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Autoencoders

Unsupervised learning: only use the input X for learning

𝐱

𝐡

𝐫

Feed-forward neural network trained to reproduce its input to the output layer

Encoder

𝐡 = 𝑓 𝐱

= 𝜎 𝐖𝐱 + 𝐛

Decoder

= 𝜎 𝐖∗𝐡 + 𝐛

𝐫 = 𝑔 𝐱
𝐖∗ = 𝐖𝑻

𝐖

(Tied weights)



Autoencoders

Loss function:

L is a loss function penalizing g(f(x)) for being dissimilar from x, e.g., mean 
squared error. 

Train with backpropagation

When computing gradients with tied weights (                 ), 𝛻W𝐿 𝑥, 𝑔 𝑓 𝑥

is the sum of two gradients!
-- because W is present in the encoder and in the decoder

Min 𝐿 𝑥, 𝑔 𝑓 𝑥

𝐖∗ = 𝐖𝑻



Autoencoders

h

x r

𝑓 𝑔

General structure: 
• Encoder f: mapping x to h
• Decoder g: mapping h to r

Autoencoders may learn identity function 
precisely: g(f(x)) = x
 Not useful!

Need to constrain complexity:
• By architectural constraint
• Penalty on internal representation

Compression Reconstruction



Autoencoders

Autoencoder types: 

• Undercomplete Autoencoders

• Regularized Autoencoders

• Sparse Autoencoders

• Denoising Autoencoders

• Contractive Autoencoders

• …

Penalty on internal representation
(regularized autoencoders)

architectural constraint



Undercomplete Autoencoders

𝐱

𝐡

𝐫
Constraint: Dimension of h is smaller 
than x

Undercomplete autoencoders if 𝐾 < 𝐷

𝑥 ∈ ℝ𝐷, ℎ ∈ ℝ𝐾

Capture the most salient features



Undercomplete Autoencoders

Undercomplete autoencoders with:

✓ Decoder is linear transformation 

✓ Loss L is mean square error (MSE)

can learn the same subspace as PCA

In this process, two tasks are accomplished:

1. Copy the input to output

2. Learn the principal subspace of training

data as a side-effect



Undercomplete Autoencoders

If the encoder and decoder functions (f, g) are nonlinear,

A more powerful nonlinear generalization of PCA

However, 

Too large capacity of encoder and decoder 

 can perform the copying task well, but fail to capture useful information on 
dataset



Regularized Autoencoders

What if 𝐾 > 𝐷 ?     =>      Overcomplete Autoencoders

𝑥 ∈ ℝ𝐷, ℎ ∈ ℝ𝐾

Regularized Autoencoders use a loss function that encourages the model to 
have some properties besides reproducing inputs:

• Sparsity representation (Sparse Autoencoders)

• Smallness of derivative of representation (Contractive Autoencoders)

• Robustness to noise or to missing inputs (Denoising Autoencoders)



Sparse Autoencoders

𝐿 𝑥, 𝑔 𝑓 𝑥 + Ω(ℎ)

Sparsity penaltyLoss for copying inputs



Sparse Autoencoders

In general neural network, we are trying to find the maximum likelihood: 𝑝 𝑥 𝜃

To do the maximum likelihood estimation (MLE), we often use the log 𝑝 𝑥 𝜃 for 

simplification, from which we can get the loss function without regularization.

What about MAP (Maximum a posterior)? 

𝑝 𝜃 𝑥 ∝ 𝑝 𝑥 𝜃 ∗ 𝑝(𝜃)

max log 𝑝 𝜃 𝑥 => max { log 𝑝 𝑥 𝜃 + log 𝑝(𝜃) }

Posterior Likelihood Prior

Loss function Regularization penalty



Sparse Autoencoders

max log 𝑝 𝜃 𝑥 => max { log 𝑝 𝑥 𝜃 + log 𝑝(𝜃) }

What will happen if 𝑝(𝜃) follows the Gaussian Distribution?

Consider the linear regression model, if
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L2 Norm
Gaussian Prior => L2 Norm
Similarly, Laplace Prior = > L1 Norm



Sparse Autoencoders

How to get the sparse penalty in sparse autoencoders? 

h

x r

𝑓 𝑔

Set the distribution over latent variable h

The joint distribution of h and x is given as:

𝑝𝑚𝑜𝑑𝑒𝑙 𝑥, ℎ = 𝑝𝑚𝑜𝑑𝑒𝑙(ℎ)𝑝𝑚𝑜𝑑𝑒𝑙(𝑥|ℎ)

log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥, ℎ = log 𝑝𝑚𝑜𝑑𝑒𝑙 ℎ + log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥|ℎ

Sparse penalty



Sparse Autoencoders

log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥, ℎ = log 𝑝𝑚𝑜𝑑𝑒𝑙 ℎ + log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥|ℎ

Sparse penalty

Our target becomes:
Find a distribution of h which can has 
the characteristic of sparsity 

Which distribution?

=> Laplace distribution!  

𝐿 𝑥, 𝑔 𝑓 𝑥 + Ω(ℎ)

Sparsity penaltyLoss for copying inputs



Sparse Autoencoders

Laplace distribution:
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