
Solutions for Assignment 1

CSCI2100B

October 16, 2013

1 Written Assignment

Exercise 1.1

(6)
∑n

i=1 ia
i

Solution: According to the summation formula of geometric progression,

T =
∑n

i=1 a
i = an+1−a

a−1 .

Let S =
∑n

i=1 ia
i aS =

∑n
i=1 ia

(i + 1) =
∑n

i=1(i− 1)ai + nan+1.

(a− 1)S = nan+1 − T ⇒ S = 1
a−1 (nan+1 − an+1−a

a−1).

(8)
∑n

i=0 i
2

Solution:

i3 − (i− 1)3 = 3i2 − 3i + 1

⇒ n3 =
∑n

i=1(i3 − (i− 1)3) =
∑n

i=1(3i2 − 3i + 1)

= 3
∑n

i=1 i
2 − 3n(n+1)

2 + n

⇒
∑n

i=0 i
2 =

∑n
i=1 i

2 = n(n+1)(2n+1)
6

(12) Is 2n+1 = O(2n)?
Solution: Yes. 2n+1 = 2 · 2n = O(2n)
(13) Is 22n = O(2n)?
Solution: No. 22n = O(4n)

Exercise 1.2

(3) If GCD(a, b) = p and GCD(c, d) = q, is GCD(ac, bd) = pq true for all the a, b, c, d? Either
prove it or give a counterexample.
Solution: Counterexample: a = 5, b = 4, c =4, d = 5.

Exercise 1.3

(1) T (n) = aT (n− 1) + bn, T (1) = 1
Solution: First consider the problem of solving T (n) = aT (n − 1) + b. An intuitive approach
is to let S(n) = T (n) + k and then replace T (n) with S(n) in the original formula to make it
S(n) = aS(n− 1).
Here the problem changes to T (n) = aT (n− 1) + bn. We now let S(n) = T (n) + pn + q. After
replacing T (n) with S(n), we obtain S(n)−pn−q = a(S(n−1)−p(n−1)−q)+ bn, which leads
to S(n) = aS(n− 1) + (p− ap + b)n + (q + ap− aq). Thus we let p− ap + b = q − ap− aq = 0,
we can get S(n) = aS(n − 1). After calculation, p = b

a−1 and q = ab
(a−1)2 . Since we know S(1)

according to T (1) and we have S(n) = aS(n − 1), we can solve S(n) easily. Finally, we use

1

S(n) = T (n) + pn + q to get T (n).
One thing you should take care is that when a = 1, T (n) = T (n − 1) + bn. Then T (n) =

T (1) + 2b + 3b + ... + nb = 1 + (n+2)(n−1)
2 b.

(5) Solve xn = xn−1 − 1
4xn−2, with x0 = 1, x1 = 1/2.

Solution: First solve the quadratic formula t2 − t + 1
4 = 0.

The solutions are t1 = t2 = 1
2 . Thus the solution is of the form xn = a(1

2)n.
To satisfy the initial conditions, we can obtain a = 1. Thus, xn = (1

2)n.

Exercise 1.4

(5) Prove 2lg(n!) > nlgn by using Induction, where n is a positive integer greater than 2.
Solution: Let P (n) be lg(n!) > nlgn, where n is a positive integer.
For n = 1, L.H.S = 2lg(1!) > lg(1) = R.H.S. P(1) is true.
Assume P(k) is true, i.e. 2lg(k!) > klgk, where k is a positive integer
For n = k + 1,

L.H.S = 2lg((k + 1)!)
= 2(lg(k!) + lg(k + 1))
> klgk + 2lg(k + 1) (by assumption)
> (k − 1)lg(k + 1) + 2lg(k + 1) (k + 1 > e > (1 + 1

k)k ⇒ kk > (k + 1)k−1 for k ≥ 2)
= (k + 1)lg(k + 1)
= R.H.S

P (k + 1) is also true.
Therefore, by M.I., P (n) is true for all positive integer n.
(6) The number generated by the formula n2 + n+ 17 is prime for n ≥ 0, where n is an integer.
Either prove it or disprove it by counterexample.
Solution: No. Let n = 17. Then n2 + n + 17 = 17× (17 + 1 + 1) = 17× 19

Exercise 1.6

(1) for i = 1 to n;

for j = 1 to n;

x := x + 1;

Solution: f(n) = n2, g(n) = n2.

(3) for i = 1 to n;

for j = i to n;

for k = 1 to j;

x := x + 1;

Solution: f(n) =
∑n

i=1

∑n
j=i

∑j
k=1 1 =

∑n
i=1

∑n
j=i j = 1

2

∑n
i=1(n+i)(n−i+1) = 1

2

∑n
i=1(n(n+

1) + i− i2) = n(n+1)(2n+1)
6 , g(n) = n3.

(5) for i = 1 to n;

for j = i to n;

for k = 1 to 1000;

x := x + 1;

Solution: f(n) =
∑n

i=1

∑n
j=i

∑1000
k=1 1 = 1000

∑n
i=1

∑n
j=i 1 = 1000

∑n
i=1(n−i+1) = 1000

∑n
i=1 i =

500n(n + 1), g(n) = n2.

2

Exercise 1.8

(3) What is the running time of this algorithm with the following assumptions? What is its
big-O notation?

Statement Time Unit

assignment 1
+ 1.25
∗ 1.75
for-next loop set-up 2.3
each loop 1.5

Solution: First assignment consumes 1 unit. Setting up for-next loop consumes 2.3 units. For
each loop, there are one ∗, one +, and one assignment. Thus, (1.75 + 1.25 + 1 + 1.5) ∗ (n+ 1) =
5.5n + 5.5 units will be consumed. In total, the running time is 5.5n + 8.8 units, which is O(n)
in big-O notation.

Exercise 1.9

(2) Calculate the time and space complexity for n = 10, 20, 30, 50, 70, and 100 for each algorith-
m.
Solution: Just pay attention to different ranges.
(4) Come up with a strategy that you would use to minimize the time and space complexity
individually?
Solution: t(n) = min{tA(n), tB(n)}, s(n) = min{sA(n), sB(n)}. Thus,

t(n) =

 n if 1 ≤ n < 50
n2 if 50 ≤ n < 70
n3 if 70 ≤ n ≤ 100

s(n) =

 n if 1 ≤ n < 20
1.5n if 20 ≤ n < 50
0.5n if 50 ≤ n ≤ 100

2 Programming Assignment

Exercise 1.17

Analysis: The function isPrime() is responsible for checking the input n is a prime. In the main
function, the program uses array P to store all 50 smallest primes. Pay attention to the first
for-loop in the main function. The sample code is shown below.

#include <stdio.h>

int P[100];

int isPrime(int n) {

int k;

if (n <= 1) return 0;

for (k=2; k*k<=n; ++k)

if (n%k == 0) return 0;

return 1;

}

int main() {

int n, i, k;

scanf("%d", &n);

int m = 0;

3

for (i=2; m<50; ++i) {

if (isPrime(i)) P[m++] = i;

}

for (i=0; i<n; ++i) {

scanf("%d", &k);

printf("%d\n", P[k-1]);

}

return 0;

}

Exercise 1.20

Analysis: All you need to care is how to read input. This problem tests your ability of dealing
with strings. The sample code is shown below.

#include <stdio.h>

#include <stdlib.h>

int main()

{

char str[30];

int T, i, j;

scanf("%d\n", &T);

for (i = 0; i < T; i++) {

scanf("%s", str);

for (j = 0; j < strlen(str); j++) {

if (str[j] < ’0’ || str[j] > ’9’) putchar(str[j]);

}

putchar(’\n’);

}

return 0;

}

4

