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Abstract

Many machine learning approaches are characterized by information constraints
on how they interact with the training data. These include memory and sequential
access constraints (e.g. fast first-order methods to solve stochastic optimization
problems); communication constraints (e.g. distributed learning); partial access
to the underlying data (e.g. missing features and multi-armed bandits) and more.
However, currently we have little understanding how such information constraints
fundamentally affect our performance, independent of the learning problem se-
mantics. For example, are there learning problems where any algorithm which
has small memory footprint (or can use any bounded number of bits from each
example, or has certain communication constraints) will perform worse than what
is possible without such constraints? In this paper, we describe how a single set
of results implies positive answers to the above, for several different settings.

1 Introduction

Information constraints play a key role in machine learning. Of course, the main constraint is the
availability of only a finite data set to learn from. However, many current problems in machine
learning can be characterized as learning with additional information constraints, arising from the
manner in which the learner may interact with the data. Some examples include:

• Communication constraints in distributed learning: There has been much recent work on learning
when the training data is distributed among several machines. Since the machines may work
in parallel, this potentially allows significant computational speed-ups and the ability to cope
with large datasets. On the flip side, communication rates between machines is typically much
slower than their processing speeds, and a major challenge is to perform these learning tasks with
minimal communication.

• Memory constraints: The standard implementation of many common learning tasks requires
memory which is super-linear in the data dimension. For example, principal component analysis
(PCA) requires us to estimate eigenvectors of the data covariance matrix, whose size is quadratic
in the data dimension and can be prohibitive for high-dimensional data. Another example is kernel
learning, which requires manipulation of the Gram matrix, whose size is quadratic in the number
of data points. There has been considerable effort in developing and analyzing algorithms for
such problems with reduced memory footprint (e.g. [20, 7, 27, 24]).

• Online learning constraints: The need for fast and scalable learning algorithms has popularised
the use of online algorithms, which work by sequentially going over the training data, and in-
crementally updating a (usually small) state vector. Well-known special cases include gradient
descent and mirror descent algorithms. The requirement of sequentially passing over the data
can be seen as a type of information constraint, whereas the small state these algorithms often
maintain can be seen as another type of memory constraint.
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• Partial-information constraints: A common situation in machine learning is when the available
data is corrupted, sanitized (e.g. due to privacy constraints), has missing features, or is otherwise
partially accessible. There has also been considerable interest in online learning with partial
information, where the learner only gets partial feedback on his performance. This has been
used to model various problems in web advertising, routing and multiclass learning. Perhaps
the most well-known case is the multi-armed bandits problem with many other variants being
developed, such as contextual bandits, combinatorial bandits, and more general models such as
partial monitoring [10, 11].

Although these examples come from very different domains, they all share the common feature
of information constraints on how the learning algorithm can interact with the training data. In
some specific cases (most notably, multi-armed bandits, and also in the context of certain distributed
protocols, e.g. [6, 29]) we can even formalize the price we pay for these constraints, in terms of
degraded sample complexity or regret guarantees. However, we currently lack a general information-
theoretic framework, which directly quantifies how such constraints can impact performance. For
example, are there cases where any online algorithm, which goes over the data one-by-one, must
have a worse sample complexity than (say) empirical risk minimization? Are there situations where
a small memory footprint provably degrades the learning performance? Can one quantify how a
constraint of getting only a few bits from each example affects our ability to learn?

In this paper, we make a first step in developing such a framework. We consider a general class of
learning processes, characterized only by information-theoretic constraints on how they may interact
with the data (and independent of any specific problem semantics). As special cases, these include
online algorithms with memory constraints, certain types of distributed algorithms, as well as online
learning with partial information. We identify cases where any such algorithm must perform worse
than what can be attained without such information constraints. The tools developed allows us to
establish several results for specific learning problems:

• We prove a new and generic regret lower bound for partial-information online learning with expert
advice, of the form Ω(

√
(d/b)T ), where T is the number of rounds, d is the dimension of the

loss/reward vector, and b is the number of bits b extracted from each loss vector. It is optimal
up to log-factors (without further assumptions), and holds no matter what these b bits are – a
single coordinate (as in multi-armed bandits), some information on several coordinates (as in
semi-bandit feedback), a linear projection (as in bandit linear optimization), some feedback signal
from a restricted set (as in partial monitoring) etc. Interestingly, it holds even if the online learner
is allowed to adaptively choose which bits of the loss vector it can retain at each round. The lower
bound quantifies directly how information constraints in online learning degrade the attainable
regret, independent of the problem semantics.

• We prove that for some learning and estimation problems - in particular, sparse PCA and sparse
covariance estimation in Rd - no online algorithm can attain statistically optimal performance (in
terms of sample complexity) with less than Ω̃(d2) memory. To the best of our knowledge, this is
the first formal example of a memory/sample complexity trade-off in a statistical learning setting.

• We show that for similar types of problems, there are cases where no distributed algorithm (which
is based on a non-interactive or serial protocol on i.i.d. data) can attain optimal performance with
less than Ω̃(d2) communication per machine. To the best of our knowledge, this is the first formal
example of a communication/sample complexity trade-off, in the regime where the communication
budget is larger than the data dimension, and the examples at each machine come from the same
underlying distribution.

• We demonstrate the existence of (synthetic) stochastic optimization problems where any algo-
rithm which uses memory linear in the dimension (e.g. stochastic gradient descent or mirror
descent) cannot be statistically optimal.

Related Work

In stochastic optimization, there has been much work on lower bounds for sequential algorithms
(e.g. [22, 1, 23]). However, these results all hold in an oracle model, where data is assumed to be
made available in a specific form (such as a stochastic gradient estimate). As already pointed out in
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[22], this does not directly translate to the more common setting, where we are given a dataset and
wish to run a simple sequential optimization procedure.

In the context of distributed learning and statistical estimation, information-theoretic lower bounds
were recently shown in the pioneering work [29], which identifies cases where communication con-
straints affect statistical performance. These results differ from ours (in the context of distributed
learning) in two important ways. First, they pertain to parametric estimation in Rd, where the com-
munication budget per machine is much smaller than what is needed to even specify the answer
with constant accuracy (O(d) bits). In contrast, our results pertain to simpler detection problems,
where the answer requires only O(log(d)) bits, yet lead to non-trivial lower bounds even when the
budget size is much larger (in some cases, much larger than d). The second difference is that their
work focuses on distributed algorithms, while we address a more general class of algorithms, which
includes other information-constrained settings. Strong lower bounds in the context of distributed
learning have also been shown in [6], but they do not apply to a regime where examples across ma-
chines come from the same distribution, and where the communication budget is much larger than
what is needed to specify the output.

There are well-known lower bounds for multi-armed bandit problems and other online learning with
partial-information settings. However, they crucially depend on the semantics of the information
feedback considered. For example, the standard multi-armed bandit lower bound [5] pertain to a
setting where we can view a single coordinate of the loss vector, but doesn’t apply as-is when we
can view more than one coordinate (e.g. [4, 25]), get side-information (e.g. [19]), receive a linear
or non-linear projection (as in bandit linear and convex optimization), or receive a different type of
partial feedback (e.g. partial monitoring [11]). In contrast, our results are generic and can directly
apply to any such setting.

Memory and communication constraints have been extensively studied within theoretical computer
science (e.g. [3, 21]). Unfortunately, almost all these results pertain to data which was either ad-
versarially generated, ordered (in streaming algorithms) or split (in distributed algorithms), and do
not apply to statistical learning tasks, where the data is drawn i.i.d. from an underlying distribution.
[28, 15] do consider i.i.d. data, but focus on problems such as detecting graph connectivity and
counting distinct elements, and not learning problems such as those considered here. Also, there are
works on provably memory-efficient algorithms for statistical problems (e.g. [20, 7, 17, 13]), but
these do not consider lower bounds or provable trade-offs.

Finally, there has been a line of works on hypothesis testing and statistical estimation with finite
memory (see [18] and references therein). However, the limitations shown in these works apply
when the required precision exceeds the amount of memory available. Due to finite sample effects,
this regime is usually relevant only when the data size is exponential in the memory size. In contrast,
we do not rely on finite precision considerations.

2 Information-Constrained Protocols

We begin with a few words about notation. We use bold-face letters (e.g. x) to denote vectors, and
let ej ∈ Rd denote j-th standard basis vector. When convenient, we use the standard asymptotic
notation O(·),Ω(·),Θ(·) to hide constants, and an additional˜ sign (e.g. Õ(·)) to also hide log-
factors. log(·) refers to the natural logarithm, and log2(·) to the base-2 logarithm.

Our main object of study is the following generic class of information-constrained algorithms:

Definition 1 ((b, n,m) Protocol). Given access to a sequence ofmn i.i.d. instances (vectors in Rd),
an algorithm is a (b, n,m) protocol if it has the following form, for some functions ft returning an
output of at most b bits, and some function f :

• For t = 1, . . . ,m

– Let Xt be a batch of n i.i.d. instances
– Compute message W t = ft(X

t,W 1,W 2, . . .W t−1)

• Return W = f(W 1, . . . ,Wm)
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Note that the functions {ft}mt=1, f are completely arbitrary, may depend on m and can also be
randomized. The crucial assumption is that the outputs W t are constrained to be only b bits.

As the definition above may appear quite abstract, let us consider a few specific examples:

• b-memory online protocols: Consider any algorithm which goes over examples one-by-one, and
incrementally updates a state vector W t of bounded size b. We note that a majority of online
learning and stochastic optimization algorithms have bounded memory. For example, for linear
predictors, most gradient-based algorithms maintain a state whose size is proportional to the size
of the parameter vector that is being optimized. Such algorithms correspond to (b, n,m) protocols
where W t is the state vector after round t, with an update function ft depending only on W t−1,
and f depends only on Wm. n = 1 corresponds to algorithms which use one example at a time,
whereas n > 1 corresponds to algorithms using mini-batches.

• Non-interactive and serial distributed algorithms: There are m machines and each machine re-
ceives an independent sample Xt of size n. It then sends a message W t = ft(X

t) (which here
depends only on Xt). A centralized server then combines the messages to compute an output
f(W 1 . . .Wm). This includes for instance divide-and-conquer style algorithms proposed for dis-
tributed stochastic optimization (e.g. [30]). A serial variant of the above is when there are m
machines, and one-by-one, each machine t broadcasts some information W t to the other ma-
chines, which depends on Xt as well as previous messages sent by machines 1, 2, . . . , (t− 1).

• Online learning with partial information: Suppose we sequentially receive d-dimensional loss
vectors, and from each of these we can extract and use only b bits of information, where b � d.
This includes most types of bandit problems [10].

In our work, we contrast the performance attainable by any algorithm corresponding to such a pro-
tocol, to constraint-free protocols which are allowed to interact with the data in any manner.

3 Basic Results

Our results are based on a simple ‘hide-and-seek’ statistical estimation problem, for which we show
a strong gap between the performance of information-constrained protocols and constraint-free pro-
tocols. It is parameterized by a dimension d, bias ρ, and sample size mn, and defined as follows:
Definition 2 (Hide-and-seek Problem). Consider the set of product distributions {Prj(·)}dj=1 over
{−1, 1}d defined via Ex∼Prj(·)[xi] = 2ρ 1i=j for all coordinates i = 1, . . . d. Given an i.i.d. sample
of mn instances generated from Prj(·), where j is unknown, detect j.

In words, Prj(·) corresponds to picking all coordinates other than j to be ±1 uniformly at random,
and independently picking coordinate j to be +1 with a higher probability

(
1
2 + ρ

)
. The goal is to

detect the biased coordinate j based on a sample.

First, we note that without information constraints, it is easy to detect the biased coordinate with
O(log(d)/ρ2) instances. This is formalized in the following theorem, which is an immediate conse-
quence of Hoeffding’s inequality and a union bound:

Theorem 1. Consider the hide-and-seek problem defined earlier. Given mn samples, if J̃ is the
coordinate with the highest empirical average, then Prj(J̃ = j) ≥ 1− 2d exp

(
− 1

2mnρ
2
)
.

We now show that for this hide-and-seek problem, there is a large regime where detecting j is
information-theoretically possible (by Thm. 1), but any information-constrained protocol will fail to
do so with high probability. We first show this for (b, 1,m) protocols (i.e. protocols which process
one instance at a time, such as bounded-memory online algorithms, and distributed algorithms where
each machine holds a single instance):
Theorem 2. Consider the hide-and-seek problem on d > 1 coordinates, with some bias ρ ≤ 1/4

and sample size m. Then for any estimate J̃ of the biased coordinate returned by any (b, 1,m)
protocol, there exists some coordinate j such that

Prj(J̃ = j) ≤ 3

d
+ 21

√
m
ρ2b

d
.

4



The theorem implies that any algorithm corresponding to (b, 1,m) protocols requires sample size
m ≥ Ω((d/b)/ρ2) to reliably detect some j. When b is polynomially smaller than d (e.g. a constant),
we get an exponential gap compared to constraint-free protocols, which only require O(log(d)/ρ2)
instances.

Moreover, Thm. 2 is tight up to log-factors: Consider a b-memory online algorithm, which splits
the d coordinates into O(d/b) segments of O(b) coordinates each, and sequentially goes over the
segments, each time using Õ(1/ρ2) independent instances to determine if one of the coordinates in
each segment is biased by ρ (assuming ρ is not exponentially smaller than b, this can be done with
O(b) memory by maintaining the empirical average of each coordinate). This will allow to detect
the biased coordinate, using Õ((d/b)/ρ2) instances.

We now turn to provide an analogous result for general (b, n,m) protocols (where n is possibly
greater than 1). However, it is a bit weaker in terms of the dependence on the bias parameter1:

Theorem 3. Consider the hide-and-seek problem on d > 1 coordinates, with some bias ρ ≤ 1/4n

and sample size mn. Then for any estimate J̃ of the biased coordinate returned by any (b, n,m)
protocol, there exists some coordinate j such that

Prj(J̃ = j) ≤ 3

d
+ 5

√
mnmin

{
10ρb

d
, ρ2
}
.

The theorem implies that any (b, n,m) protocol will require a sample size mn which is at least
Ω
(

max
{

(d/b)
ρ , 1

ρ2

})
in order to detect the biased coordinate. This is larger than theO(log(d)/ρ2)

instances required by constraint-free protocols whenever ρ > b log(d)/d, and establishes trade-offs
between sample complexity and information complexities such as memory and communication.

Due to lack of space, all our proofs appear in the supplementary material. However, the technical
details may obfuscate the high-level intuition, which we now turn to explain.

From an information-theoretic viewpoint, our results are based on analyzing the mutual information
between j andW t in a graphical model as illustrated in figure 1. In this model, the unknown message
j (i.e. the identity of the biased coordinate) is correlated with one of d independent binary-valued
random vectors (one for each coordinate across the data instances Xt). All these random vectors
are noisy, and the mutual information in bits between Xt

j and j can be shown to be on the order of
nρ2. Without information constraints, it follows that given m instantiations of Xt, the total amount
of information conveyed on j by the data is Θ(mnρ2), and if this quantity is larger than log(d), then
there is enough information to uniquely identify j. Note that no stronger bound can be established
with standard statistical lower-bound techniques, since these do not consider information constraints
internal to the algorithm used.

Indeed, in our information-constrained setting there is an added complication, since the output W t

can only contain b bits. If b � d, then W t cannot convey all the information on Xt
1, . . . , X

t
d.

Moreover, it will likely convey only little information if it doesn’t already “know” j. For example,
W t may provide a little bit of information on all d coordinates, but then the amount of information
conveyed on each (and in particular, the random variable Xt

j which is correlated with j) will be
very small. Alternatively, W t may provide accurate information on O(b) coordinates, but since
the relevant coordinate j is not known, it is likely to “miss” it. The proof therefore relies on the
following components:

• No matter what, a (b, n,m) protocol cannot provide more than b/d bits of information (in expec-
tation) on Xt

j , unless it already “knows” j.

• Even if the mutual information between W t and Xt
j is only b/d, and the mutual information be-

tweenXt
j and j is nρ2, standard information-theoretic tools such as the data processing inequality

only implies that the mutual information between W t and j is bounded by min{nρ2, b/d}. We
essentially prove a stronger information contraction bound, which is the product of the two terms

1The proof of Thm. 2 also applies in the case n > 1, but the dependence on n is exponential - see the proof
for details.
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Figure 1: Illustration of the rela-
tionship between j, the coordinates
1, 2, . . . , j, . . . , d of the sample Xt, and
the message W t. The coordinates are in-
dependent of each other, and most of them
just output ±1 uniformly at random. Only
Xt
j has a slightly different distribution and

hence contains some information on j.

O(ρ2b/d) when n = 1, and O(nρb/d) for general n. At a technical level, this is achieved by
considering the relative entropy between the distributions of W t with and without a biased co-
ordinate j, relating it to the χ2-divergence between these distributions (using relatively recent
analytic results on Csiszár f-divergences [16], [26]), and performing algebraic manipulations to
upper bound it by ρ2 times the mutual information between W t and Xt

j , which is on average b/d
as discussed earlier. This eventually leads to the mρ2b/d term in Thm. 2, as well as Thm. 3 using
somewhat different calculations.

4 Applications

4.1 Online Learning with Partial Information

Consider the setting of learning with expert advice, defined as a game over T rounds, where each
round t a loss vector `t ∈ [0, 1]d is chosen, and the learner (without knowing `t) needs to pick an
action it from a fixed set {1, . . . , d}, after which the learner suffers loss `t,it . The goal of the learner
is to minimize the regret with respect to any fixed action i,

∑T
t=1 `t,it−

∑T
t=1 `t,i. We are interested

in variants where the learner only gets some partial information on `t. For example, in multi-armed
bandits, the learner can only view `t,it . The following theorem is a simple corollary of Thm. 2:
Theorem 4. Suppose d > 3. For any (b, 1, T ) protocol, there is an i.i.d. distribution over loss

vectors `t ∈ [0, 1]d for which minj E
[∑T

t=1 `t,jt −
∑T
t=1 `t,j

]
≥ c min

{
T,
√

(d/b)/T
}
, where

c > 0 is a numerical constant.

As a result, we get that for any algorithm with any partial information feedback model (where b
bits are extracted from each d-dimensional loss vector), it is impossible to get regret lower than
Ω(
√

(d/b)T ) for sufficiently large T . Without further assumptions on the feedback model, the
bound is optimal up to log-factors, as shown byO(

√
(d/b)T ) upper bounds for linear or coordinate

measurements (where b is the number of measurements or coordinates seen2) [2, 19, 25]. However,
the lower bound extends beyond these specific settings, and include cases such as arbitrary non-
linear measurements of the loss vector, or receiving feedback signals of bounded size (although
some setting-specific lower bounds may be stronger). It also simplifies previous lower bounds,
tailored to specific types of partial information feedback, or relying on careful reductions to multi-
armed bandits (e.g. [12, 25]). Interestingly, the bound holds even if the algorithm is allowed to
examine each loss vector `t and adaptively choose which b bits of information it wishes to retain.

4.2 Stochastic Optimization

We now turn to consider an example from stochastic optimization, where our goal is to approxi-
mately minimize F (h) = EZ [f(h;Z)] given access to m i.i.d. instantiations of Z, whose distri-
bution is unknown. This setting has received much attention in recent years, and can be used to
model many statistical learning problems. In this section, we demonstrate a stochastic optimization
problem where information-constrained protocols provably pay a performance price compared to
non-constrained algorithms. We emphasize that it is a simple toy problem, and not meant to repre-
sent anything realistic. We present it for two reasons: First, it illustrates another type of situation

2Strictly speaking, if the losses are continuous-valued, these require arbitrary-precision measurements, but
in any practical implementation we can assume the losses and measurements are discrete.
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where information-constrained protocols may fail (in particular, problems involving matrices). Sec-
ond, the intuition of the construction is also used in the more realistic problem of sparse PCA and
covariance estimation, considered in the next section.

Specifically, suppose we wish to solve min(w,v) F (w,v) = EZ [f((w,v);Z)], where

f((w,v);Z) = w>Zv , Z ∈ [−1,+1]d×d

and w,v range over all vectors in the simplex (i.e. wi, vi ≥ 0 and
∑d
i=1 wi =

∑d
i=1 vi = 1).

A minimizer of F (w,v) is (ei∗ , ej∗), where (i∗, j∗) are indices of the matrix entry with mini-
mal mean. Moreover, by a standard concentration of measure argument, given m i.i.d. instan-
tiations Z1, . . . , Zm from any distribution over Z, then the solution (eĨ , eJ̃), where (Ĩ , J̃) =
arg mini,j

1
m

∑m
t=1 Z

t
i,j are the indices of the entry with empirically smallest mean, satisfies

F (eĨ , eJ̃) ≤ minw,v F (w,v) +O
(√

log(d)/m
)

with high probability.

However, computing (Ĩ , J̃) as above requires us to track d2 empirical means, which may be ex-
pensive when d is large. If instead we constrain ourselves to (b, 1,m) protocols where b = O(d)
(e.g. any sort of stochastic gradient method optimization algorithm, whose memory is linear in the
number of parameters), then we claim that we have a lower bound of Ω(min{1,

√
d/m}) on the

expected error, which is much higher than the O(
√

log(d)/m) upper bound for constraint-free pro-
tocols. This claim is a straightforward consequence of Thm. 2: We consider distributions where
Z ∈ {−1,+1}d×d with probability 1, each of the d2 entries is chosen independently, and E[Z] is
zero except some coordinate (i∗, j∗) where it equals O(

√
d/m). For such distributions, getting op-

timization error smaller thanO(
√
d/m) reduces to detecting (i∗, j∗), and this in turn reduces to the

hide-and-seek problem defined earlier, over d2 coordinates and a bias ρ = O(
√
d/m). However,

Thm. 2 shows that no (b, 1,m) protocol (where b = O(d)) will succeed if mdρ2 � d2, which
indeed happens if ρ is small enough.

Similar kind of gaps can be shown using Thm. 3 for general (b, n,m) protocols, which apply to any
special case such as non-interactive distributed learning.

4.3 Sparse PCA, Sparse Covariance Estimation, and Detecting Correlations

The sparse PCA problem ([31]) is a standard and well-known statistical estimation problem, defined
as follows: We are given an i.i.d. sample of vectors x ∈ Rd, and we assume that there is some
direction, corresponding to some sparse vector v (of cardinality at most k), such that the variance
E[(v>x)2] along that direction is larger than at any other direction. Our goal is to find that direction.

We will focus here on the simplest possible form of this problem, where the maximizing direction v
is assumed to be 2-sparse, i.e. there are only 2 non-zero coordinates vi, vj . In that case, E[(v>x)2] =
v21E[x21] + v22E[x22] + 2v1v2E[xixj ]. Following previous work (e.g. [8]), we even assume that
E[x2i ] = 1 for all i, in which case the sparse PCA problem reduces to detecting a coordinate pair
(i∗, j∗), i∗ < j∗ for which xi∗ , xj∗ are maximally correlated. A special case is a simple and natural
sparse covariance estimation problem [9], where we assume that all covariates are uncorrelated
(E[xixj ] = 0) except for a unique correlated pair (i∗, j∗) which we need to detect.

This setting bears a resemblance to the example seen in the context of stochastic optimization in sec-
tion 4.2: We have a d× d stochastic matrix xx>, and we need to detect an off-diagonal biased entry
at location (i∗, j∗). Unfortunately, these stochastic matrices are rank-1, and do not have independent
entries as in the example considered in section 4.2. Instead, we use a more delicate construction,
relying on distributions supported on sparse vectors. The intuition is that then each instantiation of
xx> is sparse, and the situation can be reduced to a variant of our hide-and-seek problem where only
a few coordinates are non-zero at a time. The theorem below establishes performance gaps between
constraint-free protocols (in particular, a simple plug-in estimator), and any (b, n,m) protocol for a
specific choice of n, or any b-memory online protocol (See Sec. 2).
Theorem 5. Consider the class of 2-sparse PCA (or covariance estimation) problems in d ≥ 9
dimensions as described above, and all distributions such that E[x2i ] = 1 for all i, and:

1. For a unique pair of distinct coordinates (i∗, j∗), it holds that E[xi∗xj∗ ] = τ > 0, whereas
E[xixj ] = 0 for all distinct coordinate pairs (i, j) 6= (i∗, j∗).
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2. For any i < j, if x̃ixj is the empirical average of xixj over m i.i.d. instances, then
Pr
(
|x̃ixj − E[xixj ]| ≥ τ

2

)
≤ 2 exp

(
−mτ2/6

)
.

Then the following holds:
• Let (Ĩ , J̃) = arg maxi<j x̃ixj . Then for any distribution as above, Pr((Ĩ , J̃) = (i∗, j∗)) ≥

1− d2 exp(−mτ2/6). In particular, when the bias τ equals Θ(1/d log(d)),

Pr((Ĩ , J̃) = (i∗, j∗)) ≥ 1− d2 exp

(
−Ω

(
m

d2 log2(d)

))
.

• For any estimate (Ĩ , J̃) of (i∗, j∗) returned by any b-memory online protocol using m instances,
or any (b, d(d − 1), b m

d(d−1)c) protocol, there exists a distribution with bias τ = Θ(1/d log(d))

as above such that

Pr
(

(Ĩ , J̃) = (i∗, j∗)
)
≤ O

(
1

d2
+

√
m

d4/b

)
.

The theorem implies that in the regime where b � d2/ log2(d), we can choose any m such that
d4

b � m � d2 log2(d), and get that the chances of the protocol detecting (i∗, j∗) are arbitrarily
small, even though the empirical average reveals (i∗, j∗) with arbitrarily high probability. Thus, in
this sparse PCA / covariance estimation setting, any online algorithm with sub-quadratic memory
cannot be statistically optimal for all sample sizes. The same holds for any (b, n,m) protocol in an
appropriate regime of (n,m), such as distributed algorithms as discussed earlier.

To the best of our knowledge, this is the first result which explicitly shows that memory constraints
can incur a statistical cost for a standard estimation problem. It is interesting that sparse PCA was
also shown recently to be affected by computational constraints on the algorithm’s runtime ([8]).

The proof appears in the supplementary material. Besides using a somewhat different hide-and-
seek construction as mentioned earlier, it also relies on the simple but powerful observation that
any b-memory online protocol is also a (b, κ, bm/κc) protocol for arbitrary κ. Therefore, we only
need to prove the theorem for (b, κ, bm/κc) for some κ (chosen to equal d(d − 1) in our case) to
automatically get the same result for b-memory protocols.

5 Discussion and Open Questions

In this paper, we investigated cases where a generic type of information-constrained algorithm has
strictly inferior statistical performance compared to constraint-free algorithms. As special cases,
we demonstrated such gaps for memory-constrained and communication-constrained algorithms
(e.g. in the context of sparse PCA and covariance estimation), as well as online learning with
partial information and stochastic optimization. These results are based on explicitly considering
the information-theoretic structure of the problem, and depend only on the number of bits extracted
from each data batch.

Several questions remain open. One question is whether Thm. 3 can be improved. We conjecture
this is true, and that the bound should actually depend on mnρ2b/d rather than mnmin{ρb/d, ρ2}.
This would allow, for instance, to show the same type of performance gaps for (b, 1,m) protocols
and (b, n,m) protocols. A second open question is whether there are convex stochastic optimization
problems, for which online or distributed algorithms are provably inferior to constraint-free algo-
rithms (the example discussed in section 4.2 refers to an easily-solvable yet non-convex problem). A
third open question is whether our results for distributed algorithms can be extended to more inter-
active protocols, where the different machines can communicate over several rounds. There is a rich
literature on the subject within theoretical computer science, but it is not clear how to ‘import’ these
results to a statistical setting based on i.i.d. data. A fourth open question is whether the performance
gap that we demonstrated for sparse-PCA / covariance estimation can be extended to a ‘natural’
distribution (e.g. Gaussian), as our result uses a tailored distribution, which has a sufficiently con-
trolled tail behavior but is ‘spiky’ and not sub-Gaussian uniformly in the dimension. More generally,
it would be interesting to extend the results to other learning problems and information constraints.
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