichlet distribu-
tion. This fails to exploit distribution information between
topics, such as the fact that all topics have the same common
underlying language. A means for addressing this problem
is to add a level of hierarchy to model the distribution over
ψt via

∏
t p(ψt|ψ0)p(ψ0|β) rather than

∏
t p(ψt|β). Such a

model is depicted above.
The ingredients for a refined language model are a Pitman-

Yor Topic Model (PYTM) [17] that is more appropriate to
deal with natural languages. This is then combined with
the Poisson Dirichlet Process (PDP) [16, 4] to capture the
fact that the number of occurences of a word in a natu-
ral language corpus follows power-law. Within a corpus, the
frequency of a word is approximately inversely proportional
to its ranking in number of occurences. Each draw from a
Poisson Dirichlet Process PDP(b, a, ψ0) is a probability dis-
tribution. The base distribution ψ0 defines the common un-
derlying distribution shared across the generated distribu-
tions. Under the settings of Pitman-Yor Topic Model, each
topic defines a distribution over words, and the base dis-
tribution defines the common underlying common language
model shared by the topics. The concentration parameter
b controls how likely a word is to occur again while being
sampled from the generated distribution. The discount pa-
rameter a prevents a word to be sampled too often by im-
posing a penalty on its probability based on its frequency.
The combined model described explicityly in [5]:

θd ∼ Dir(α) ψ0 ∼ Dir(β)

zdi ∼ Discrete(θd) ψt ∼ PDP(b, a, ψ0)

wdi ∼ Discrete (ψzdi)

As can be seen, the document-specific part is identical to
LDA whereas the language model is rather more sophisti-
cated. Likewise, the collapsed inference scheme is analogous
to a Chinese Restaurant Process [6, 5]. The technical diffi-
culty arises from the fact that we are dealing with distribu-
tions over countable domains. Hence, we need to keep track
of multiplicities, i.e. whether any given token is drawn from
βi or β0. This will require the introduction of additional
count variables in the collapsed inference algorithm.

Each topic is equivalent to a restaurant. Each token in the
document is equivalent to a customer. Each type of word
corresponds each type of dish served by the restaurant. The
same results in [6] can be used to derive the conditional
probability by introducing axillary variables:

• stw denotes the number of tables serving dish w in
restaurant t. Here t is the equivalent of a topic.
• rdi indicates whether wdi opens a new table in the

restaurant or not (to deal with multiplicities).
• mtw denotes the number of times dish w has been

served in restaurant t (analogously to nwk in LDA).

The conditional probability is given by:

p(zdi = t, rdi = 0|rest) ∝ αt + ndt
bt +mt

mtw + 1− stw
mtw + 1

Smtw+1
stw,at

Smtw
stw,at

(7)

if no additional ’table’ is opened by word wdi. Otherwise

p(zdi = t, rdi = 1|rest) (8)

∝(αt + ndt)
bt + atst
bt +mt

stw + 1

mtw + 1

γ + stw
γ̄ + st

Smtw+1
stw+1,at

Smtw
stw,at

Here SNM,a is the generalized Stirling number. It is given by

SN+1
M,a = SNM−1,a + (N −Ma)SNM,a and SNM,a = 0

for M > N , and SN0,a = δN,0. A detailed analysis is given in
[4]. Moreover we have mt =

∑
wmtw, and st =

∑
t stw.

Similar to the conditional probability expression in LDA,
these two expressions can be written as a combination of
a sparse term and a dense term, simply by splitting the
factor (αt+ndt) into its sparse component ndt and its dense
counterpart αt. Hence we can apply the same strategy as
before when sampling topics from LDA, albeit now using a
twice as large space of state variables.

2.3 Hierarchical Dirichlet Process
To illustrate the efficacy and generality of our approach we

discuss a third case where the document model itself is more
sophisticated than a simple collapsed Dirichlet-multinomial.
We demonstrate that there, too, inference can be performed
efficiently. Consider the two-level topic model based on the
Hierarchical Dirichlet Process [19] (HDP-LDA). In it, the
topic distribution for each document θd is drawn from a
Dirichlet process DP(b1, θ0). In turn, θ0 is drawn from a
Dirichlet process DP(b0, H(·)) governing the distribution
over topics. In other words, we add an extra level of hierar-
chy on the document side (compared to the extra hierarchy
on the language model used in the PDP).

for all i

for all d

for all k

H θ0 θd zdi wdi ψk β

More formally, the joint distribution is as follows:

θ0 ∼ DP(b0, H(·)) ψt ∼ Dir(β)

θd ∼ DP(b1, θ0)

zdi ∼ Discrete(θd)

wdi ∼ Discrete (ψzdi)

By construction, DP(b0, H(·)) is a Dirichlet Process, equiva-
lent to a Poisson Dirichlet Process PDP(b0, a,H(·)) with the
discount parameter a set to 0. The base distribution H(.) is
often assumed to be a uniform distribution in most cases.

At first, a base θ0 is drawn from DP(b0, H(·)). This gov-
erns how many topics there are in general, and what their
overall prevalence is. The latter is then used in the next level
of the hierarchy to draw a document-specific distribution θd
that serves the same role as in LDA. The main difference is
that unlike in LDA, we use θ0 to infer which topics are more
popular than others.

It is also possible to extend the model to more than two
levels of hierarchy, such as the infinite mixture model [19].
Similar to Poisson Dirichlet Process, an equivalent Chinese
Restaurant Franchise analogy [6, 19] exists for Hierarchi-
cal Dirichlet Process with multiple levels. In this analogy,
each Dirichlet Process is mapped to a single Chinese Restau-

rant Process, and the hierarchical structure is constructed
to identify the parent and children of each restaurant.

The general (collapsed) structure is as follows: let Nj be
the total number of customers in restaurant j and njt be
the number of customers in restaurant j served with dish
t. When a new customer (a token) enters restaurant j with
the corresponding Dirichlet Process DP (bj , Hj(·)), there are
two types of seating arrangement for the customer:

• With probability
njt

bj+Nj
the customer is served with

dish (topic) t and sits at an existing table.

• With probability
bj

bj+Nj
the customer sits at a new

table served with a new dish t drawn from Hj(·).

In the event that the customer sits at a new table, a phan-
tom customer is sent upstream the hierarchy to the parent
restaurant of j, denoted by j′, with corresponding Dirichlet
Process DP (bj′ , Hj′(·)). The parent restaurant then decides
the seating arrangement of the phantom customer under the
same rules. This process repeats, until there is no more par-
ent restaurant or any of phantom customer decides to sit in
an existing table in any parent restaurant along the path.

We use the block Gibbs sampler given in [6] as it allows us
to extend our approach for multi-level Hierarchical Dirichlet
Process, and performs better than the samplers given in [19]
and the collapsed Gibbs sampler given in [4], as measured
in convergence speed, running time, and topic quality.

The key difference of [6] relative to [19] is that rather
than keeping track of relative assignments of tables to each
other (and the resulting multiplicities and infrequent block
moves) it simply keeps track of the level within the hierarchy
of restaurants at which an individual customer opens a new
table. The advantage is that this allows us to factor out
the relative assignment of customers to specific tables but
rather only keep track of the dishes that they consume. The
obvious downside being that a small number of customers
can be blocked from moves if they opened a table at a high
position of the hierarchy that other customers depend upon.
Improving mixing in this context is subject to future work.

In the setting studied above we only have a two-level HDP:
that of the parent DP tying all documents together and the
DP within each document, governing its topic distribution.
We use zdi ∈ N to denote the topic indicator of word i at
position d and udi ∈ {0, 1} to indicate whether a new table
is opened at the root level (i.e. udi = 1). Moreover, define
std to be the table counter for document d, i.e. the number
of times a table serving topic t has been opened, and let st
be the associated counter for the base DP, associated with
tables opened at the parent level. Finally, let s :=

∑
t st be

the total number of tables opened at the root level.
Clearly the situation where st = 0 and udi = 0 is impossi-

ble since this would imply that we are opening a new table
at document d while there is no matching table available at
the root level. Hence for the collapsed sampler we only need
to consider the following cases:

• A new root topic is generated. That is, we currently
have st and need to set udi = 1.
• A new table is added at document d. In this case we

require that st, i.e. that the topic exists at the root
level. Moreover, obviously it requires that std = 0 since
we are adding the first table to serve dish t.
• No additional topic is introduced but we may be in-

troducing an additional table.

This amounts to the following (unnormalized) conditional
probabilities. See [6] for further details.

p (zdi = t, udi = u|rest) (9)

∝ βw +mtw

β̄ +mt



b0b1
b0+s

if st = 0 and udi = 1

b1s
2
t

(st+1)(s+b0)
if st 6= 0 and std = 0

S
ndt+1
sdt+1,0

S
ndt
sdt,0

sdt+1
ndk+1

if st 6= 0 and std 6= 0

Expressions for the generalized form are analogous. Both
forms contain a fraction with its numerator being the sum
of a sparse term mtw and a dense term βw. Therefore, the
conditional probability can be decomposed to a dense term
multiplied by βw, and a sparse term multiplied by mtw. Ap-
plying the same methodology, the sampling complexity of a
multi-level HDP can be reduced to O(kw).

3. METROPOLIS-HASTINGS-WALKER
We now introduce the key components for the MHW al-

gorithm and how to use it in sampling topics. They consist
of the alias method [20, 13] and a simplified version of the
Metropolis-Hastings sampler [7].

3.1 Walker’s Alias Method
Typically, when drawing from a distribution over l out-

comes, it is accepted that one would need to perform O(l)
work to generate a sample. In fact, this is a lower bound,
since we need to inspect each probability at least once before
we can construct the sampler. However, what is commonly
overlooked is that there exist algorithms that allow us to
draw subsequent samples from the same distribution in O(1)
time. This means that drawing l samples from a distribution
over l outcomes can be accomplished in O(1) amortized time
per draw. We make extensive use of this fact.

Denote by pi with i ∈ {1 . . . l} the probabilities of a distri-
bution over l outcomes from which we would like to sample.
The algorithm works by decomposing a distribution over l
events into l bins of equal probability by pairing at most two
events per bin. Since it ’robs’ from the probabilities pi > 1/l
and adds to those with pi < 1/l it is also referred to as ’Robin
Hood’ method [13]. The algorithm proceeds as follows:

1: GenerateAlias(p, l)

2: Initialize L = H = ∅ and A = [].
3: for i = 1 to l do
4: if pi ≤ l−1 then
5: L← L ∪ {(i, pi)}
6: else
7: H ← H ∪ {(i, pi)}
8: end if
9: end for

10: while L 6= ∅ do
11: Extract (i, pi) from L and (h, ph) from H
12: A← [A, (i, h, pi)]
13: if ph − pi > l−1 then
14: H ← H ∪ {(h, ph − pi)}
15: else
16: L← L ∪ {(h, ph − pi)}
17: end if
18: end while
19: return A

This yields an array A containing triples (i, h, ph) with
ph < l−1. It runs in O(l) time since at each step one event
is removed from the list. And the probabilities remain un-
changed, as can be seen by induction. All we need to do now
is to draw a random element from A and flip a biased coin
to accept h or i with probability lph and 1− lph respectively.

1: SampleAlias(A, l)

2: bin = RandInt(l)
3: (i, h, p) = A[bin]
4: if lp > RandUnif(1) then
5: return h
6: else
7: return i
8: end if

Note that the alias method works since we are implicitly
exploiting parallelism inherent in CPUs: as long as l does
not exceed 264 are guaranteed that even an information the-
oretically inefficient code will not require more than 64 bit,
which can be generated in constant time.

3.2 Sampling with Proposal Distributions
Whenever we draw l identical samples from p it is clear

that the above algorithm provides an O(1) sampler. How-
ever, if p changes, it is difficult to apply the alias sampler
directly. To address this, we use rejection sampling and
Metropolis-Hastings procedures. Rejection sampling pro-
ceeds as follows:

1: Rejection(p, q, c)

2: repeat
3: Draw i ∼ q(i)
4: until p(i) ≥ cq(i)RandUnif(1)
5: return i

Here p is the distribution we would like to draw from, q is a
reference distribution that makes sampling easy, and c ≥ 1
is chosen such that cq(i) ≥ p(i) for all i. We then accept with

probability p(i)
cq(i)

. It is well known that the expected number

of samples to draw via Rejection(p, q, c) is c, provided that
a good bound c exists. In this case we have the following:

Lemma 1 Given l distributions pi and q over l outcomes
satisfying ciq ≥ pi, the expected amortized runtime complex-
ity for drawing using SampleAlias(A, l) and rejecting using

Rejection(pi, q, ci) is given by O
(

1
l

∑l
i=1 ci

)
.

Proof. Preprocessing costs amortized O(1) time. Each
rejection sampler costsO(ci) work. Averaging over the draws
proves the claim.

In many cases, unfortunately, we do not know ci, or comput-
ing ci is essentially as costly as drawing from pi itself. More-
over, in some cases ci may be unreasonably large. In this sit-
uation we resort to Metropolis Hastings sampling [7] using
a stationary proposal distribution. As in rejection sampling,
we use a proposal distribution q and correct the effect of sam-
pling from the ’wrong’ distribution by a subsequent accep-
tance step. The main difference is that Metropolis Hastings
can be considerably more efficient than Rejection sampling
since it only requires that the ratios of probabilities are close
rather than requiring knowledge of a uniform upper bound
on the ratio. The drawback is that instead of drawing iid
samples from p we end up with a chain of dependent sam-
ples from p, as governed by q.

For the purpose of the current method we only need to
concern ourselves with stationary distributions p and q, i.e.
p(i) = p(i|j) and q(i) = q(i|j), hence we only discuss this
special case below. For a more general discussion see e.g. [8].

1: StationaryMetropolisHastings(p, q, n)

2: if no initial state exists then i ∼ q(i)
3: for l = 1 to n do
4: Draw j ∼ q(j)
5: if RandUnif(1) < min

(
1, p(j)q(i)

p(i)q(j)

)
then

6: i← j
7: end if
8: end for
9: return i

As a result, provided that p and q are sufficiently similar, the
sampler accepts most of the time. This is the case, e.g. when-
ever we use a stale variant of p as the proposal q. Obviously,
a necessary requirement is that q(i) > 0 whenever p(i) > 0,
which holds, e.g. whenever we incorporate a smoother.

3.3 MHW Sampling
In combining both methods we arrive at, what we believe

is a significant improvement over each component individu-
ally. It works as follows:

1: Initialize A← GenerateAlias(p, l)
2: for i = 1 to N

n
do

3: Update q as needed
4: Sample j ∼ StationaryMetropolisHastings(p,A, n)
5: end for

Provided that the sampler mixes within n rounds of the MH-
procedure, this generates draws from up-to-date versions of
p. Note that a further improvement is possible whenever we
can start with a more up-to-date draw from p, e.g. in the
case of revisiting a document in a topic model. After burn-in
the previous topic assignment for a given word is likely to
be still pertinent for the current sampling pass.

Lemma 2 If the Metropolis Hastings sampler over N out-
comes using q instead of p mixes well in n steps, the amor-
tized cost of drawing n samples from q is O(n) per sample.

This follows directly from the construction of the sampler
and the fact that we can amortize generating the alias table.
Note that by choosing a good starting point and after burn-
in we can effectively set n = 1.

4. APPLICATIONS
We now have all components necessary for an accelerated

sampler. The trick is to recycle old values for p(wdi|zdi) even
when they change slightly and then to correct this via a
Metropolis-Hastings scheme. Since the values change only
slightly, we can therefore amortize the values efficiently. We
begin by discussing this for the case of ’flat’ topic models
and extend it to hierarchical models subsequently.

4.1 Sampler for LDA
We now design a proposal distribution for (6). It involves

computing the document-specific sparse term exactly and
approximating the remainder with slightly stale data. Fur-
thermore, to avoid the need to store a stale alias table A,
we simply draw from the distribution and keep the samples.
Once this supply is exhausted we compute a new table.

Alias table: Denote by

Qw :=
∑
t

αt
ntw + βw

nt + β̄
and qw(t) :=

αt
Qw

ntw + βw

nt + β̄

the alias normalization and the associated probability dis-
tribution. Then we perform the following steps:

1. Generate the alias table A using qw.
2. Draw k samples from qw and store them in Sw.
3. Discard A and only retain Qw and the array Sw.

Generating Sw and computing Qw costs O(k) time. In par-
ticular, storage of Sw requires at most O(k log2 k) bits, thus
it is much more compact than A. Note, however, that we
need to store Qw and qw(t).
Metropolis Hastings proposal: Denote by

Pdw :=
∑
t

n−ditd

n−ditw + βw

n−dit + β̄
and pdw(t) :=

n−ditd

Pdw

n−ditw + βw

n−dit + β̄

the sparse document-dependent topic contribution. Com-
puting it costs O(kd) time. This allows us to construct a
proposal distribution

q(t) :=
Pdw

Pdw +Qw
pdw(t) +

Qw
Pdw +Qw

qw(t) (10)

To perform an MH-step we then draw from q(t) in O(kd)
amortized time. The step from topic s to topic t is accepted
with probability min(1, π) where

π =
n−ditd + αt

n−disd + αs
· n
−di
tw + βw

n−disw + βw
· n
−di
s + β̄

n−dit + β̄
· Pdwpdw(s) +Qwqw(s)

Pdwpdw(t) +Qwqw(t)

Note that the last fraction effectively removes the normal-
ization in pdw and qw respectively, that is, we take ratios of
unnormalized probabilities.
Complexity: To draw from q costs O(kd) time. This is so
since computing Pdw has this time complexity, and so does
the sampler for pdw. Moreover, drawing from qw(t) is O(1),
hence it does not change the order of the algorithm. Note
that repeated draws from q are only O(1) since we can use
the very same alias sampler also for draws from pdw. Finally,
evaluating π costs only O(1) time. We have the following:

Lemma 3 Drawing up to k steps in a Metropolis-Hastings
proposal from p(zdi|rest) can be accomplished in O(kd) amor-
tized time per sample and O(k) space.

4.2 Sampler for the Poisson Dirichlet Process
Following the same steps as above, the basic Poisson

Dirichlet Process topic model can be decomposed by ex-
ploiting the sparsity of ndt. The main difference to before is
that we need to account for the auxiliary variable r ∈ {0, 1}
rather than just the topic indicator t. The alias table is:

qw(t, r) :=


αk

bt+mtw

mtw−stw+1
mtw+1

S
mtw+1
stw,at

S
mtw
stw,at

if r = 1

αk
bt+atst
bt+mt

stw+1
mtw+1

β+stw
β̄+st

S
mtw+1
stw+1,at

S
mtw
stw,at

otherwise

Qw :=
∑
r,t

qw(t, r)

Likewise, the sparse document-specific contribution is

pdw(t, r) :=ndt


1

bt+mt

mtw−stw+1
mtw+1

S
mtw+1
stw,at

S
mtw
stw,at

if r = 1

bt+atstw
bt+mtw

stw+1
mtw+1

β+stw
β̄+st

S
mtw+1
stw+1,at

S
mtw
stw,at

otherwise

Pdw :=
∑
r,t

pdw(t, r)

As previously, computing pdw(t, r) only costs O(kd) time,
which allows a proposal distribution very similar to the case
in LDA to be constructed:

q(t, r) :=
Pdw

Pdw +Qw
pdw(t, r) +

Qw
Pdw +Qw

qw(t, r)

As before, we use a Metropolis-Hastings sampler, although
this time for the state pair (s, t) → (s′, t′) and accept as
before by using the ratio of current and stale probabilities
(the latter given by q). As before in the context of LDA, the
time complexity of this sampler is amortized O(kd).

4.3 Sampler for the HDP
Due to slight differences in the nature of the sparse term

and the dense term, we demonstrate the efficacy of our ap-
proach for sparse language models here. That is, we show
that whenever the document model is dense but the lan-
guage model sparse, our strategy still applies. In other
words, this sampler works at O(kw) cost which is beneficial
for infrequent words.

For brevity, we only discuss the derivation for the two level
HDP-LDA, given that the general multi-level HDP can be
easily extended from the derivation. Recall (9). Now the alias
table is now given by:

qw(t, u) :=p (zdi = t, udi = u|rest)
(
β̄ +mt

)
βw

Qw :=
∑
t,u

qw(t, u)

and the exact term is given by

pdw(t, u) :=γwp(zdi = t, udi = u|rest)(γ̄ +mt)mtw

Pdw :=
∑
t,u

pdw(t, u)

As before, we engineer the proposal distribution to be a com-
bination of stale and fresh counts. It is given by

q(t, u) :=
Pdw

Pdw +Qw
pdw(t, u) +

Qw
Pdw +Qw

qw(t, u)

Subsequently, the state transition (t, u)→ (t′, u′) is accepted
using straightforward Metropolis-Hastings acceptance ra-
tios. We omitted the subscript wdi = w for brevity. The same
argument as above shows that the time complexity of our
sampler for drawing from HDP-LDA is amortized O(kw).

5. EXPERIMENTS
To demonstrate empirically the performance of the alias

method we implemented the aforementioned samplers in
both their base forms that have O(k) time complexity,
as well as our alias variants which have amortized O(kd)
time complexity. In addition to this, we implemented the
SparseLDA [22] algorithm with the full set of features includ-
ing the sorted list containing a compact encoding of ntw and
ndt, as well as dynamic O(1) update of bucket values. Be-
yond the standard implementation provided in MalletLDA

RedState
(4.5s per LDA iteration)

GPOL
(36s per LDA iteration)

Enron
(85s per LDA iteration)

Figure 1: Runtime time comparison between LDA, HDP, PDP and their Alias sampled counterparts
AliasLDA, AliasHDP and AliasPDP.

Figure 2: Perplexity as a function of runtime (in sec-
onds) for PDP, AliasPDP, HDP, and AliasHDP on
GPOL (left) and Enron (right).

Figure 3: Runtimes of SparseLDA and AliasLDA on
PubMedSmall (left) and NyTimes (right).

by [22], we made two major improvements: we accelerated
the sorting algorithm for the compact list of encoded values
to amortized O(1); and we avoided hash maps which sub-
stantially improved the speed in general with small sacrifice

of memory efficiency (we need an inverted list of the indices
and an inverted list of the indices of the inverted lists).

In this section these implementations will be referred as
LDA which is O(k), SparseLDA which is O(kw + kd),

AliasLDA which is O(kd), PDP at O(k) [5], AliasPDP
at O(kd), HDP at O(k) [6], and AliasHDP at O(kw).

5.1 Environment and Datasets
All our implementations are written in C++11 in a way

that maximise runtime speed, compiled with gcc 4.8 with
-O3 compiler optimisation in amd64 architecture. All our ex-
periments are conducted on a laptop with 12GB memory
and an Intel i7-740QM processor with 1.73GHz clock rate,
4×256KB L2 Cache and 6MB L3 Cache. Furthermore, we
only use one single sampling thread across all experiments.
Therefore, only one CPU core is active throughout and only
256KB L2 cache is available. We further disabled Turbo
Boost to ensure all experiment are run at exactly 1.73GHz
clock rate. Ubuntu 13.10 64bit served as runtime.

We use 5 datasets with a variety in sizes, vocabulary
length, and document lengths for evaluation, as shown in Ta-
ble 1 . RedState dataset contains American political blogs
crawled from redstate.com in year 2011. GPOL contains a
subset of political news articles from Reuters RCV1 collec-
tion.2 We also included the Enron Email Dataset,3. NY-
Times contains articles published by New York Times be-
tween year 1987 and 2007. PubMedSmall is a subset of ap-
proximately 1% of the biomedical literature abstracts from
PubMed. Stopwords are removed from all datasets. Further-
more, words occurring less than 10 times are removed from
NYTimes, Enron, and PubMedSmall. NYTimes, En-
ron, and PUBMED datasets are available at [1].

5.2 Evaluation Metrics and Parameters
We evaluate the algorithms based on two metrics: the

amount of time elapsed for one Gibbs sampling iteration
and perplexity. The perplexity is evaluated after every 5 it-
erations, beginning with the first evaluation at the ending
of the first Gibbs sampling iteration. We use the standard
held-out method [10] to evaluate test perplexity, in which a
small set of test documents originating from the same collec-
tion is set to query the model being trained. This produces
an estimate of the document-topic mixtures θ̃dt for each test
document d. From there the perplexity is then evaluated as:

π(W|rest) :=

[
D∑
d=1

Nd

]−1 D∑
d=1

log p(wd|rest) where

p(wd|rest) =

nd∏
i=1

k∑
t=1

p(wi = w|zdi = t, rest)p(zdi = t|rest)

Here we obtain the estimate of p(wi = w|zdi = t, rest) from
the model being trained. To avoid effects due to variation in
the number of topics, we hardcoded k = 1024 for all experi-
ments except one (GPOL) where we vary k and observe the
effect on speed per iteration. We use fixed values for hyper-
parameters in all our models, setting α = β = 0.1 for LDA,
a = 0.1, b = 10, and γ = 0.1 for the PDP, and b0 = b1 = 10,
γ = 0.1 for the HDP. For alias implementations, we fix the
number of Metropolis-Hasting sampling steps at 2, as we
observed a satisfactory acceptance rate (over 90%) at these
settings. Only a negligible improvement in perplexity was
observed by raising this value. Furthermore, we did not ob-
serve degraded topic quality even when Metropolis-Hasting

2Reuters Vol. 1, English language, 1996-08-20 to 1997-08-19
3Source: www.cs.cmu.edu/˜enron

sampling step was reduced to n = 1, and in all our experi-
ments the perplexity almost perfectly converges at the same
pace (i.e. along number of iterations) with the same algo-
rithm without applying alias method (albeit with much less
time per iteration).

Dataset V L D T L/V L/D

RedState 12,272 321,699 2,045 231 26.21 157
GPOL 73,444 2,638,750 14,377 1,596 35.9 183
Enron 28,099 6,125,138 36,999 2,860 218 165
PubMedSmall 106,797 35,980,539 546,665 2,002 337 66
NYTimes 101,636 98,607,383 297,253 2,497 970 331

Table 1: Datasets and their statistics. V: vocabulary
size; L: total number of training tokens, D: number
of training documents; T: number of test documents.
L/V is the average number occurrences of a word.
L/D is the average document length.

5.3 Performance Summary
Figure 6 shows the overall performance of perplexity as

a function of time elapsed when comparing SparseLDA vs
AliasLDA on the four larger datasets. When k is fixed
to 1024, substantial performance in perplexity over run-
ning time on all problems with the exception of the Enron
dataset, most likely due to its uniquely small vocabulary
size. The gap in performance is increased as the datasets
become larger and more realistic in size. The gain in per-
formance is noted in particular when the average document
length is smaller since our sampler scales with O(kd) which
is likely to be smaller for short documents.

Figure 2 gives the comparison between PDP, HDP and
their aliased variants on GPOL and Enron. By the time
AliasPDP and AliasHDP are converged, the straightforward
sampler are still at their first few iterations.

5.4 Performance as a Function of Iterations
In the following we evaluate the performance in two sep-

arate parts: perplexity as a function of iterations and run-
time vs. iterations. We first establish that the acceleration
comes at no cost of degraded topic quality, as shown in
Figure 6. The convergence speed and converged perplex-
ity of AliasLDA, AliasPDP, and AliasHDP almost perfectly
match the non-alias counterparts. This further shows that
our choice of relatively small number of Metropolis-Hasting
steps (2 per sample) is adequate.

The improved performance in running time of our alias
implementations can be seen in all phases of sampling when
compared to non-alias standard implementations (LDA,
PDP, HDP). When compared to SparseLDA (Figure 3),
the performance gain is salient during all phases on larger
datasets (except for the early stage in Enron dataset), and
the performance is very close on small datasets (0.35s per it-
eration on AliasLDA vs. 0.25s per iteration on SparseLDA).
As the size of the data grows AliasLDA outperforms
SparseLDA without degrading topic quality, reducing the
amount of time for each Gibbs iteration on NYTimes corpus
by around 12% to 38% overall, on Enron corpus by around
30% after 30 iterations, and on PubMedSmall corpus by
27%-60% throughout the first 50 iterations. Compared to
SparseLDA, the time required for each Gibbs iteration with
AliasLDA grows at a much slower rate, and the benefits of
reduced sampling complexity is particularly clear when the
average length of each document is small.

Figure 4: Comparison of SparseLDA and AliasLDA
on GPOL when varying the number of topics for
k ∈ {256, 1024, 2048, 4096}.

Percentage of full PubMedSmall collection

Se
co

nd
s

pe
r i

te
ra

tio
n

Figure 5: Average runtime per iteration when com-
pared on {10%, 20%, 40%, 75%, 100%} of the PubMedS-
mall dataset for SparseLDA and AliasLDA.

The gap in performance is especially large for more so-
phisticated language modelsl such as PDP and HDP. The
running time for each Gibbs iteration is reduced by 60% to
80% for PDP, and 80% to 95% for HDP, an order of magni-
tude on improvement.

5.5 Varying the number of topics
When the number of topics k increases, the running time

for an iteration of AliasLDA increases at a much lower
rate than SparseLDA, as seen from Figure 4 on dataset
GPOL since kd is almost constant. Even though the gap
between SparseLDA and AliasLDA may seem insignificant
at k = 1024, it becomes very pronounced at k = 2048
(45% improvement) and at k = 4096 (over 100%) This con-
firms the observation above that shorter documents benefits
more from AliasLDA in the sense that the average docu-
ments length L/D relative to the number of topics k be-
comes “shorter” as k increases. This yields a more sparse ndt
and lower kd for a document d on average.

5.6 Varying the corpus size
Figure 5 demonstrates how the gap in running time speed

scales with growing number of documents in the same do-
main. We measure the average runtime for the first 50 Gibbs
iterations on 10%, 20%, 40%, 75%, and 100% of PubMedS-
mall dataset. The speedup ratio for each subset is at 31%,

34%, 37%, 41%, 43% respectively. In other words, it in-
creases with the amount of data, which conforms our in-
tuition that adding new documents increases the density of
ntw, thus slowing down the sparse sampler much more than
the alias sampler, since the latter only depends on kd rather
than kd + kw.

Perplexity vs. Runtime

GPOL

Enron

PubMedSmall

NYTimes

Perplexity vs. Iterations

Figure 6: Perplexity as a function of runtime
(left) and number of iterations (right) for LDA,
SparseLDA, and LDA, PDP and HDP, both with
and without using the Alias method. We see consid-
erable acceleration at unchanged perplexity.

6. CONCLUSION
In this paper, we described an approach that effectively

reduces sampling complexity of topic models from O(k) to
O(kd) in general, and fromO(kw+kd) (SparseLDA) toO(kd)
(AliasLDA) for LDA topic model. Empirically, we showed
that our approach scales better than existing state-of-the-
art method when the number of topics and the number of
documents become large. This enables many large scale ap-
plications, and many existing applications which require a

scalable distributed approach. In many industrial applica-
tions where the number of tokens easily reaches billions,
these properties are crucial and often desirable in design-
ing a scalable and responsive service. We also demonstrated
an order of magnitude improvement when our approach is
applied to complex models such as PDP and HDP. With an
order of magnitude gain in speed, PDP and HDP may be-
come much more appealing to many applications for their
superior convergence performance, and more sophisticated
representation of topic distributions and language models.

For k = 1024 topics the number of tokens processed per
second in our implementation is beyond 1 million for all
datasets except one (NYTimes), of which contains substan-
tially more lengthy documents. This is substantially faster
than many known implementations when measured in num-
ber of tokens processed per computing second per core, such
as YahooLDA [18], and GraphLab, given that we only utilise
a single thread on a single laptop CPU core.

Acknowledgments: This work was supported in part by
a resource grant from amazon.com, a Faculty Research Grant
from Google, and Intel.

7. REFERENCES
[1] K. Bache and M. Lichman. UCI machine learning

repository, 2013.

[2] D. Blei, T. Griffiths, and M. Jordan. The nested
chinese restaurant process and Bayesian
nonparametric inference of topic hierarchies. Journal
of the ACM, 57(2):1–30, 2010.

[3] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
allocation. JMLR, 3:993–1022, Jan. 2003.

[4] W. Buntine and M. Hutter. A bayesian review of the
poisson-dirichlet process, 2010.

[5] C. Chen, W. Buntine, N. Ding, L. Xie, and L. Du.
Differential topic models. In IEEE Pattern Analysis
and Machine Intelligence, 2014.

[6] C. Chen, L. Du, and W. Buntine. Sampling table
configurations for the hierarchical poisson-dirichlet
process. In ECML, pages 296–311, 2011.

[7] J. Geweke and H. Tanizaki. Bayesian estimation of
state-space model using the metropolis-hastings
algorithm within gibbs sampling. Computational
Statistics and Data Analysis, 37(2):151–170, 2001.

[8] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter.
Markov Chain Monte Carlo in Practice. 1995.

[9] T. Griffiths and M. Steyvers. Finding scientific topics.
PNAS, 101:5228–5235, 2004.

[10] G. Heinrich. Parameter estimation for text analysis.
Technical report, Fraunhofer IGD, 2004.

[11] M. Hoffman, D. M. Blei, C. Wang, and J. Paisley.
Stochastic variational inference. In ICML, 2012.

[12] W. Li, D. Blei, and A. McCallum. Nonparametric
bayes pachinko allocation. In UAI, 2007.

[13] G. Marsaglia, W. W. Tsang, and J. Wang. Fast
generation of discrete random variables. Journal of
Statistical Software, 11(3):1–8, 2004.

[14] R. M. Neal. Markov chain sampling methods for
Dirichlet process mixture models. University of
Toronto, Technical Report 9815, 1998.

[15] J. Petterson, A. Smola, T. Caetano, W. Buntine, and
S. Narayanamurthy. Word features for latent dirichlet
allocation. In NIPS, pages 1921–1929, 2010.

[16] J. Pitman and M. Yor. The two-parameter
poisson-dirichlet distribution derived from a stable
subordinator. A. of Probability, 25(2):855–900, 1997.

[17] I. Sato and H. Nakagawa. Topic models with
power-law using Pitman-Yor process. In KDD, pages
673–682. ACM, 2010.

[18] A. J. Smola and S. Narayanamurthy. An architecture
for parallel topic models. In PVLDB, 2010.

[19] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical
dirichlet processes. JASA, 101(576):1566–1581, 2006.

[20] A. J. Walker. An efficient method for generating
discrete random variables with general distributions.
ACM TOMS, 3(3):253–256, 1977.

[21] C. Wang, J. Paisley, and D. M. Blei. Online
variational inference for the hierarchical Dirichlet
process. In Conference on Artificial Intelligence and
Statistics, 2011.

[22] L. Yao, D. Mimno, and A. McCallum. Efficient
methods for topic model inference on streaming
document collections. In KDD’09, 2009.

amazon.com

	Introduction
	Sparsity in Topic Models
	Metropolis-Hastings-Walker Sampling

	Topic Models
	Latent Dirichlet Allocation
	Poisson Dirichlet Process
	Hierarchical Dirichlet Process

	Metropolis-Hastings-Walker
	Walker's Alias Method
	Sampling with Proposal Distributions
	MHW Sampling

	Applications
	Sampler for LDA
	Sampler for the Poisson Dirichlet Process
	Sampler for the HDP

	Experiments
	Environment and Datasets
	Evaluation Metrics and Parameters
	Performance Summary
	Performance as a Function of Iterations
	Varying the number of topics
	Varying the corpus size

	Conclusion
	References

