
Smooth Optimization for Effective Multiple Kernel Learning

Zenglin Xu
Cluster of Excellence

Saarland Univ. & MPI Inf
zlxu@mpi-inf.mpg.de

Rong Jin
Computer Sci. & Eng.

Michigan State University
rongjin@cse.msu.edu

Shenghuo Zhu
Information Analysis
NEC Labs America

zsh@sv.nec-labs.com

Michael R. Lyu Irwin King
Computer Sci. & Eng.

Chinese Univ. of Hong Kong
{lyu,king}@cse.cuhk.edu.hk

Abstract

Multiple Kernel Learning (MKL) can be formulated as a
convex-concave minmax optimization problem, whose sad-
dle point corresponds to the optimal solution to MKL. Most
MKL methods employ the L1-norm simplex constraints on
the combination weights of kernels, which therefore involves
optimization of a non-smooth function of the kernel weights.
These methods usually divide the optimization into two cy-
cles: one cycle deals with the optimization on the kernel com-
bination weights, and the other cycle updates the parameters
of SVM. Despite the success of their efficiency, they tend
to discard informative complementary kernels. To improve
accuracy, we introduce smoothness to the optimization pro-
cedure. Furthermore, we transform the optimization into a
single smooth convex optimization problem and employ the
Nesterov’s method to efficiently solve the optimization prob-
lem. Experiments on benchmark data sets demonstrate that
the proposed algorithm clearly improves current MKL meth-
ods in a number scenarios.

Introduction
Multiple kernel learning (MKL) has been an attractive topic
in machine learning (Lanckriet et al. 2004). Multiple ker-
nel learning searches for the positive linear combination of
base kernel functions/matrices that maximizes a generalized
performance measure. Typical measures studied for multi-
ple kernel learning include maximum margin classification
errors (Lanckriet et al. 2004; Bach, Lanckriet, and Jordan
2004; Zien and Ong 2007), kernel-target alignment (Cris-
tianini et al. 2001), and Fisher discriminative analysis (Ye,
Chen, and Ji 2007).

Due to the success of multiple kernel learning, substantial
work has devoted to derive effective and efficient optimiza-
tion methods for MKL. Since the seminal work of (Lanck-
riet et al. 2004), which searches for the linear combination
of kernel weights from a simplex using semi-definite pro-
gramming (SDP), there have been two main trends in recent
advances of MKL.

The first trend is to reduce computational time. In (Bach,
Lanckriet, and Jordan 2004), a block-norm regularization
method based on Second Order Cone Programming (SOCP)
was proposed in order to solve medium-scale problems.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Due to the high computation cost of SDP and SOCP, these
methods cannot process more kernels and more training
data. Recent advances suggest that alternating approaches
(Sonnenburg et al. 2006; Rakotomamonjy et al. 2008;
Xu et al. 2009) have more advantages in improving the effi-
ciency of MKL. In these approaches, the iterative algorithm
alternates between the optimization of kernel weights and
the optimization of the SVM classifier. In each step, given
the current solution of kernel weights, it solves a classical
SVM with the combined kernel; then a specific procedure is
used to update the kernel weights. In the above, most MKL
methods search for the kernel parameters from a unit sim-
plex.

The second trend is to search for the kernel combination
parameters from a non-simplex space. The subspace of the
simplex, which is also known as L1-norm of the combina-
tion weights, leads to a sparse solution. This property is
helpful in the case of a large number of base kernels and has
good interpretability (Sonnenburg et al. 2006). However, as
argued in (Kloft et al. 2008), the simplex constraint may dis-
card complementary information when base kernels encode
orthogonal information. This may therefore degrade the pre-
diction accuracy. To improve the accuracy in this scenario,
an L2-norm of weights, which is known as a ball constraint,
is introduced in their work. A general extension is the Lq-
norm MKL (Kloft et al. 2009) (q ≥ 1). Other researchers
also explore the possibility of non-linear combination of ker-
nels (Cortes, Mohri, and Rostamizadeh 2009). Although the
solution space has been enlarged, it usually leads to non-
convex optimization problem and incurs high computational
cost. Moreover, the solution is difficult to interpret. In this
paper, we focus our paper on the linear combination of ker-
nels due to the computational issue.

From the above analysis, it is not hard to see that the
simplex constraint corresponds to a non-smooth function.
The non-smooth optimization may result in a non-stable
solution. This is because the optimal solution of a linear
program is the extreme points of the simplex. Moreover,
when kernels encode orthogonal characterizations of a prob-
lem, the extreme solution may discard useful complemen-
tary information and thus result in poor generalization per-
formance. Although replacing the simplex constraint of the
kernel weights with an L2-norm constraint may lead to a
non-sparse solution (Kloft et al. 2008), it has high computa-

637

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

tional cost.
To avoid the dispute between L1-norm and L2-norm, we

first introduce a more natural concept, the entropy of the
kernel weights, as a regularizer for the kernel combina-
tion weights. This will transform the non-smooth func-
tion induced by the simplex constraint into a smooth one.
We will further show that the approximated MKL problem
has a Lipschitz-continuous gradient. We then introduce an
efficient gradient method, which is known as Nesterov’s
method, for the smooth problem of MKL based on (Nes-
terov 2005). The resulted method has an efficiency estimate

of O(
√

L
ε
), where L is the Lipschitz constant of the gradient

of the objective function. Moreover, we compute the conver-
gence rate of the Nesterov’s method for MKL. Finally, ex-
periments on the benchmark data sets demonstrate that the
proposed algorithm clearly improves current MKL methods
in a number of scenarios.

Related Work
Let X = (x1, . . . ,xn) ∈ Rn×d denote the collection of
n training samples that are in a d-dimensional space. We
further denote by y = (y1, y2, . . . , yn) ∈ {−1, +1}n the
binary class labels for the data points in X. We employ the
maximum margin classification error, an objective used in
SVM, as the generalized performance measure.

We first introduce the functional framework of multi-
ple kernel learning, which is defined from the perspective
of function regularization in a Reproducing Kernel Hilbert
Space (RKHS). Each kernel function hi is associated with a
unique RKHS Hi. Consider a subspace H′

i, such that

H′
i = {h|h ∈ Hi :

‖h‖Hi

pi
≤ ∞},

and the inner product is defined as 〈f, g〉H′

i
= 1

pi
〈f, g〉i.

By defining the optimal RKHS H is the direct sum of
the spaces H′

i, i.e., H =
⊕m

i=1
H′

i, then the primal MKL
problem can be formulated as follows (Rakotomamonjy et
al. 2008):

min
p∈P

ϕ(p), (1)

where P is the domain of p. More specifically, when the
L1-norm is employed, P is defined as:

P = {p ∈ R
m : p$e = 1, 0 ≤ p ≤ 1}. (2)

When the L2-norm is employed, P can be defined as:

P = {p ∈ R
m : (p − p0)

$Σ−1(p − p0) = 1, 0 ≤ p ≤ 1},

where p0 and Σ−1 are the already known structure parame-
ters.

When SVM is used as the performance criterion, the
MKL objective ϕ(p) is a function defined as

min
{hi}m

i=1
,b,ξ

1

2

m
∑

i=1

1

pi
‖hi‖

2
Hi

+ C
n

∑

j=1

ξj (3)

s. t. yj

m
∑

i=1

hi(xj) + byj ≥ 1 − ξj , ξj ≥ 0, ∀j,

where C is the trade-off parameter in SVM.
It is not hard to show that the function ϕ(p) can also be

calculated as:

ϕ(p) = max
α∈Q

α$e−
1

2
(α ◦ y)$

(

m
∑

i=1

piKi

)

(α ◦ y), (4)

where Q is the domain of α:

Q = {α ∈ R
n : α$y = 0, 0 ≤ α ≤ C}. (5)

Here, e is a vector of all ones, {Ki}m
i=1 is a group

of base kernel matrices associated with H′
i, and ◦ de-

fines the element-wise product between two vectors. It
is easy to verify that the overall optimization problem
minp maxα ϕ(p,α) is convex on p and concave on α. Thus
the above optimization problem can be regarded as a convex-
concave problem.

Recently, advanced optimization methods, such as Semi-
infinite Linear Programming (SILP) (Sonnenburg et al.
2006), Subgradient Descent (SD) (Rakotomamonjy et al.
2008), and Level method (Xu et al. 2009), have been applied
to handle large-scale MKL problems. All of the above meth-
ods solve MKL via a way of alternating optimization. We
summarize them into a unified framework in Algorithm 1.
Note that a superscript is used to indicate the index of itera-
tion, a convention that is used throughout this paper. We use
[x]t to denote x to the power of t in the case of ambiguity.

Algorithm 1 Alternating approach for solving MKL

1: Initialize a valid solution p0 ∈ P and i = 0
2: repeat
3: Solve the dual of SVM with kernel K = m

j=1
pi

jKj and

obtain optimal solution αi

4: Update kernel weights by minimizing ϕ(p)
5: Update i = i + 1 and calculate the stopping criterion ∆i

6: until ∆i ≤ ε

As indicated in Algorithm 1, these methods divide the
MKL problem into two cycles: the inner cycle solves a stan-
dard SVM problem to update α, and the outer cycle updates
the kernel weight vector p. Another commonality is that
they all use the gradient to update the new solution. We de-
note ∇ϕ(pi) as the subgradient of ϕ(p) with respect to p at
(pi,αi), which is calculated as:

∇ϕ(pi) = (t1, . . . , tm), (6)

where tj = − 1

2
(αi ◦ y)$Kj(αi ◦ y), for j = 1, . . . , m.

On the other hand, these methods differ in the 4-th step in
Algorithm 1: the SILP method updates p by solving a cut-
ting plane model, the SD method updates p using the sub-
gradient of the current solution, while the level method up-
dates p by projecting the solution of the cutting plane model
to a level set. More specifically, in the i-th iteration, the op-
timum values of ϕi(p) for SILP, SD and Level methods are
calculated as follows:

ϕi∗
SILP = min

ν,p∈P
{ν : ν ≥ gi(p)},

ϕi∗
SD = min

p∈P

1

2
‖p− pi‖2

2 + γi(p − pi)$∇pϕ(pi),

ϕi∗
Level = min

p∈Li

1

2
‖p− pi‖2

2,

638

where γi in the SD method is the step size that needs to be
decided dynamically (e.g., by a line search). The cutting
plane model used in SILP is defined as

gi(p) = max
1≤j≤i

f(pj ,αj) + (p − pj)$∇pϕ(pj).

In the level method, Li denotes the level set and is com-
puted as

Li = {p ∈ P : gi(p) ≤ &i = λϕi + (1 − λ)ϕi},

where the lower bound ϕi, and the upper bound ϕi are com-
puted as follows:

ϕi = min
p∈P

gi(p), ϕi = min
1≤j≤i

ϕ(pj).

These alternating methods depend greatly on the proce-
dures of updating the kernel combination weights. Due to
the simplex constraint of the kernel weights, these meth-
ods may discard kernels with complementary information.
In order to overcome the ineffectiveness of L1-MKL when
dealing with complementary base kernels, and to overcome
the inefficiency of L2-MKL when dealing with a large num-
ber of base kernels, in this paper, we propose to convert the
non-smooth optimization problem hidden in L1-MKL into
a smooth one and then employ Nesterov’s method to effi-
ciently solve it.

Smooth Optimization for Multiple Kernel
Learning

In this section, we discuss how to derive a smooth optimiza-
tion problem and how to solve it. For the limit of space, we
omit all the proofs to theorems.

Smooth Multiple Kernel Learning

For convenience, we first reformulate the optimization prob-
lem minp∈P ϕ(p) described in (4) as the following:

min
p∈P

max
α∈Q′

α$e −
1

2

m
∑

i=1

piα
$Giα (7)

where

Q′ = {α ∈ R
n : 0 ≤ α ≤ C}.

Gi = diag(y)Kidiag(y), i = 1, . . . , m.

For the domain of α, it is interesting to note that we elim-
inate the bias term and therefore do not have the constraint
α$y = 0. We can introduce an additional constant attribute
into each example to account for the bias term. In particular,
we can set the additional constant attribute to be a very large
value so that the corresponding weight is small and therefore
can be ignored.

To transform the minmax problem in (7) into a smooth
function, which is a prerequisite of Nesterov’s method, we
rewrite the problem by switching min and max operators and
define f(α) as:

f(α) ≡ max
p∈P

−α$e +
1

2

m
∑

i=1

piα
$Giα, (8)

where α ∈ Q′.
One of the main problems with solving the above prob-

lem directly is that the function f(α) in (8) is a not smooth.
Therefore, the best convergence rate is O(1/ε2) (Nesterov
2005) in the worst case analysis, where ε is the error rate.
Thus, the key to improve the efficiency of the optimization
problem in (8) is to approximate f(α) by a smooth function.
To this end, we introduce the entropy H(p) as the regular-
izer, i.e.,

H(p) = −
m

∑

i=1

pi ln pi.

In optimization literature, H(p) is also called entropy prox-
function. H(pi) = 0 if and only if pi = 0 or pi = 1.
Therefore, by introducing the entropy regularizer, the ex-
treme solutions will be penalized.

We further introduce an approximation function fλ(α),
which is defined as follows:

max
p∈P′

−α$e +
1

2

m
∑

i=1

piα
$Giα−

λ

2

m
∑

i=1

pi ln pi, (9)

whereλ is a smoothing constant whose value will be decided
later. We define P ′ = {p ∈ Rm : 0 ≤ p ≤ 1}.

In the following, we will prove that the regularizer H(p)
transforms the original piecewise linear function maximiz-
ing p as described in (8) to be a smooth C1,1 function.

To do this, we first derive the dual form of (9), which is
stated in Lemma 1.

Lemma 1. The optimization problem in (9) achieves the
same optimal value as that of the following optimization
problem:

fλ(α) = −α$e +
λ

2
ln

(

m
∑

i=1

exp(
1

λ
α$Giα− 1)

)

. (10)

The following theorem shows that fλ(α) universally up-
per bounds f(α).

Theorem 1. fλ(α) universally upper bounds f(α) by a fac-

tor of λ
2
(ln m − 1), i.e.,

fλ(α) − f(α) ≤
λ

2
(ln m − 1). (11)

In the following, we will show that the above optimiza-
tion problem is a convex and smooth optimization problem.
The results are proved in Corollary 2 and Corollary 3, re-
spectively.

Corollary 2. The problem min
α∈Q′

fλ(α) is a convex optimiza-

tion problem.

In order to verify whether fλ(α) is a smooth function, we
first calculate the gradient of fλ(α) as follows:

∇fλ(α) = −e +
1

2

m
∑

i=1

θiGiα, (12)

where

θi =
exp(1

λ
α$Giα− 1)

∑m
j=1

exp(1
λ
α$Giα− 1)

. (13)

639

Then the key to prove the smoothness is to show that
∇fλ(α) is Lipschitz continuous. Corollary 3 validates that
fλ(α) is a smooth function.

Corollary 3. The optimization function of fλ(α) is a smooth

C1,1
L function, i.e., the gradient function ∇fλ(α) is Lipschitz

continuous. The Lipschitz constant is bounded by

L = ag +
nC2bg

λ
,

where

ag =
1

2
max

1≤i≤m,1≤j≤n
[Gi]j,j , bg =

1

2
max

1≤i≤m
[Λmax (Gi)]

2.

In the above, Λmax(M) denotes the maximum eigenvalue of
matrix M.

According to (Nesterov 2005), a continuous function with
Lipschitz-continuous gradient can have an efficiency esti-

mate of the order O(
√

L
ε
), which is more efficient than

methods based on black-box-oracle models. In this paper,
we employ the Nesterov’s method to solve the approximated
smooth function of multiple kernel learning.

Nesterov’s Method for Smooth MKL

The Nesterov’s method is used to approximate the orig-
inal non-smooth function with a smooth function with a
Lipschitz-continuous gradient (Nesterov 2005), and then
employ gradient-based methods to iteratively update the so-
lution. In this section, we present how to employ the Nes-
terov’s method to solve the smooth problem of multiple ker-
nel learning.

First, given the current solution αk to (10), we first calcu-
late the gradient based on (12). Then we calculate an auxil-
iary solution βk by solving the following optimization prob-
lem

βk = argmin
β∈Q′

(β − αk)$∇fλ(αk) +
L

2
‖β − αk‖2

2, (14)

where the first term is to decrease the objective value of
fλ(α) along the gradient and the second term is a regular-
ization term.

Minimizing (14), we can obtain an analytical solution as
follows

βk
i = T

(

αk
i −

[∇fλ(αk)]i
L

)

, (15)

where the operator T (u) is defined as

T (u) =

{

0 u < 0
C u > C
u other wise

.

In (14), we can obtain a series of approximated solution,
denoted by {βk}∞k=0, for MKL using gradient descent.

It is required that {βk}∞k=0 satisfy the following condi-
tion:

Akf(βk) ≤ min
α∈Q′

∞
∑

k=0

ηi(fλ(αi) + 〈∇fλ(αi),α− αi〉)

+
L

σ
d(α), (16)

where d(·) is the distance function in Q′ and σ is a constant.

Ak =
∑k

i=0
ηi and {ηi}∞k=0 are step-size parameters. We

denote the solution of Eq. (16) as γk and obtain {γk}∞k=0.

By setting ηi = i+1
2

, we can obtain

γk = argmin
α∈Q′

k
∑

j=0

j + 1

2
[fλ(αj) + (α− αj)$∇fλ(αj)]

+
L

σ
d(α). (17)

In the above, the prox-function d(α) is defined as d(α) =
1

2
‖α‖2

2. Hence, to ensure the strong convexity of d(α), we
set σ = 1.

The analytical solution of (17) can be described as fol-
lows:

γk
i = T



−
1

L

k
∑

j=0

j + 1

2
[∇fλ(αj)]i



 , i = 1, . . . , n. (18)

Then the solution of iteration k will be computed as

αk+1 = τkγ
k + (1 − τk)βk, (19)

where τk = 2
k+3

.

Finally, we describe Nesterov’s method for MKL in Al-
gorithm 2.

Algorithm 2 Nesterov’s Method for Smooth MKL

1: Initialize the number of iterations N
2: Initialize α0 to be the optimal solution to a SVM problem with

the kernel matrix K = 1

m

m
i=1

Ki

3: Compute λ and L
4: for k = 0, . . . , N do
5: Update βk according to (15)
6: Update γk according to (18)
7: Update αk according to (19)
8: end for

We then discuss the convergence rate of Algorithm 2.

Theorem 4. The convergence rate of the above algorithm
for the optimization of fλ(α) is in the order of O(1/N2)
where N is the number of steps. In particular,

fλ(βN) − fλ(α∗
λ) ≤ 2

L‖α∗
λ‖

2
2

(N + 1)2

where α∗
λ is the optimal solution of the problem (10), i.e.,

α∗
λ = argmin

α
fλ(α).

Corollary 5 describes the convergence rate of the algo-
rithm for the minimization of f(α).

Corollary 5. The convergence rate for the minimization of
the original function f(α) is bounded by

f(αN) − f(α∗) ≤
nag

2(N + 1)2
+

nC2
√

bg(lnm − 1)

N + 1
. (20)

Finally, we recover the kernel weights according to (13).
Then based on the new kernel weights, we could train an
SVM classifier for predicting.

640

Experiment

We conduct experiments to evaluate the effectiveness and ef-
ficiency of the proposed algorithm in contrast with two state-
of-the-art MKL algorithms, the L1-MKL (Rakotomamonjy
et al. 2008) and L2-MKL (Kloft et al. 2008). We denote the
proposed algorithm by SMKL.

To better understand the properties of the proposed al-
gorithm, we first design a toy data set, where no features
are redundant. Then we evaluate the algorithms on seven
UCI data sets and five text data sets. We summarize the
data sets used in this paper in Table 1. Among the text
data, text1, text2, and text3 are three text data sets are ex-
tracted from the Ohsumed1, representing three challenging
binary classification problems, i.e., C1 vs C2, C5 vs C6, and
C12 vs C13, respectively. text4 and and text5 denote the clas-
sification of two news groups of the 20-Newsgroups2 repos-
itory, auto vs motor and baseball vs hockey, respectively.

Table 1: Data sets used in the experiments, where d and n
represents data dimensionality and cardinality, respectively.

Data set d n Data set d n

iono 33 351 breast 9 300
sonar 60 208 pima 8 768
heart 13 270 wdbc 13 569
wpbc 33 198 text1 1686 581
text2 2302 871 text3 2059 772
text4 5341 2000 text5 6311 2000

All experiments are conducted on a PC with 3.2GHz CPU
and 2GB memory. For each selected data set, we repeat all
the algorithms 20 times. We normalize the training data with
zero mean and unit variance, and normalize the test data ac-
cording to the mean and variance of the training data. The
regularization parameter C in SVM is selected using cross
validation. We stop the algorithms when the duality gap is
less than 0.01 or the number of iterations larger than 500.
For the comparison algorithms, we employ the SimpleMKL
(Rakotomamonjy et al. 2008) toolbox to implement L1-
MKL and L2-MKL, respectively.

Experiment on Toy Data

We produce a toy data set with 500 data points and 40 di-
mensions. We set the label according to the mean of the first
34 dimensions and set the left 6 dimensions as irrelevant.
We randomly select 10% from the data to form the training
data. Then we employ the following rule to form the base
kernels: for each base kernel Ki = viv

$
i for i = 1, . . . , d,

where vi is the i-th feature of data X ∈ Rn×d. Thus the

final kernel matrix is formulated as K =
∑d

i=1
piviv

$
i . It

is believed that the base kernels are complementary to each
other. This setting can be used to learn a relational kernel for
text mining (Cortes, Haffner, and Mohri 2004) and weighted
spectrum kernel for splice site detection in bioinformatics
(Sonnenburg et al. 2006).

1ftp://medir.ohsu.edu/pub/ohsumed
2http://people.csail.mit.edu/jrennie/

20Newsgroups/

We then remove one irrelevant feature from the training
data one by one until no irrelevant features are left. We call
the ratio of the number of relevant features to the total num-
ber as the complementary information ratio ρ. Then for each
ρi (i = 1, . . . , 7), we show the corresponding prediction re-
sults of three MKL algorithms in Fig. 1. It is observed that
with a high ratio, the Nesterov’s method could significantly
improve the prediction accuracy. This clearly indicates that
smooth optimization of MKL will benefit the learning prob-
lem when most base kernels are complementary.

It is also interesting to discuss the running time of these
algorithms. Among these three algorithms, the L2-MKL re-
quires more running time than the other two algorithms. Its
time cost is almost hundred times of the other algorithms.
This therefore limits its application in large scale multiple
kernel learning algorithms. When comparing SMKL with
L1 MKL, SMKL costs a little bit more time than the L1-
MKL but still in a similar scale.

Experiment on Real-world Datasets

We then evaluate the algorithms on the UCI data sets and the
text data sets. According to our design of base kernels which
will be described below, we will separate the experiment into
two parts, one on UCI datasets and the other on text datasets.

For the experiment on the UCI data sets, we adopt the
similar experimental setting as the toy data. We randomly
select 20% from the data to form the training data. We adopt
the following setting to design the base kernels:

• Gaussian kernels with 10 different widths
({2−3, 2−2, . . . , 26}) on each single feature

• Polynomial kernels of degree 1 to 3 on each single feature.

In this way, most base kernels are complementary to each
other.

We show the classification results in Table 2. It is ob-
served that SMKL has obtained significantly better classifi-
cation accuracy than the other two methods. This is because
that the base kernels composed by single features may be
complementary to each other. And the entropy regularizer
in SMKL better captures this complementary information.
Moreover, L1-MKL achieves the worst performance due to
the simplex constraint in L1-MKL, where only a few dom-
inant features are selected and some useful features are dis-
carded during the optimization. For example, on average,
only 26 over 429 kernels are selected for the iono data. Al-
though L2-MKL can also obtain non-sparse solution, its re-
sult is worse than SMKL. This shows that the ball constraint
in L2-MKL is not an appropriate regularizer compared with
the entropy regularizer in SMKL. Moreover, L2-MKL is
very time consuming for all the datasets. In summary, when
base kernels are complementary, the smooth optimization of
multiple kernel learning can improve the predication accu-
racy over other MKL algorithms.

For the experiment of text datasets, we employ MKL
algorithms to optimize the weights of relational kernel
(Cortes, Haffner, and Mohri 2004). For the selected data
sets, 10% of the data are used for training and the rest for
testing. Other settings are similar to the above experiments.

641

(a) Accuracy (b) Running time

Figure 1: Comparison of three MKL algorithms on the toy data. (a) The prediction accuracy comparison when varying the number of
relevant features. (b) The running time comparison for three algorithms when using all relevant features.

Table 2: The classification accuracy (%) and std values of
MKL algorithms when the base kernels are constructed on
single features. The base kernels can be regarded as com-
plementary kernels.

Data Set L1-MKL L2-MKL SMKL

iono 87.1±2.0 89.0±2.1 89.3±2.6
breast 95.4±0.6 95.8±0.7 96.3±0.6
sonar 73.6±4.2 75.6±4.6 77.2± 4.3
pima 69.0±2.2 70.0±1.6 71.6±1.2
wdbc 93.4±1.2 94.1±1.2 94.5±1.1
heart 77.3±3.5 78.7±2.6 78.9± 2.5
wpbc 72.6±3.2 75.0±2.9 75.1± 2.7

We show the results in Table 3. It is observed that the advan-
tage of the proposed algorithm is much more clear for text
categorization. For example, the improvement of SMKL
over L1-MKL is over 7% on text1. Its success can be ex-
plained by the fact that the features/terms in text are com-
plementary to each other in semantics.

Table 3: The classification accuracy (%) and std values of
MKL algorithms on text data.

Data Set L1-MKL SMKL

text1 72.7±2.0 77.3±1.6
text2 79.5±1.6 81.0±1.8
text3 78.1±2.0 81.5±2.2
text4 85.1±2.7 87.6±2.3
text5 98.0±1.2 98.8±0.3

Conclusion

In this paper, we have presented a smooth optimization
framework for multiple kernel learning. The original non-
smooth function of MKL based on the simplex constraint is
first approximated by a function with an entropy regularizer,
which is Lipschitz-continuous and forms a universal upper
bound to the original function. We then employ a gradient-
based method, known as Nesterov’s method, to efficiently
solve the smooth problem of MKL. Moreover, we also prove
the convergence rate of the derived algorithm. The experi-
ments on several benchmark data sets have shown the ef-
fectiveness of the proposed smooth optimization scheme for
multiple kernel learning compared with both L1-MKL and
L2-MKL .

Acknowledgment
The work was supported by the US National Science Foundation
(IIS-0643494), US National Institute of Health (1R01GM079688-
01), Research Grants Council of Hong Kong (CUHK4158/08E and
CUHK4128/08E), and MSRA (FY09-RES-OPP-103).

References
Bach, F. R.; Lanckriet, G. R. G.; and Jordan, M. I. 2004. Multiple
kernel learning, conic duality, and the SMO algorithm. In Proc. of
Int. conf. on Mach. Learn., 41–48.

Cortes, C.; Haffner, P.; and Mohri, M. 2004. Rational kernels:
Theory and algorithms. J. Mach. Learn. Res. 5:1035–1062.

Cortes, C.; Mohri, M.; and Rostamizadeh, A. 2009. Learning non-
linear combinations of kernels. In Advances in Neural Information
Processing Systems 22, 396–404.

Cristianini, N.; Shawe-Taylor, J.; Elisseeff, A.; and Kandola, J. S.
2001. On kernel-target alignment. In Advances in Neural Informa-
tion Processing Systems 13, 367–373.

Kloft, M.; Brefeld, U.; Laskov, P.; and Sonnenburg, S. 2008. Non-
sparse multiple kernel learningg. In NIPS workshop on Kernel
Learning: Automatic Selection of Optimal Kernels.

Kloft, M.; Brefeld, U.; Sonnenburg, S.; Laskov, P.; Müller, K.-R.;
and Zien, A. 2009. Efficient and accurate lp-norm multiple kernel
learning. In Advances in Neural Information Processing Systems
22 (NIPS).

Lanckriet, G. R. G.; Cristianini, N.; Bartlett, P.; Ghaoui, L. E.; and
Jordan, M. I. 2004. Learning the kernel matrix with semidefinite
programming. J. Mach. Learn. Res. 5:27–72.

Nesterov, Y. 2005. Smooth minimization of non-smooth functions.
Math. Program. 103(1):127–152.

Rakotomamonjy, A.; Bach, F. R.; Canu, S.; and Grandvalet, Y.
2008. SimpleMKL. J. Mach. Learn. Res. 9:1179–1225.

Sonnenburg, S.; Rätsch, G.; Schäfer, C.; and Schölkopf, B. 2006.
Large scale multiple kernel learning. J. Mach. Learn. Res. 7:1531–
1565.

Xu, Z.; Jin, R.; King, I.; and Lyu, M. 2009. An extended level
method for efficient multiple kernel learning. In Advances in Neu-
ral Information Processing Systems 21, 1825–1832.

Ye, J.; Chen, J.; and Ji, S. 2007. Discriminant kernel and regular-
ization parameter learning via semidefinite programming. In Proc.
of Int. conf. on Mach. Learn., 1095–1102.

Zien, A., and Ong, C. S. 2007. Multiclass multiple kernel learning.
In Proc. of Int. conf. on Mach. Learn., 1191–1198.

642

