
USING FINITE STATE MACHINES FOR EVALUATING SPOKEN DIALOG SYSTEMS

Yi Zhu1†, Zhaojun Yang2, Helen Meng2, Baichuan Li1, Gina Levow3‡, Irwin King1

1Department of Computer Science and Engineering
2Department of System Engineering and Engineering Management
1,2The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

3Department of Linguistics, University of Washington, Seattle, WA 98195 USA

ABSTRACT

Development of spoken dialog systems (SDSs) can be facili-

tated by better evaluation methods. Previous methods seldom

consider the efficiency of the system, which is important to

users. We study the problem of evaluating SDSs and propose

a new framework by generalizing states from utterances of

dialogs to build finite state machine (FSM). These states can

be regarded as efficiency measurement of SDSs. The FSM

framework models dialogs as paths in an FSM to combine ef-

ficiency measurement with regression models. The proposed

FSM framework can be applied in conjunction with regres-

sion models to improve evaluation accuracy. We compare our

FSM framework combined with three regression models in

several experiments. We obtain promising results on a col-

lection of dialogs from the ”Let’s Go!” system, with our ap-

proach outperforming regression models.

Index Terms— Spoken Dialog System, Evaluation, Fi-

nite State Machine, Regression Model, “Let’s Go!”

1. INTRODUCTION

Spoken dialog systems (SDSs) are becoming ever more com-

mon in daily life. Over 100 SDSs with varied information

domains are used by millions of users. Current SDSs usually

target restricted domains, such as CommandTalk [1] in battle-

field simulation, ITSPOKE[2] in tutoring and CMU’s “Let’s

Go!”1 in the domain of bus schedule information.

The quality of SDSs is unsatisfactory with the increasing

demands of SDSs. Several challenges still hinder the usabil-

ity of SDSs, including miscommunication during interactions

and inefficiency in the provision of information. Therefore,

the quality of SDSs still needs to be improved, and effective

evaluation methods to measure these improvements are also

needed.

Evaluation methods can facilitate the development of

SDSs. Prior evaluations were often done manually, which is

†The corresponding author.
‡This work is done while Dr. Gina Levow was a visiting scholar at The

Chinese University of Hong Kong.
1http://www.speech.cs.cmu.edu/letsgo/

costly and time-consuming. This motivate the development

of automatic evaluation methods, e.g., regression models to

predict the user satisfaction or system performance of SDSs.

These regression-based evaluation methods extract a num-

ber of system interaction features from system-generated log

files or manual annotations, then estimate the quality of the

system by integrating these features with regression models.

A small number of dialogs accompanied by measures of user

satisfaction are used to obtain the coefficients of the objective

function for future dialog evaluation. The overall evaluation

is calculated with results of all dialogs.

Table 1. Same text with different delay (two hypothetical SDSs

interaction) (s)

Dialog A B

User: I want to go to CMU from Squirrel Hill.

Sys: When would you like to travel? 1.5s 0.5s

User: Now

Sys: Hold on. Let me check that for you. 0.5s 0.5s

Sys: The next bus leaving 0.5s 1.5s

Existing methods do not adequately integrate measures of

system efficiency. Some factors related to efficiency are used,

such as system turn duration, or average number of words,

but the efficiency is not represented comprehensively because

these measures are computed globally for the whole dialog.

For example, Table 1 shows dialog text from two hypotheti-

cal SDSs (A and B) with different system delays. The dialog

duration, average number of words and other global features

are the same, but the users’ experiences are different. System

A pauses for a long period in the middle of the dialog, while

system B has a long delay while querying the database. We

would expect system B to be more acceptable and reasonable

because searching a database takes time. If A and B perform

the same in all other aspects, we would expect users to pre-

fer B. However, existing methods treat them equivalently be-

cause they compute only global efficiency measures. Our pro-

posed framework captures these fine-grained efficiency mea-

sures to support preferences for system B.

Finite state machines (FSM) can capture the efficiency of

these systems. The state in an FSM captures the key infor-

mation contained in each turn. Each dialog can be modeled

478978-1-4244-7903-0/10/$26.00 ©2010 IEEE SLT 2010

as a state transition path in the FSM. Hence a dialog with a

long path (number of system turns) and few states transitions

(key information) reveals low efficiency, while a short path

with many state transitions represent high efficient system.

We generate an FSM according to state transitions for this

SDS, then dialogs are converted to paths on the FSM during

evaluation.

Our goal is to evaluate SDSs based on regression models.

We generalize states from each turn and build an FSM accord-

ingly. Then we measure the efficiency of SDSs with FSMs

and build regression models based on traditional features and

measures of efficiency. After obtaining the objective function

from regression models, further evaluation results can be in-

tegrated to model the holistic user satisfaction of the system

performance.

We propose a general framework to evaluate SDSs in dif-

ferent domains. It uses FSMs to compute fine-grained mea-

sures of the efficiency of SDSs. As a general framework,

FSMs can be used in conjunction with regression models and

lead to more accurate evaluations. We test our framework

on the CMU “Let’s Go!” dialog collection [3] by applying

FSM in conjunction with three regression models: ridge re-

gression, generalized linear regression and support vector re-

gression. Experimental results demonstrate that the proposed

framework performs better than the straightforward regres-

sion models. Some rules of setting up the FSM and impact of

certain user behaviors will also be analyzed.

The main contributions of this paper are:

1. We propose a general framework that can evaluate SDSs in

different domains. We show that our FSM is generally supe-

rior to standard regression based evaluation models.

2. Several popular approaches of evaluating SDSs are reviewed.

3. We study and discuss the impact of FSM setting rules and

learning coefficients.

The rest sections of this paper is organized as follows.

Section 2 gives a brief review of different dialog systems

and previous evaluation methods. Section 3 introduces the

states in the dialog system and the related finite state ma-

chine framework. It also introduces methods of combining

regression models. Section 5 reports experimental results to

demonstrate the effectiveness of the technique. Section 6 dis-

cusses the impact of setting rules and some model parameters

on evaluation. Finally, Section 7 gives a summary of this

paper.

2. RELATED WORK

SDS evaluation has developed along with the advancement of

SDSs. Bernsen et al. [4] gave a summary of evaluation meth-

ods. The most popular evaluation method is the PARADISE

framework [5]. It is a general framework and hypothesized

that user satisfaction can be predicted by a combination of

task completion and dialog cost measures. This prediction

is performed by building a regression model. Hjalmarsson

[6] used Attribute Value Matrixes (AVMs) in PARADISE to

represent the information exchanged. Hassel and Hagen [7]

investigated feature selection and introduced indirect param-

eters into AVMs to overcome the drawbacks of PARADISE.

Hajdinjak and Miheliĉ [8] discussed regression parameter se-

lection and related normalization.

Besides PARADISE, Möller et al. [9] conducted the mul-

tivariate linear regression to get the evaluation score based on

the INSPIRE dialog system [10]. They also used simple lin-

ear regression, non-linear regression and neural networks in

particular multi-layer perceptron on data from two dialog sys-

tems: BoRIS and INSPIRE. Möller and Ward [11] proposed a

tripartite framework (behavior of user and system during the

interaction; perception and judgment processes taking place

inside the user; and what matters to system designers and ser-

vice providers) to describe the evaluation problem in detail.

Furthermore, a variety of other evaluation methods have

been proposed. Schatzmann et al. [12] and Ai et al. [13] [14]

reported approaches to evaluate the SDSs with user simula-

tion techniques. Möller et al. [15] used simulated errors to

test the tolerance of SDSs. Rieser and Lemon [16] provided

a data-driven method for obtaining reliable evaluation during

system design. Abella et al. [17] cast dialog as an dialog to

analyze the trajectory of dialog.

3. FINITE STATE MACHINE FRAMEWORK

Algorithm 1 gives an overview of the FSM framework. First,

features and rules to generate the FSM are selected. Global

and local features are extracted, weighted local features are

calculated by the FSM. One regression based method is ap-

plied for training. Then global and local features are extracted

to evaluate the performance of the dialog collections with the

objective function. Finally, the performance of each dialog

will be used as part of the holistic evaluation of the SDS. Fol-

lowing are the definition of global and local feature.

Algorithm 1 FSM Framework

Input: labeled dialog collection L; another dialog collection D;

Output: SDS evaluation score s;

1: Feature selection;

2: Generate FSM based on L and an appropriate rule;

3: Extract global (x) and local (y) features from L;

4: Use FSM and y to obtain weighted local features y′;
5: Train objective function F with x and y′;
6: Use F to evaluate dialogs in D;

7: Combine the evaluation on D to get the overall performance.

Definition 1 Global Features. The global features of a dialog are
the properties that computed over the whole course of the dialog.
They are the properties of the whole dialog, e.g. the average number
of words per system turn.

Definition 2 Local Features. The local features of a dialog are the
properties that are computed from individual turns of the dialog. Lo-

479

cal features are not directly represented global features, e.g. the
number of words in one system turn.

Conventional regression models for SDS evaluation only

utilize global features. Our FSM framework captures local

features and uses them in efficiency measurement to improve

evaluation accuracy.

In practice, we expect that users of SDSs will usually

make specific and concise requests to the system, expecting

accurate and efficient results. Thus we assume that, a good

SDS can understand user’s intention and provide relevant and

accurate information efficiently. If a user is satisfied by the

system’s response, that means the information meet user’s

need and is also accurate. For this reason, our proposed

framework employs the user’s response to measure informa-

tion accuracy and utilizes local features to measure efficiency.

The user satisfaction score (USS) is used as the measure of

system performance. It focuses on satisfying users’ intention

as soon as possible with good user experience during the

interaction.

3.1. Problem Definition

As we mentioned, most evaluation methods employ regres-

sion models to predict USS. Formally, features of a dialog can

be denoted as a feature vector x = {x1, . . . xd}, where xi ∈
R, i = 1, . . . , d. Given a dialog collection L = {l1, . . . , ln}
and related USSs U = {U1, . . . , Un}, a target function F (l)
is trained with L and U .

Ul ≈ F (l) =

d∑

i=1

αiPi(xi), (1)

where l is the dialog to be evaluated, and its result Ul is the

estimated USS of l, Pi(xi) is the function of xi (usually poly-

nomial), and αi is the coefficient of xi for training.

Equation (1) covers most regression models because Pi

can be varied. If Pi(xi) = xi, for i = 1, . . . , d, this formula

is the same as the linear regression model. With different con-

straint strategies, the solutions may differ from each other, but

the evaluation function is the same. Our goal is to get a more

accurate evaluation function F (l) for further evaluation.

Fig. 1. State of “Let’s Go!”

3.2. State Transitions in SDS

We use binarized Attribute Value Matrix (AVM) [6] to repre-

sent the states, then state can be expressed as a vector shown

in Fig. 1. States indicate the information conveyed in each

system and user turn. Therefore, user intention can be ex-

pressed as the unfilled attributes. If system responses match

all these attributes without correction from the user, then we

believe that the system fulfill the needs of the user.

States represents the amount of information obtain from

the user by the system, so state transitions are a representation

of interaction efficiency. A dialog with t turns has t+1 states

(the initial state is a vector of 0 values) and t state transitions.

We refer to a state transition where at least one value of the

state vector differs from the previous state as a ”state change.”

To be precise, the i-th transition, from state i to (i+ 1), iden-

tifies the new information conveyed by the i-th turn. If a state

transition is not a state change, it represents a self-loop and

indicates that no new information was conveyed by the i-th
turn.

Due to differences in user behavior, one SDS can generate

dialogs with many kinds of state transitions. By combining

state transitions across many dialogs, a finite state machine

(FSM) can be built to describe the SDS. From this perspec-

tive, each dialog is a path on the FSM.

The efficiency of the SDS can be determined by inspect-

ing each dialog path in the FSM. A short path with few self

loops represents high efficiency, while a long path with sev-

eral self loops indicates too many redundant turns in the dia-

log. Users also give more patience to state change rather than

self loops. Recall the example in Table 1, long time delay of

system A is a self loop while it is not in system B. With

FSM, it is reasonable to conclude that FSM makes is possible

to distinguish these two systems.

3.3. FSM Framework

Formally, a dialog has t turns and each turn contain dl lo-

cal features (In one SDS, the number of local features for

each turn is a constant). Let all the local features be y =
{y11, . . . , y1t; y21, . . . , y2t; . . . ; ydl1, . . . , ydlt}. yjk is the j-

th local feature of k-th turn of a dialog. Let Qjk(yjk) be a

function of yjk that similar with Pi (usually polynomial, e.g.,

G(y) = ay is linear funcion). Then the evaluation function

with local features is of the form of Eq. (2).

F (l) =
d∑

i=1

αiPi(xi) +

dl∑

j=1

t∑

k=1

βjkQjk(yjk), (2)

where βjk is also a parameter to be learned. t varies for differ-

ent dialogs, as does the number of βjk. It is difficult to utilize

the local features in this form because the number of features

of each dialog must be fixed for existing methods. But it is

easy to solve this problem with FSM.

Let G = (V,E) denote an FSM with vertex set V (states)

and edge set E (state transitions). Each edge represents local

features of a system turn or user turn and each vertex shows

the states after each turn. For one dialog, global features re-

main the same along all vertices. With the FSM, the predic-

480

tion function can be expressed as Eq. (3).

F (l) =
d∑

i=1

αiPi(xi) +
∑

j,k

βjkw(sk, sk+1)Qjk(yjk), (3)

where sk is the vertex of the k-th turn, w(sk, sk+1) is the

weight of the edge on the FSM from vertex sk to sk+1. For

convenience, we use wk to denote w(sk, sk+1). In this equa-

tion, if wk is 1 for each k, then the FSM is unweighted.

To estimate βjk, we extract a general value βj from

βjk for different k and put the differences (βjk/βj) into the

weight wk. If we find a way to estimate the βjk/βj , then each

local feature will have a equal coefficient βj . So Eq. (3) will

be rewritten as Eq. (4).

F (l) =
d∑

i=1

αiPi(xi) +

dl∑

j=1

βj

(
t∑

k=1

wkQjk(yjk)

)
. (4)

From another perspective,
∑t

k=1 wkQjk(yjk) can be inter-

preted as the weighted sum of local features, so it can be cal-

culated once the local features are extracted. Then the orig-

inal regression models can incorporate the local features in

the same way as the global features, without concern for the

number of local features.

In Eq. (4), wk has a different effect from its use in Eq. (3).

In Eq. (4), If all wk are the same, the impact of FSM will be

reduced to zero, and the local features will become global.

For example, if wk, k = 1, . . . , t is equal to 1 for linear

regression(Qjk(yjk) = yjk), and yjk is duration of each turn,

then
∑t

k=1 wkQjk(yjk) is the dialog duration, which is a

global feature. Any method that is able to solve Eq. (1) can

use our framework too. Therefore, we can say that the FSM

framework is a generalization of regression models.

4. WEIGHT ASSIGNMENT

In our framework, weight assignment is needed for state tran-

sitions. For “Let’s Go!”, the number of state transition edges

is 544. It is difficult to assign these weights manually. We

need to design rules to set the weights.

Before we introduce the rules, we need to define the con-

cept of distance between two states.

Definition 3 State Distance. The distance between two states A =
{a1, a2, ..., at}, B = {b1, b2, ..., bt} is:

dist(A,B) =

t∑

i=1

|ai − bi|, (5)

where ai, bi ∈ {0, 1}.The distance between two states is be-

tween 0 and t. All weights are in the range of [−1, 1]; nega-

tive weights indicate a penalty to USSs while positive weights

indicate a bonus. Weights with higher absolute value indi-

cate the impact is greater. Below are 6 rules for assigning the

weights.

• Rule 1. The weights from A to B is dist(A,B)/t.

• Rule 2. The weights from A to B is dist(A,B) ∗ 2/t− 1.

• Rule 3. If the distance is 0, then the weight is −0.05, other-

wise, the weights is dist(A,B)/t.

• Rule 4. If the distance is 0, then the weight is −1, otherwise,

the weights A to B is dist(A,B)/t.

• Rule 5. If two states are same, the weight is −1, otherwise,

the weights are 1.

• Rule 6. If two states are same, the weight is 0, otherwise, the

weights are 1.

Rule 1 and 2 are two normalization of the distance with

different range. Rule 3 and 4 are normalization with different

penalty for self loop. Rule 5 and 6 treat the state change

equally with different ranges. We test these rules in our

framework for rule selection. The result is generated by com-

bining FSM with generalized linear model and can indicate

the impact different weighting rules on the FSM framework.

5. EXPERIMENTS

To prove the proposed framework works in real SDSs, we

test our framework with 3 regression models to verify that the

FSM can truly improve the evaluation accuracy. We first in-

troduce the data collection we used and procedures for build-

ing the FSM. Experimental results promise good improve-

ments in evaluation accuracy.

5.1. Data Collection

The dialog collection comes from the “Let’s Go!” dialog sys-

tem2. There are approximately 50,000 dialogs in total. We

first delete the dialogs with fewer than 6 turns, which, for this

SDS, is too short for task completion. Then we classify the

dialogs into three categories (“complete”, “incomplete” and

“out of scope”) according to keywords contained in system

response. ‘Complete” means the dialog successfully provides

the information that the user needs, “incomplete” means the

system does not conclude by providing schedule information

to the user, and “out of scope” means the query from user

is not in the scope of system knowledge, typically because it

concerns a route not covered by the system.

We obtain the USSs manually and efficiently [18] by us-

ing Amazon Mechanical Turk3(mturk). We designed ques-

tions that related to USS and obtain answers from MTurkers;

these answers from mturk are the target we aim to predict. Ta-

ble 2 shows the distribution of the dialogs. The “mturk” cate-

gory refers dialogs we put on the mturk. “obtained” refers to

dialogs for which we received answers from mturk. For qual-

ity control, we ask mturkers to classify the dialogs into three

categories too. If their categorization agrees with our heuristic

classification, the answer will be regarded as reliable. These

2http://dialrc.org/data.html
3https://www.mturk.com/mturk/welcome

481

dialogs are referred to as ”consistent.” The dialog collection

we used in our experiment is the “consistent” set.

Table 2. Distribution of “Let’s Go!” dialog collection

Complete Incomplete Out of Scope Total

Original 16814 11349 3775 31938

Mturk 5030 3029 361 8420

Obtained 4150 2163 347 6660

Consistent 3563 1208 136 4907

5.2. Experiment Setup and Preprocessing

We extract global features and build the FSM correspond-

ing to the ”Let’s Go!” dialogs before evaluation. 10 global

features (Definition 1) are extracted based on [19]. They

appear in Table 5 along with “WPST” (words per system

turn), “WPUT” (words per user turn) and “constant term”.

For normal regression models, we use “average word per

system turn” and “average word per user turn” as substitution

of “WPST” and “WPUT”.

For the text of each turn, we employ WordNet2.1 4 in

conjunction with a set of heuristic rules to determine which

attributes are being specified: route number, time, or loca-

tion. According to statistical results, first appearance of time

and location is usually departure time and origin respectively.

The states as shown in Fig. 1 can be recognized for each turn

in one dialog.

Then the FSM for this system can be built according to

these states in dialogs. Two local features are extracted in-

clude “number of words per user turn” (WPUT) and “number

of words per system turn” (WPST). They are used to calculate

weighted local features with the generated FSM. We choose

rule 4 because it performs best.

5.3. Results

We apply our FSM framework in conjunction with three dif-

ferent evaluation models: ridge regression (RR), generalized

linear model (GLM), and support vector regression (SVR).

We summarize the improvement of FSM compared with the

results of the original regression models alone. Table 3 shows

the improvement in R2 measurement respectively with differ-

ent training sizes. The training size is from 500 to 4000 with

fixed testing size 500. Combined with FSM, R2 of ridge re-

gression rises 5.13%. SVR has the greatest improvement, R2

value improve 5.82% with the help of FSM. GLM performs

best; the improvement is 5.23% for R2 and GLM has the

highest R2 overall. All these methods are consistent across

different sizes of training set.

Experimental results indicate that the FSM framework can

truly improve the performance of previous evaluation model.

However, the improvement is limited. There are some rea-

sons for that: first, the information contained in each turn

4http://wordnet.princeton.edu/wordnet/

Table 3. R2 value with different training size. (The improvement

is compared with the original methods)

1000 2000 3000 4000 Improve

RR 0.3899 0.3952 0.3981 0.3998

FSM RR 0.4063 0.4139 0.4179 0.4203 5.13%

GLM 0.3900 0.3955 0.3983 0.4000

FSM GLM 0.4070 0.4147 0.4186 0.4209 5.23%

SVR 0.3822 0.3903 0.3945 0.3968

FSM SVR 0.4041 0.4151 0.4185 0.4199 5.82%

is very important for real users, so even with only two lo-

cal features, FSM modeling still helps, but the improvement

is limited; second, The mturk-based annotation exhibits only

moderate interrater agreement (κ = 0.293), so regression on

these targets inherits some of this variability, leading to a rel-

atively high mean square error. This is the reason of huge

mean square error.

6. DISCUSSION

6.1. Weight Assignment Rules

The R2 value for each rule is listed in the Table 4. Results

show rule 4 has the highest R2. It outperforms other rules be-

cause it is smooth and also assigns a sufficiently large penalty

to redundant turns. Compared with rule 4, the penalty of rule

3 is too small to effect the result. The first two rules do not

adequately distinguish the self loop and transition. While the

last two rules treat all kinds of transitions equally, so they can

not measure the efficiency well. In general, it is reasonable

that rule 4 outperforms all other rules.

Table 4. The impact of different weight assigning rules for different

amounts of training data.

1000 2000 3000 4000

Rule 1 0.3884 0.3945 0.3976 0.3995

Rule 2 0.4063 0.4142 0.4183 0.4208

Rule 3 0.3909 0.3971 0.4003 0.4022

Rule 4 0.4070 0.4147 0.4186 0.4209
Rule 5 0.4035 0.4111 0.4150 0.4173

Rule 6 0.3883 0.3944 0.3976 0.3996

6.2. Impact of Learning Coefficients

Standard score normalization and min-max normalization

(between 0 and 1) are applied on all the input features; the re-

sults are similar. 4,000 dialogs from our data collection were

sampled as the training set to obtain the objective function.

The coefficients of each feature is listed in Table 5.

All these learning coefficients are reasonable. For the fea-

tures with negative coefficients, too many user turns, system

questions and user questions are caused by poor understand-

ing or recognition. High rates of dtmf entry, barge-in or help

482

Table 5. Learning Coefficients (Coefficients with mark “g” are

global features and mark “l” for local features)

Positive coefficients Negative coefficients

sysTurn (g) 0.2523 userTurn (g) -7.660

aveWordperUserUtt (g) 1.139 dtmf% (g) -3.915

aveUserSpeakRate (g) 9.339 bargein (g) -3.938

aveRecogConf (g) 2.496 Help (g) -1.802

WPST (l) 4.494 sysQuestion (g) -9.542

WPUT (l) 4.167 userQuestion (g) -2.696

constant term -7.744

requests indicate the interaction is not proceeding smoothly

or that help is needed. For the features with positive co-

efficients, more words per user turn and high user speaking

rate or recognition confidence represent good understanding

or recognition abilities. In our model, the penalty for the num-

ber of words during interaction is set in FSM, so coefficients

of two local features are positive. The coefficient of “sys-

Turn” is positive for two reasons: system turns are more than

user turns (average ratio is 1.8314), so long dialog will be

penalized in “userTurn”; dialogs with more system turns and

less user turns indicate the system provides more information

that user needs. In addition, coefficient of “sysTurn” is small

compared with other coefficients.

7. CONCLUSION AND FUTURE WORK

In this paper, a novel evaluation framework with FSM is pro-

posed and presented. This framework learns more from local

features and state transition to measure the efficiency, and can

be used on the top of the existing regression based evaluation

methods. Experimental results are promising that FSM can be

utilized to enhance dialog system evaluation methods. In this

paper, weight assigning rules, the learning coefficients, im-

pact of user behaviors, and comparison among different SDSs

are also discussed.

In our future research, we plan to pursue two directions:

using the FSM to compute the user satisfaction value of each

turn for final score to get more accurate evaluation, and eval-

uating the dialog system in some specific aspects, such as ef-

ficiency or fault tolerance of the system.

Acknowledgement

The project team is a participant in the Spoken Dialog Challenge

20105, which is organized by Professor Maxine Eskenazi and Pro-

fessor Alan Black of the CMU Dialog Research Center. The work is

partially supported by grant from the MSRA, FY09-RES-OPP-103

(Reference No. 6902682). It is also supported by NSFC/RGC Joint

Research Scheme (Project No. N CUHK 414/09). This work is af-

filiated with the CUHK MoE-Microsoft Key Laboratory of Human-

centric Computing and Interface Technologies.

5http://dialrc.org/sdc

8. REFERENCES

[1] A. Stent, J. Dowding, J.M. Gawron, E.O. Bratt, and R. Moore, “The

CommandTalk spoken dialogue system,” in Proceedings of the 37th
annual meeting of the Association for Computational Linguistics on
Computational Linguistics, 1999.

[2] D.J. Litman and S. Silliman, “ITSPOKE: An intelligent tutoring spoken

dialogue system,” in Demonstration Papers at HLT-NAACL, 2004.

[3] M. Eskenazi, A. Black, A. Raux, and B. Langner, “Lets Go Lab: a

platform for evaluation of spoken dialog systems with real world users,”

2008.

[4] N.O. Bernsen, L. Dybkjær, and W. Minker, “Spoken Dialogue Systems

Evaluation,” Evaluation of Text and Speech Systems, 2007.

[5] Marilyn A. Walker, Diane J. Litman, Candace A. Kamm, and Alicia

Abella, “PARADISE: a framework for evaluating spoken dialogue

agents,” in Proceedings of the 8th conference on European chapter
of the Association for Computational Linguistics, 1997.

[6] A. Hjalmarsson, “Evaluating AdApt, a multi-modal conversational,

dialogue system using PARADISE,” Master’s thesis, KTH, 2002.

[7] L. Hassel and E. Hagen, “Evaluation of a dialogue system in an au-

tomotive environment,” in 6th SIGdial Workshop on Discourse and
Dialogue, 2005.

[8] Melita Hajdinjak and F. Mihelic, “The PARADISE Evaluation Frame-

work: Issues and Findings,” Computational Linguistics, 2006.

[9] S. Möller, P. Smeele, H. Boland, and J. Krebber, “Evaluating spoken

dialogue systems according to de-facto standards: A case study,” Com-
puter Speech & Language, 2007.

[10] S. Möller, K.P. Engelbrecht, and R. Schleicher, “Predicting the quality

and usability of spoken dialogue services,” Speech Communication,

2008.

[11] Sebastian Möller and Nigel G. Ward, “A framework for model-based

evaluation of spoken dialog systems,” in 9th SIGdial Workshop on Dis-
course and Dialogue, 2008.

[12] J. Schatzmann, K. Georgila, and S. Young, “Quantitative evaluation

of user simulation techniques for spoken dialogue systems,” in 6th
SIGdial Workshop on Discourse and Dialogue, 2005.

[13] Hua Ai and Diane J. Litman, “Assessing dialog system user simulation

evaluation measures using human judges,” in ACL, 2008.

[14] Hua Ai and Fuliang Weng, “User simulation as testing for spoken di-

alog systems,” in 9th SIGdial Workshop on Discourse and Dialogue,

2008.

[15] S. Möller, R. Englert, K. Engelbrecht, V. Hafner, A. Jameson,

A. Oulasvirta, A. Raake, and N. Reithinger, “MeMo: towards auto-

matic usability evaluation of spoken dialogue services by user error

simulations,” in 9th International Conference on Spoken Language
Processing, 2006.

[16] Verena Rieser and Oliver Lemon, “Automatic learning and evaluation

of user-centered objective functions for dialogue system optimisation,”

in LREC, 2008.

[17] A. Abella, J.H. Wright, and A. Gorin, “Dialog trajectory analysis,” in

ICASSP, 2004.

[18] Z.J. Yang, B.C. Li, Y. Zhu, I. King, G. Levow, and H. Meng, “Spoken

dialog system evaluation with crowdsourcing,” in Proceedings of SLT,

2010.

[19] ITU-T, “Parameters describing the interaction with spoken dialogue

systems,” vol. Series P, Supplement 24, 2005.

483

