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. ) To'wa.llrds. the end, the number of redundant rules

Abstract . killed remains constant. This further confirms the

fae s : P importance of token competition. After the

’ 'I:oken competition and rule migration are Ii.:wo population has evolved for a certain period of time,

spec:L:?).L featur‘es of SCIoN, a platfo::;m fo.r.develop;u'xg only a few viable genes (i.e, particular duples)

genetic algorn.f:hm (GR) baied appllz.catlons._ ; Their remain in the population. Therefore, the chance of
performances  in  automatic rule learning are producing a redundant child rule is very high
evaluated by a series of empirical studies, Tt is . o

demonstrated that GAs with token compétition has a
clear advantage over those without it. Except for
some situations, GAs with rulé migration has &

better performance on the average. 1'06
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1. Introduction § ol
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In part 1 of this two-part series of papér, basic £ 60
concepts of SCION' (a platform for developing GA. % s50L JU LR nemeneaenn
based applications) are proposed [1]. It is argued. -(_,"3 S e without token competition
that token competition and rule migration are g P08
important mechanisms - which can improve the ® a0
efficience of automatic rule learning. The purpose (3_5) T
of this part of the series is to demonstrate with 20
empirical studies the effectiveness of the proposed 10 |-
mechanisms. o Lb 1 | | | | | | L4
Caqe'studies and empi'ricait results using token ® 50 100 150 200 250 300 350 400 450
competition are examined in section 2, Results of a
series of empirical studies using rule migration are Generation

analyzed in section 3. Comparison of SCION and a
conventional GA system is then made in section 4.

The paper is concluded with some directions for Fig. 1 Performance with and without token
further research. .

competition in four-equal-cluster problem

2. Token Competition -— Empirical Results
and Interpretations
In order to evaluate the effectiveness of GAs 100
with token competition, two empirical studies are r
carried out as follows: z %1
(a) Problem with egqual clusters. For each — 80
class, the data points are gathered to form four s 0L token competition
clusters with compatible sizé, R L
(b) Problem with unequal clusters. For each S 60
class, the data points are gathered to form four 2 s0F
clusters with one large (in terms of area covered) 5 .t
cluster, . o
It can be observed in Figs. 1 and 2 that SCIow 3 30 g without token competition
with token competition significantly outperforms the 3 20 b7
one without it, In both cases, the one with no © L
competition get stuck after certain generations . 10 -
since most of the rules in the population look like 0 I 1 I 1 1 | ! 1
each other and no diversity is created even after 0 50 100 150 200 250 300 360 400 450
the crossover operation has taken place.
Roughly speaking, about 50% of the parent rules Generation

should be disposed so that more room is spared to

accommodate a larger set of children rules.

Therefore, the diversity of search is greatly Fig. 2 Performance with and without token
enhanced without expanding the total population. competition in four-unegual-cluster problem



3. Rule Mlgratlon — Empirical Results and
Interpretations

The objective of Rule Migration (RM) is clear: to
preserve the evolution effort so as to shorten the
evolution time. Since Rule Migration is a new
concept irn GAs, its capability is still uncertain.
So experiments are conducted to examine the:

(a) Performance of RM with different problem
. complexities,

(b) Performance of RM with different migration
quotas,

(c) Pexrformance of RM with différent population
sizes,

(d) Performance of RM with different volumes of
training data,

(e) Robustness of RM with different initial rule
sets.

3.1 Different Problem Complexities

In this section, the capacity of migration is
tested in different problems with different levels
of complexities. Two sets of experiments are
carried out. Each set consists of three problems:
(a) an ‘easy two-dimensional problem (2 attributes)
with 2 different classes each, (b) a three~
dimensional problem (3 attributes) with 3 different
classes and (c) a difficult four-dimensional problem
(4 attributes) with 4 different classes. Problems
In set #2 are more complex than set #1 because their
training data scatter more and are grouped into four
different clusters.

In easy problems, GAs with and without mlgratlon
give the same results. The. total generations
required are too little that mlgratlon has no
advantage. Evolution without migration is already
adequate. However, in more complex and difficult
problems like set #2, migration improves the
performances. Since the data for each class scatter
a lot, most of the rules in a particular class would
have a large number of false alarms to other classes
and become bad rules themselves, resulting in having
little survivors in each class. Without mxgratlon,
the progress made in the first few generations is
very limited because of bad parents: However, since
the data scatter, the bad rules for a particular
class have a very high probability as a good one in
other classes.

Table 1. Set #l:

Generation Number for
1 cluster/class

100% learning

Class # | Attribute # Without With
Migration Migration
(% of w/o
. Migration)
2 2 3 3 (100%)
3 3 3 3 (100%)
4 4 3 3 (100%)

Table 2. Set #2:

Generation Number for
4 clusters/class

100% learning

Class # | Attribute # Without With
Migration Migration
(% of w/o
Migration})
2 2 98 52 (53.6%)
3 3 95 78 (82.1%)
4 4 289 155 (53.6%)

Rule migration can thus inject .vitality to the
system at the beginning of evolution and set a good
path for further evolution. We can see in Tables 1
and 2 that migration always performs better in the
first few generations and set a better evolution
direction.

3.2 Different Migration Quotas

The role of gquota in the performance of rule
migration is very subtle. Without rule migration,
it usually takes more time for rules to evolve., If
;t is set too large, it will hinder the evolution,
because the more foreign immigrants a population
has, the less the offsprings the original rules can
produce. It can be shown that most rule immigration
happens in the first few generations of evolution.
(See disscussion on the pattern of rule migration in
part 1 of this series,) As the first few
generations is very critical for the system to
establish its own evolution path, different quota
limits’ exert different effects on the system
performance.

Two sets of experiments are carried out, the
former one uses 100 training data for each class
while the latter uses 400. The results are obtained
in Table 3. .

These two sets have similar results. Evolution
time decreases from quota 1 to a minimum in quota 2.
Then, it rebounds afterward and levels off at larger
quotas.

It is because in each generation there are only
a4 handful of qualified immigrants. With insufficient
quota, some useful immigrants would be blocked.
Also, when the quota exceeds the number of qualified
immigrants, pushing up the gquota limit would not
have any effect.

Table 3 Generation Number for 100% learning
Migration- 100 Training 400 Training
Quota Data Data

1 135 79

2 111 51

3 123 78

4 190 78

5 - 190 78

3.3 Different Rule Population Sizes

In this experiment, classification rules are
learnt using the same training data. The initial
population sizes of the rule sets are 10, 20, 40 and
80 in each class respectively. The time for SCION
to learn all the data is obained in Table 4.

Table 4 Generation Number for 100% learning

Rule Without With Migration
Population Migration (% of w/o
Migration)
10 more than 2659 1215 (45.7%)

20 298 517 (173.5%)
40 95 78 (82.1%)

80 . 29 . 87 (300.0%)

From the results we notice that migration is more
powerful in small population. In the case with 10
rules, the room for producing offsprings is very



limited (about 5 only), and the evolution rate is
very low. We can see that with no migration, using
10 rules still cannot. reach 100% after 2659
generations. However, with migration, one competent
rule from another class can meedlately inject
vigour into the system and it requires only 1215
generations to reach 100%. So for a relatively
small population, rule mlgration should be employed.

As the populatlon size increases, the number of
offsprlngs‘also increases and the significance of

rule migration decreases drastically and behaves

worse than having no migration at all.
3.4 Different Training Data Volumes

In this experiment, classification rules are
learnt using the same initial rule set and same rule
population size of 40. However, the total number of
training data for each class vary from 100 to 800.
The results for learning all the data are tabulated
in Table 5.

Table 5 Generation Number for 100% learning

Training Without With Migration

Data # Migration (% of w/o

Migration)

100 62 "123 (198.4%)
200 152 108 (71.1%)
400 95 78 (82.1%)
800 136 82 (60.3%)

Again migration performs better in cases with
large number of training data. As the number of
training data increases, the data will be more
diverse but more representative. Therefore, the
difflculty of classifying all of them correctly
increases as the volume of training data increases,
Migration, on the other hand, can overcome this
difficulty by setting new directions guided by the
immigrants. 8o for real applications where there
are thousands of training data in each class, it is
better to use migration.

3.5 Different Initial Rulée Sets

The objective of this experiment is to test
whether migration can always do better for the same
problem, i.e. with the same number of classes and
attributes, and with the same rule population sizes.
To test this, different initial rule sets are used
for learning with and without migration. The
results are depicted in Table 6,

It can be seen that having migration has a better
performance than not having migration on the
average. This confirms our belief that migration
can set an efficient evolution path.

Table 6 Generation Number for 100% learning |
Initial Without With Migration
Rule Set Migration (% of w/o
Migration)

#1 95 78 (82.1%)

#2 60 57 (95.0%)

#3 69 75 (108.7%)

#4 197 71 (36%)
Average: 105.25 70.25 (66.7%)

3.6 General Pattern of Rule Migration

An experiment is done to study the pattern of
migration in terms of the number of immigrants and
the minimum requirement for immigration to a
particular class at each generation. The results
are depicted in Fig. 3.

We can see that the minimum requirement for
lmmlgratlon increases while the number of qualified
immigrants decreases as the evolution goes.

At the beginning of an evolution, since the rules
in each class are not so strong, the minimum
requirement for entering a class is relatively low.
Therefore, the bad rules eliminated from a class can
easily go to other classes.

As the rules in each class become stronger, the
threshold for immigration to a foreign class becomes
higher. So, the number of immigrants decreases as
the difficulty of immigration increases.
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Fig. 3 Pattern of rule migration

3.7 A Note on Rule Migration

Although the average performance of GA with rule
migration is better than the one without it, it
should be emphasized that rule migration is not a
panacea in rule learning. It behaves well in
problems with large classes, large cluster number,
and large training data set. Also it performs
exceptionally well when <rule population is
relatively small comparing to the problem itself
(e.g. rule population of 10 in problem with 5
classes with 5 clusters each, 10 attributes and 2000
training data for each class).

However, migration should be employed together
with the correct migration quota to achieve its
maximum benefits. So it is hoped that the later
version of SCION can dynamically adjust the
migration quota or even the usage of mlgratlon for
different problems.

4. SCION vs a Conventional GA Systenm

To demonstrate the superiority of SCION, its
performances is compared with that of a GA system
built with conventional features [2]. The results
are depicted in Figs. 4a, b.

In clustered problem gpace, SCION easily out~
performs the traditional GA by 10 to 15 times, with
even a smaller population. But we should not ignore
that the traditional tree representation, which
allows simple linear expression, may perform better
with data embedded with some mathematical
properties. Also, since only the strongest rule is
supposed to classify all the identical data and the
evaluation of a rule strength is biased by the size
of the rule, GA may be able to give a 'set of more
concise production rules at the end.
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(a) SCION: 40 rules Conventional GA: 64 rules
3 classes: 4 equal clusters per class
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(b) SCION: 40 rules Conventional GA: 64 rules
3 classes: 1 big cluster out of 4 per class

Pig. 4 SCION vs conventional GA

5. Conclusion

In designing SCION many concepts of evolution
such as selection of parents, candidates for
mutdtion, punishment and award are constructed from
the perspective of eugenics and social planning.
Also we can observe in our GA system many
irteresting phenomena in human society, such as the
negative impact of inbreed crogsover and the
propagation of good genes down to the offsprings.
We are convinced that GA is a promising tool to
tackle many optimization problems and its ability to
get rid of local maxima is quite impressive. BAs it
does not depend on any prior knowledge about the
problems, GA is an ideal general learning mechanism
in rule-based systems. SCION is going to be further
enhanced to take into consideration of fuzzy
knowledge ([3), training and synthesis of neural
networks (4].

References

{1] K.S. Leung, Y. Leung, Leo So, and Kin Fai Yam,"
Rule Learning in Expert Systems using Genetic
Algorithm: 1, Concepts," Proceedings of the 2nd
International Conference on Fuzzy Logic and
Neural Networks, Iizukh, Japan, July 1992.

(2]

(3]

[4]

Richard Forsyth, *"Beagle — a Darwinian
approach to pattern recognition;" Kybernetes,
Vol. 10, pp. 159-166, 1981.

Chuck Karr, "Genetic Algorithms for Fuzzy
Controllers," AI EXPERT, pp. 26-33, February
1991.

Maureen Caudill, "Bvolutionary Neural
Networks," AI EXPERT, PP. 28-~33, March 1991.



