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The Convolution Operation

* Mathematical Definition of Convolution (Continues):

e s(t) = (9{ * W‘)\(t) = [x(a)w(t — a)da

* For example, x(t) represents location signal (with noise). To obtain a
less noisy estimate of x(t), we can do this with a weighted function
w(a):

e s(t) = ftt_Tx(a)W(t — a)da



The Convolution Operation

* Mathematical Definition of Convolution (Continues):

e s(t) = (9{ +w)(t) = [ x(@w(t — a)da

* Discrete Representation:
e s(t) = (x*w)(t) =X x(a)w(t — a)



The Convolution Operation

* For two-dimensional image | as input, and a two-dimensional kernel
K:
* S(,j) = U *K)(Q,j) = EnZpl(mn)K(i —m,j —n)
* Convolution is commutative, meaning we can equivalently write:
* S(,j) = U *K)(,j) = ZpZpl(i —m,j —n)K(m,n)
* In fact, many neural network libraries implement a related function
called cross-correlation but call it convolution...
« S(i,))=U=*K)(i,j) =2,Z,0(+m,j +n)K(m,n)



2D Convolution
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Motivation of Convolution

* Sparse Interactions
* Parameter Sharing
* Equivariant Representations



Sparse Interactions

* (Top) Convolutional Network: Only s,, s3, s, are affected by x

* (Bottom) Fully Connected Network: All the outputs are affected by x4
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Credit: (Goodfellow 2016)



Sparse Interactions
* (Top) Respective Field of s3: x;, x3 x4

* (Bottom) Respective Field of s3: x1, x5, X3 X4, X5, X
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Sparse Interactions: Growing Receptive Fields
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Parameter Sharing

Convolution
shares the same
parameters
across all spatial
locations

Traditional
matrix
multiplication
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Example: Edge Detection by Convolution
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Efficiency of Convolution

* Input size: 320 by 280
e Kernel size: 2 by 1
e Qutput size: 319 by 280

Convolution Dense matrix Sparse matrix

319%280*320* k910 -
Stored floats 319 280 3207280 273197280 —

= 8e9 178.640
Float muls or 319%280*3 = = 1669 Samle 38
e convolution
dd 267.960
SCCS | (267,960)

Credit: (Goodfellow)



Equivariant Representations

* For example, when processing images, it is useful to detect edges in
different regions of the image.



Pooling

* makes the representations smaller and more manageable

e operates over each activation map independently
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Single depth slice

Max Pooling
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Why Pooling
* Invariant Representation

* Itis very useful if we care more about whether some feature is present than

exactly where it is. fully-connected layers (fcg, fc;)

* Reducing the representation size ﬁ
o fixed-length representation
* Efficiency S ———
* Handlinginputs of varying size s 7 N
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Why Pooling
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If we pool over the outputs of separately parametrized convolutions, the features
can learn which transformations to become invariant to.

Credit: (Goodfellow 2016)



Example Classification Architectures: AlexNet

[Krizhevsky et al. NIPS 2012]

Architecture:
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