RULE LEARNING IN EXPERT SYSTEM8 USING GENETIC ALGORITHM: 1, CONCEPTS

Kwong Sak Leung', Yee Leung’, Leo So™, and Kin Fai Yam*

*Department of Computer Science
*Department of Geography, and
Center for Environmental Studies
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong
**Computer Science Department
University of Arizona
Tucson, A% 85721, U.S.A.

Keywords! Genetic algorithm, rule learning, knowledge engineering,
token competition, rule migration, expert system.

-Abstract

Rules are the essence of a rule-based expert
system. However, the acquisition of rules is known
to be the bottleneck of the knowledge engineering
process., Genetic algorithms (GAs) are investigated
as a tool to acquire rules automatically from some
training examples., A platform code-named SCION isg
built for the development of GA based applicatiens.
Two novel ideas, namely; token competition and rule
migration are introduced in this two-part series of
papers. Their effects on the efficiency and
effectiveness of applying ‘GAs to rule acquisition
are explored. From the results obtained so far, GAs

‘seem to be a very promising tool for such an

investigation. Basic concepts of SCION are
introduced in part 1. Case studies and results are
presented in part 2.

1. Introduction

The early expert systems (ESs) are mainly rule~
based systems. Nevertheless, object oriented ESs
are becoming increasingly popular. However, even
within an object oriented ES ([1]-[2], rules
frequently form an essential part of the knowledge
base. and are oné of the most important knowledge
representation methods. Unfortunately, acquiring
rules from domain experts is not an easy task. On
the other hand, it is almost 4impossible for a
knowledge engineer to extract rules from static
databases. Rule acquisition thus Dbecomes - a
bottleneck in the knowledge engineering process.

A genetic algorithm (GA) [3]~[{13] is a general
search technique that imitates the eveolution
processes of nature. In order to useé a GA to learn
rules from examples given as a set of data, an
initial population of rules is germinated randomly
which are then subjected to rule evaluation, a

* competitive process in which the rules are ranked

according to their fitness obtained from comparing
with the set of training examples. The weaker rules
are éeliminated. The remaining elite rules are used
by the GA to produce offsprings (new .rules) by
crossover and/or mutation. To complete an iteration
(an evolution cycle), the new born rules.can then
join the competition (rule evaluation) after being
treated by a rule tidying process which prunes
redundant components in each new rule. The cycling
stops when the population of rules satisfies certain
criteria or a preset number of iterations is
reached. Of course, a GA can be used for refinement
of rule bases.

The crossover operation involves two rules. The
randomly selected part from each rule are joined by
a random Boolean relation to give new offsprings.

For example, (X2<>X3) AND (NOT (X1<4)) can crossover with
(X1+X2=9) OR (X4<5) to give (NOT (X1<4)) OR {X1+X2=9),
where OR is randomly generated. Thé mutation operator
randomly selects a candidate from the elite rules
and performs a grow (add), slim (cut) or a change
operation on one of its randomly selected opcodes or
operands.

The next section gives the overall aldorithm and
architecture of SCION. The two novel ideas, token
competition and rule migration, introduced into our
rule learning algorithm are detailed in sections 3
and 4 respectively. The paper is concluded with a
statement leading to part 2 of this two-part series
of paper.) '

2. Overall Architecture of SCION

The overall system flows of SCION is depicted in
Fig. 1 and is explained in brief in this section.

2.1 Rule Representation

In order to increase efficiency, we employ a new
structure, a chain of duples instead of tree
representation. A duple is an entity containing two
values which are associated with an attribute of a
rule. The values are the lower and upper bounds of
thé attribute. Suppose the rule Rl in class 1
containing three duples has the following form:

({4, 7), (3, 9), (11, 20))
The equivalent Boolean form is:

IF (4<%, <7)AND (3 <X,<9) AND (11 £ X, <20)
THEN CLASS =1,

The advantage of using duples is that a greater
resemblance between the rule structure and its
biological counterpart can be established. The
chain of duples is an analogy of a chromosome and a
duple is an analogy of a gene. BAlso, with duple
representation, genetic operators like crossover and
mutation can be made faster and simpler because the
simple array data structure storing the duples
resembles the gene-chromogsome relationship. A
crossover operator involves only the splitting of
two parents and then the recombination of their two
separated sections. The mutation operator involves
only the random changing of an arbitrary duple.
Thus the learning process can be sped up.

The simple representation only allows AND and <

relationshipsg in a rule, but almost all
relationships can be simulated by a set of simple
rules. For example, an OR relationship can be

modeled by 2 separate rules in the inference
process,

User Input

Scratch Rules —1 I—-

% Rule Population [

L

Rule Evaluation

1

Rule Sorting
by Strength

1

Token Competition

&

Redundant Rules
Elimination

Weak Rules

' Elimination ,

Survived Rules Eliminated Rules
as Parents imprisioned

L :)
Reproduction Emigration
l - L

Output Rules

Fig. 1 The overall system flows of SCION

2.2 Rule Evaluation and Sorting

This module is used to calculate the strength of
all rules by keeping track of their hit scores and
false alarms as follows:

for each class i
read sample data until end of file
for each rule in ¢lass 1)
if it can classify the data
increase its hit score by 1
for each rule in other class
1f it can classify the data
Increase its false alarm by 1

All rules within one class are sorted in a
decending order by their strengths.

A class can consist of two data zones with
contrasting sizes. There is a risk that the smaller
zone will be ignored. It is because any rule
landing on the larger zone will enjoy a good score
(HIT-FALSE) even though they may have false alarms.
Those rules landing on the smaller zone will suffer
from limited credit even though they have no false
alarm at all. Then these unfortunate rules will
face the risk of being expelled since competition
for survival is keen. B8 a result, this small zone
will be left out. Consequently, perfect performance
can never be reached,

However, under the HIT/FALSE instead of the
conventional HIT~FALSE scoring strategy, rules in
small clusters still have the chance to get high
credit if they have proportionally less false alarms
than those rules in bigger clusters. Therefore, the
small clusters are still accounted for. To avoid
dividing by zero error when FALSE = 0, a strength
adjustment is added to the denominator, making the
formula to be HIT/(FALSE + ADJUST).

2.3 Token Competition

This module determines the ﬁumbei: 6f tokens each
rule can get. The rules are assumed sorted already.
Token allocation is determined as follows:

for each class i .)
read sample data until end of file .
give token to the first rule in class i classifying it

(see section 3 for details)
2.4 Redundant and Weak Rule Eliminations

After token competition, each rule will get its
own tokens. Those cannot get any token are
classified as redundant rules which are to be
eliminated and imprisoned.. If the size of the rule
set still exceeds the allowed quota of parent rules
after redundant rule elimination, the excess rules

(the weaker ones) will be eliminated, '
2.5 Rule Migration

After rule elimination, +the weaker rules
eliminated from the population are imprisoned.
According to their hits and false alarms to other
classes, their scores toward other foreign classes
are computed. If any bad rule of a particular class
has a score better than the average score of any
other classg, it will be copied to that class as its
immigrant.

The status of the new immigrant is just like an
offspring from reproduction, i.e. they are both used
to fill up the difference between the +total
population and the survived parents. Since rule
migration happens earlier- than rule reproduction;
the more immigrant rules migrate to" a clags, the
less offsprings can the original rules in that class
reproduce. So an immigration quota is required to
set the maximum number of immigrants to a class.
(See section 4 for details).

2.6 Reproduction

After two severe screening procedures, all the
rules survived will become potential parents.
Crossover operation is performed first. Two parents
are involved in contributing their "genes" to form
the children rules. The selection of parents is a
process by which a rule with greater strength has a
greater chance of being selected. The quota of
reproducing children rules by the crossover
operation is determined by the cross ratio supplied
by users. The rest of the space belongs to the
mutation operation. '

2.6.1 Crossover

The selected parent rules will duplicate
themselves first. Then each copy will be splitted
into two sections with the cut-off point randomly
selected. The section before the cut—off point is
detached from the rest of the body. Then these
sections will be exchanged and recombination takes
place, giving two new children rules. Suppose the
cut—off point is at the 4th position for the
following two copies of parent rules:

((1,10), (4, 11), (20, 30))
((58,90), (7, 40), (1, 5))

Then, two children rules are obtained as follows:

0), (1, 5))
11), (20, 30))

Bach recombination must be checked to prevent
inappropriate matching between a large lower bound
and a small upper bound. Also the children rule

produced must not resemble any existing rules. If
any duplication is found, the crossover operator is

then reapplied again until a successful mating is
achieved or until too much failure is encountered.
The latter case may suggest that the combinations of
genes of the parents are exhausted. Then the excess
quota will be granted to the mutation operation.

2.6.2 Mutation

The mutation oOperation will just select randomly
a value to be changed. The partner of the value in
the duple will be referenced to guarantee that no
lower bound is greater than the upper bound.
Suppose mutation takes place at position 2 of the
following rule:

({4, 23), (27, 34), (1, 9))

The child rule is then obtained as:
((4,23), (17, 91), (1, 8))

3. Elaboration on Token Competitien

The inbreed mating poses a great threat to the
robustness of the GA. The problem can be
illustrated by the following simple example.

Suppose the problem space is described by two
attributes: X, ¥, It can be portrayed as a two
dimensional diagram in Fig. 2.

The shaded area is the locdation of sample data of
a particular class, Take it as class 1. Also
suppose there are two rules which can correctly
classify this zone of data.

Although both rules overwhelm the sample zone a
little bit, the overspill does not cause any false
alarm because no other class of the sample data is
covered. .

In Fig. 2, the rules expressed in Boolean logic
form are: R1: ((b, a), (s, t)), and R2: ((d, ¢), (u, v)).
Once they happen to mate each other, their offspring
may take the form of: C1l:(b,c) (u,v)),which also
embraces the same data zone,

As this phenomenon propagates, the whole
population will gradually degenerate into a set of
homogeneous. rules. Then the evolution will fall
into a vicious circle as the homogenéous parent
rules reproduce homogeneous children rules.

X1
Rule 1

n

Rule 2
/

X2

@ |-——
Py N
PO S

[Py

Fig. 2 GA with two redundant rules

Token Competition is designed to remove this
hindrance. 1In this mechanism, each sample datum is
regarded as a token. Once a rule can correctly
classify this datum, it will seize this token so
that rules to follow cannnot get it. After the
whole sample database is parsed, those rules with no
token at hand will be killed. The priority of
receiving tokens is determined by the strength of
the rules. Strong rules are encouraged to seize as
many tokens as they can, leaving those weak rules

. simplicity.

starving. As a result, the whole sample data set
can be represented by only a.small set of sgtrong
rules, making the final production rules more
concise. Besides, more room can be saved for
reproducing more children rules by cutting those
redundant parent rules, without affecting the
performance. The robustness of the GA is enhanced
as more search points are explored by this larger
gset of children rules.

Fig. 3 is an example of token competition. Since
Rl embraces the whole shadow, it is the strongest.
It will just sweep the token pools and cause the
weaker rules R2 and R3 starving to death. The
beauty of token competition stems from its

X1 ’ R2
L / R1

X2

Fig. 3 GA with token competition among three rules

4. Elaboration on Rule Migration

Rule Migration is a novel idea in Gas. The
concept behind this idea is simple. During the
evolution process, a weak "species in one class may
be a strong species in another class and can be
preserved rather than simply discarded.

This idea comes from the observation that the
classes themselves are disjoint. Therefore a rule
can only score high in its should-be class. Thus
the good rule in a certain ¢lass need not migrate to
other classes, for it must have low scores in other
classes.

However, a poor rule in one class may score well
in other classes. Without migratfon, this valuable
rule for other classes may be discarded and wasted.

For example in Fig. 4, assume that the two-
dimensional problem space has two attributes Xy X5
Four areas I, II, III and IV on this space
correspond to classes I, 11, III and Iv
respectively. They are disjoint.

Agsume at a certain time in the rule population
of class I, a rule (R1l) is somehow reproduced as an
offspring. Clearly, R1l, with so little hit scores
and so many false alarms, cannot survive in class I.
However, it may be valuable to classes IV and II.
So it can migrate fto both IV and II. (Actually, if
the original rulés in these two classes are very
strong, or if the quotas for the destination classes
are already filled by some other eligible alien
rules, then Rl cannot migrate to them.)

Another rule (R2) is an offspring reproduced from
class II. If there are already many strong rules in
class II, this new rule may be useless to it.
However, it is valuable to class III and can migrate
to class ITI. It cannot migrate to ¢lasses I and IV
as R2 hits nothing in these two classes.

.The immigrant rules can be treated as offsprings
in the reproduction process. If after migration,

_ there is still room for crossover and mutation,

original rules in that class will reproduce to £ill

up the population size.

If an immigrant rule behaves better than the
newly produced offsprings, then its last immigration
is said to be successful. Otherwise, it has less
contribution to this class than the offsprings from
the original population. 8o after one generation,
it will be discarded.

X2
¥ A rﬁle {R1) reproduced
CLASS | as oftspring of CLASS !
. \ -
CLASS IV

Another rule {R2) reproduced}
as offspring \c:f ‘CLASS I}

[T

CLASS il

| SUPUL N

CLASS it

- X1
Fig. 4 GA with rule reproduction and migration

5. Cohclusion

We have outlined in brief the basic concepts in
SCION, a platform for developing GA based
applications. In addition to basic GA features, two
novel ideas, token competition and rule migration,
have been proposed and incorporated into SCION.
Their plausible contributions to the improvement of
GAs have been discussed. Some empirical findings
are presented in part 2 of this two-part gseries of
papers to substantiate the theoretical arguments.

References

{1} X.8. Leung, Y. Leung, and M.H. Wong, "The
Integration of Rule-based and Procedural
Methods to Solve Optimization Problems through
Expert-system Technology," in J-L Verdegay and
M. Delgad (eds.), "The Interface between
Artificial Intelligence and Operations Research
in Fuzzy Environment;" Verlag TUV Rheinland,

1989.
[2] KX.S. Leung and M.H. Wong, “an Expert System
Shell using Structured Knowledge — an Object-—

oriented Approach," IEEE Computer, Vol. 23, pp-
38-47, 1990.

(3] L.B. Booker, D.E. Goldberg and J.,H. Holland,
nclagsifier Systems and Genetic Algorithms,”
Artificial Intelligence, Vol. 40, pp. 235-282,

1989,

[4] Lawkence Davis, "Genetic Algorithms and
Simulated Annealing," BBN Laboratories,
cambridge, Massachusetts, 1987.

[6] Lawxence Davis, "Adapting Operatoxr
Probabilities in Genetic Algorithms," BBN

Laboratories, Cambridge, Massachusetts, 1989.

[6] X.A. De Jong, "Bnalysls of the Behaviour of a
class of Genetic Adaptive Systems," Ph.D.
thesis, University of Michigan, Ann Arbor,
1975.

(7] Richard Forsyth, "Beagle -— a° Darwinian
approach to pattern recognition," Kybernetes,
vol. 10, pp. 159-166, 1981.

{8] R.B. Hollstien, "Artificial Genetic Adaptation
in Computer Control Systems," Ph.D. thesis,
University of Michigan, Ann Arbor, 1971.

(9]

(10}

{11]

(12}

[13]

Chuck Karr, "Genetic Algorithms for Fuzzy
Controllers," AI EXPERT,, pp. 26-33, February
1991.

pavid J. Montana, "Empirical Learning Using
Rule Threshold Optimization for Detection of
Events in Synthetic Images," Machine Learning,
Vol. 5, pp. 427-450, 1990,

David Shaffer and Amy Morishima, "An Adaptive
Crossover Distribution Mechanism for Genetic
Algorithms," in John J. Grefenstette (ed.),
"Genetic Algorithms and their Applications,”
Lawrence Erlbaum Associates, 1987.

Gilbert Syswerda, "Uniform Crossover in Genetic
Algorithms,” BBN Laboratories, Cambridge,
Massachusetts, 1989.)
Darrell Whitley, "Using Reproductive Evaluation
to Improve Geneétic Search and Heuristic
Discovery," in John' J. Grefenstette (ed.),
"Genetic Algorithms and their Applications,”
Lawrence Erlbaum Associates, 1987.

