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Structure



From deep to deeper

e Milestone: Residual Network

— He K, Zhang X, Ren S, et al. Deep residual learning
for image recognition[C]//Proceedings of the IEEE
conference on computer vision and pattern
recognition. 2016: 770-778.

— Citation: 3854



From deep to deeper

e Milestone: Residual Network

ResNets @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” 152-layer nets
* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
* COCO Segmentation: 12% better than 2nd

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial.



From deep to deeper
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From deep to deeper

Revolution of Depth
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From deep to deeper

Revolution of Depth
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From deep to deeper

Revolution of Depth

AlexNet, 8 layers % VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial.



From deep to deeper

Spectrum of Depth

—p 5 |ayers: easy
—p >10 layers: initialization, Batch Normalization

—p- >30 layers: skip connections

—— >100 layers: identityskip connections

l—b >1000 layers: ?
. ] o [ ]

shallower deeper

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial. 10



From deep to deeper

Simply stacking layers?

CIFAR-10
train error (%)
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* 56-layer net has higher training error and test error than 20-layer net

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial.
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From deep to deeper

Simply stacking layers?

CIFAR-10 ImageNet-1000
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* “Overly deep” plain nets have higher training error
* A general phenomenon, observed in many datasets

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial. 12



From deep to deeper

Deep Residual Learning

* Plaint net H(x) is any desired mapping,
% l hope the 2 weight layers fit H(x)
weight layer
any two
stacked layers v relu
weight layer
lrelu
H(x)

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial. 13



From deep to deeper

Deep Residual Learning

* Residual net

X

weight layer

F(x)

lrelu

weight layer

Hx)=F(x)+x

identity
X

H(x) is any desired mapping,
| he 2 weicht it e
hope the 2 weight layers fit F(x)
let H(x) = F(x)+ x
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From deep to deeper

Deep Residual Learning

* F(x)is aresidual mapping w.rt. identity

X
weight layer s If identitywerg optimal,
easy to set weightsas 0
F(x) lrelu identity
weight layer X * |f optimal mappingis closer to identity,
easier to find small fluctuations

Hx)=F(x)+x

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial. 15



From deep to deeper
On the Importance of

ldentity Mapping

From 100 layers to 1000 layers

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial.



From deep to deeper

On identity mappings for optimization

X * shortcut mapping: h = identity
* What if f = identity?

F(x)) h(x:)

X141 = f(h(xp) + F(x))

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial. 7



From deep to deeper

Very smooth forward propagation

X141 = x1 + F(x;)

¥

X142 = X141 + F(x741)

Kaiming He. Deep Residual Networks: Deep Learning Gets Way Deeper. ICML 2016 tutorial.



CNN Variants

e Recurrent CNN

— Lai S, Xu L, Liu K, et al. Recurrent Convolutional Neural Networks for
Text Classification[C]//AAAI. 2015, 333: 2267-2273.

— Pinheiro P, Collobert R. Recurrent convolutional neural networks for
scene labeling[C]//International Conference on Machine Learning.
2014: 82-90.

e Convolutional LSTM

— Xingjian SH |, Chen Z, Wang H, et al. Convolutional LSTM network: A
machine learning approach for precipitation nowcasting[C]//Advances
in neural information processing systems. 2015: 802-810.

* PixelCNN

— Salimans T, Karpathy A, Chen X, et al. PixelCNN++: Improving the
PixelCNN with discretized logistic mixture likelihood and other
modifications[J]. arXiv preprint arXiv:1701.05517, 2017.

— van den Oord A, Kalchbrenner N, Espeholt L, et al. Conditional image
generation with pixelcnn decoders[C]//Advances in Neural Information
Processing Systems. 2016: 4790-4798.



Convolutional LSTM




Comparison between FC-LSTM &
ConvLSTM

FC-LSTM ConvLSTM
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Input & state at a timestamp are 3D

Input & state at a
tensors. Convolution is used for both

timestamp are 1D

vectors. Dimensions of input-to-state and state-to-state
the state can be connection.

permuted without Use Hadamard product to keep
affecting the overall the constant error carousel

structure. (CEC) property of cells



Convolutional LSTM

Using ‘state of the outside world’ for boundary grids. Zero padding is
used to indicate ‘total ignorance’ of the outside.
In fact, other padding strategies (learn the padding) can be used, we

just choose the simplest one.

FC-LSTM can be
%t+176t+/ <TRi- 7 : :
LLERZ=s viewed as a special

| /1

My, Cy /@\ ) : E/ X, C3s€ of ConvLSTM

with all features

Hi-1,C /ﬁ/ /‘Zﬁ/% standing on a single

cell.

States Inputs

For convolutional recurrence, 1X1 kernel and larger kernels are totally

different!
Later states = Larger receptive field



Application



Using the structure

* CNNin NLP

— Representative:

* Kim Y. Convolutional neural networks for sentence
classification[J]. arXiv preprint arXiv:1408.5882, 2014.
EMNLP short paper.

* Citation: 1206

— Latest:

* Gehring J, Auli M, Grangier D, et al. Convolutional Sequence
to Sequence Learning[l]]. arXiv preprint arXiv:1705.03122,
2017. ICML.

* Citation: 25



CNN for sentence classificaiton
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Figure 1: Model architecture with two channels for an example sentence.
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Using the generated feature

* CNNin RS:

— Representative

* He R, McAuley J. VBPR: Visual Bayesian Personalized Ranking
from Implicit Feedback[C]//AAAI. 2016: 144-150.

* Citation: 42
— Latest

* Wang S, Wang Y, Tang J, et al. What your images reveal:
Exploiting visual contents for point-of-interest
recommendation[C]//Proceedings of the 26th International
Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2017: 391-400.

* Citation: 11
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Figure 3: A Graphical Representation of the Model
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Best References



Classic Deep CNN Papers

Rethinking the inception architecture for computer
vision (2016), C. Szegedy et al.

Inception-v4, inception-resnet and the impact of residual
connections on learning (2016), C. Szegedy et al.

Identity Mappings in Deep Residual Networks (2016), K. He et
al.

Deep residual learning for image recognition (2016), K. He et
al.

Going deeper with convolutions (2015), C. Szegedy et al.

Very deep convolutional networks for large-scale image
recognition (2014), K. Simonyan and A. Zisserman

https://github.com/terryum/awesome-deep-learning-papers



Classic Deep CNN Papers

Spatial pyramid pooling in deep convolutional
networks for visual recognition (2014), K. He et al.

Return of the devil in the details: delving deep into
convolutional nets (2014), K. Chatfield et al.

OverFeat: Integrated recognition, localization and
detection using convolutional networks (2013), P.
Sermanet et al.

Maxout networks (2013), I. Goodfellow et al.
Network in network (2013), M. Lin et al.

ImageNet classification with deep convolutional
neural networks (2012), A. Krizhevsky et al.

https://github.com/terryum/awesome-deep-learning-papers



Latest Studies

ICLR 2017

— Incremental Network Quantization: Towards Lossless CNNs
with Low-precision Weights

— Incorporating long-range consistency in CNN-based texture
generation

— PixelCNN++: A PixelCNN Implementation with Discretized
Logistic Mixture Likelihood and Other Modifications

— Steerable CNNs
— Trusting SVM for Piecewise Linear CNNs
— Regularizing CNNs with Locally Constrained Decorrelations

— Faster CNNs with Direct Sparse Convolutions and Guided
Pruning
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Latest Studies

* ICLR 2017

Paying More Attention to Attention: Improving the Performance of
Convolutional Neural Networks via Attention Transfer

Pruning Filters for Efficient ConvNets

Do Deep Convolutional Nets Really Need to be Deep and
Convolutional?

Pruning Convolutional Neural Networks for Resource Efficient
Inference

FILTER SHAPING FOR CONVOLUTIONAL NEURAL NETWORKS

Batch Policy Gradient Methods for Improving Neural Conversation
Models

Inductive Bias of Deep Convolutional Networks through Pooling
Geometry

Semi-Supervised Classification with Graph Convolutional Networks



Latest Studies

ICML 2017

Warped Convolutions: Efficient Invariance to Spatial Transformations
Convexified Convolutional Neural Networks

Warped Convolutions: Efficient Invariance to Spatial Transformations
Deep Tensor Convolution on Multicores

MEC: Memory-efficient Convolution for Deep Neural Network

Dance Dance Convolution

Language Modeling with Gated Convolutional Networks
Convolutional Sequence to Sequence Learning

Improved Variational Autoencoders for Text Modeling using Dilated
Convolutions

Accelerating Eulerian Fluid Simulation With Convolutional Networks

PixelCNN Models with Auxiliary Variables for Natural Image
Modeling
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Latest Studies

NIPS 2017

Gated Recurrent Convolution Neural Network for OCR
Towards Accurate Binary Convolutional Neural Network

Flat2Sphere: Learning Spherical Convolution for Fast Features from 360°
Imagery

Introspective Classification with Convolutional Nets

MoleculLeNet: A continuous-filter convolutional neural network for
modeling quantum interactions

Learning the Morphology of Brain Signals Using Alpha-Stable
Convolutional Sparse Coding

Convolutional Gaussian Processes

Spherical convolutions and their application in molecular modelling
Sparse convolutional coding for neuronal assembly detection
Incorporating Side Information by Adaptive Convolution
Convolutional Phase Retrieval

Invariance and Stability of Deep Convolutional Representations
Protein Interface Prediction using Graph Convolutional Networks



Q&A



