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Layout hotspot detection is of great importance in the physical verification flow. Deep neural network models

have been applied to hotspot detection and achieved great success. Despite their success, high-performance

neural networks are still quite difficult to design. In this article, we propose a bayesian optimization-based

neural architecture search scheme to automatically do this time-consuming and fiddly job. Experimental re-

sults on ICCAD 2012 and ICCAD 2019 Contest benchmarks show that the architectures designed by our

proposed scheme achieve higher performance on hotspot detection task compared with state-of-the-art man-

ually designed neural networks.
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1 INTRODUCTION

The lithographic printability is of great significance in integrated circuits as the shrinking transis-
tor feature size significantly challenges the manufacturing yield.

Due to the light diffraction, the critical dimension (CD) (the minimal transistor feature size)
is defined in Equation (1)

CD = k
λ

NA
, (1)
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Fig. 1. A hotspot example. The pattern marked by the red box can cause open circuit after the lithography

process.

where λ is the lithography system wavelength and NA is the numerical aperture of the lithography
system. As the technology node shrinks down, there is a large gap between the layout feature size
and the wavelength.

Layout patterns sensitive to process variations are called hotspots. Figure 1 shows an example
of the hotspot in the layout. The pattern marked by the red box can cause open circuit after the
lithography process. The hotspots should be detected in early stage to improve the lithographic
printability.

There are two main classes of hotspot detection approaches: pattern matching-based [8, 11, 13,
29, 30] and machine learning-based [4–7, 9, 10, 12, 18, 19, 32] approaches. In [13], the hotspots are
encoded by strings. Reference [11] characterizes the hotspots as modified transitive closure graphs.
In [29], hotspots are encoded by the density and the encoding is further improved by principle

components analysis (PCA). Reference [30] proposes a new distance metric based on tangent
space to encode the hotspot patterns. The weak point of pattern matching-based approaches is
that they cannot detect the hotspots, which are never seen before.

To solve this problem machine learning-based approaches have been developed. The never seen
hotspots can be detected via the generalization capability of machine learning approaches. Al-
though they improve the hotspot detection accuracy compared with the pattern matching-based
approaches, they may cause false alarms which can decrease the efficiency [9, 10]. Reference [5]
proposes to extract critical features and train a multi-kernel SVM on the extracted data for hotspot
detection. Reference [7] extracts features of the layouts based on the histogram and adopts an un-
supervised SVM to predict hotspots. Reference [4] proposes to detect hotspots with both ANN
and SVM models. Reference [18] improves feature extraction with feature space index and detects
hotspots with Adaboost algorithm. In [32], hotspot detection performance is further improved
with a new online learning scheme.

Deep learning-based approaches have also achieved great success in hotspot detection problem.
Reference [31] proposes to extract layout features with discrete cosine transform and utilize a
CNN architecture for hotspot detection. The scheme is further adjusted with the proposed bias
learning algorithm because of the imbalanced dataset. Reference [1] proposes to detect multiple
hotspots at a time inspired by the object detection problem. In [14], binarized neural network
is utilized to speed up the hotspot detection flow. New network architecture is designed based
on residual networks to achieve higher detection accuracy and performance. Reference [2] pro-
poses a semi-supervised scheme to utilize samples with/without labels for higher hotspot detection
performance.

Despite the success, designing and tuning these neural network architectures still require a great
deal of time. People continuously try slight variations of the known architectures, which have
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Table 1. Confusion Matrix of

Hotspot Detection Problems

Prediction
Ground Truth

Non-hotspot Hotspot

Non-Hotspot TN FN
Hotspot FP TP

proven to be practical. Recently, neural architecture search (NAS) techniques have achieved
great success. The automatically searched neural networks outperform the handcrafted architec-
tures in both efficiency and performance.

In this article, we propose to automatically design a deep learning-based hotspot detector with
a bayesian optimization-based neural architecture search scheme. A novel mapping method is pro-
posed to efficiently map the discrete architecture search space to the continuous feature space in
order to characterize the distance between different sampled neural architectures, which is impor-
tant for the Gaussian process model in the Bayesian optimization process. Due to the tremendous
time consumption during training and evaluating of the sampled architectures, an accurate pre-
diction model is adopted to help accelerate the searching process as well. Experimental results
show that our automatically designed architecture outperforms the state-of-the-art handcrafted
architecture in both detecting accuracy and speed.

Lithographic simulation lacks reusability and needs a complete run every time it meets a new
sample. This is not efficient. Recent deep learning model-based methods are more efficient be-
cause the trained model is reused when dealing with new samples and the inference time of the
machine learning model is much less than the lithographic simulation. However, these methods of-
ten need much time to design and tune the neural architectures manually. Our algorithm replaces
this time-consuming process with a fast auto-searching process, which improves the efficiency.
Because architecture searching is a one-off job, once a well-performing architecture is searched it
can be used to process numerous similar layout patterns efficiently instead of slow lithographic
simulation. Last but not least our searched neural architecture is 42% faster than the previous man-
ually designed architectures. As a result our proposed neural architecture search scheme further
improves the efficiency of the layout hotspot detection flow.

The rest of this article is organized as follows. In Section 2, the background of hotspot detection
and neural architecture search is presented. In Section 3, we propose the neural architecture search-
based hotspot detection approach. In Section 4, we give the experimental results of our proposed
approach. In Section 5, we conclude the article.

2 BACKGROUND

In this section, we will define the layout hotspot detection problem and then review the background
of neural architecture search.

2.1 Problem Formulation

Process variations in the lithographic process can cause yield reduction. Layout patterns that are
sensitive to process variations are defined as hotspots. Referring to the practice in previous works,
two metrics are adopted to evaluate the performance of our proposed hotspot detection algorithm.

Hotspot detection problem is a binary classification problem whose confusion matrix is pre-
sented in Table 1. TN , FN , FP , and TP denote True Negative, False Negative, False Positive, and
True Positive, respectively. We then define the following metrics with the confusion matrix.
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Definition 1 (Accuracy). The ratio of correctly predicted hotspots among the set of actual
hotspots [28].

Accuracy =
TP

TP + FN
. (2)

Definition 2 (False Alarm). The ratio of incorrectly predicted non-hotspots among the set of
actual non-hotspots [28].

False Alarm =
FP

FP +TN
. (3)

Finally, we present the formulation of the hotspot detection problem.

Problem 1 (Hotspot Detection). Given a dataset that contains hotspot and non-hotspot in-

stances, train a classifier that can maximize the accuracy and minimize the false alarm.

2.2 Related Hotspot Detection Approach

In this section, we review the previous hotspot detection approach [31] where two new techniques
including biased learning approach and feature extraction algorithm based on discrete cosine

transform (DCT) are proposed.
The biased learning approach is proposed to deal with the imbalanced dataset. The neural net-

work is trained with ground truth ynon−hotspot = [1, 0] and yhotspot = [0, 1]. After training, the

neural network is fine-tuned with y
′

non−hotspot
= [1 − ϵ, ϵ], ϵ ∈ [0, 0.5), which can help the neural

network achieve a better balance between detecting accuracy and false alarm.
The DCT-based feature extraction algorithm transforms the layout to a combination of different

frequency components. Firstly, the layout is divided into several sub-regions. Secondly, each sub-
region is transformed into frequency domain with DCT. Finally, each frequency vector is flattened,
and the first k elements are picked as the extracted feature.

2.3 Bayesian Optimization

In this section, we review the Bayesian Optimization. Bayesian Optimization [25] (BO) is pro-
posed to optimize black-box functions with high evaluation cost. It consists of probabilistic surro-
gate models and the acquisition function. The probabilistic surrogate models predict the functions
with uncertainty measures and are updated with the sequentially added sampled points. To deter-
mine the next point to sample, we use the acquisition function to measure the utility by evaluating
f based on the surrogate model predictions.

The most frequently used surrogate model in BO is Gaussian process (GP) regression
model [22]. The GP model can predict both expectation and uncertainty of the objective func-
tion. The GP model consists of two functions: mean functionm(x ) and covariance function k (x ,y).
Constant function defined in Equation (4) is adopted as the mean function.

m(x ) = μ0. (4)

Squared exponential covariance function defined in Equation (5) is adopted as the covariance func-
tion in this article.

k (x ,y) = σ 2
f exp

(
−1

2
(x − y)T Λ−1 (x − y)

)
, (5)

where σf and Λ are hyperparameters, Λ = diaд(l1, . . . , ln ) is a diagonal matrix.
The GP model can model the objective function with noise term y = f (x ) + ϵt . The noise term

obeys normal distribution

ϵt ∼ N (0,σ 2
n ), (6)

where σn denotes the variance.
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Given the training set {X ,y} whereX = {x1, . . . ,xN } and y= {y1, . . . ,yN }, the GP model predicts
the objective function f (x ) as a normal distribution

f (x ) ∼ N (μ (x ),σ 2 (x )), (7)

where μ (x ) is the mean function and σ 2 (x ) is the covariance function. They can be computed via

μ (x ) = μ0 + k (x ,X )[K + σ 2
nI ]
−1 (y − μ0),

σ 2 (x ) = k (x ,x ) − k (x ,X )[K + σ 2
nI ]
−1k (X ,x ),

(8)

where k (x ,X ) = [k (x ,x1), . . . ,k (x ,xN )]T and k (X ,x ) = k (x ,X )T . μ (x ) is the predicted value by
the GP model while the σ 2 (x ) denotes the uncertainty.

To minimize the objective function as shown in Equation (9), we describe the BO flow as follows.

x∗ = arg min
x

f (x ). (9)

We use the acquisition function to determine the next point to sample. The acquisition func-
tion combines the predicted expectation and the uncertainty to balance the exploration and the
exploitation. Some commonly used acquisition functions including the lower confidence bound

(LCB) function, the probability of improvement (PI) function and the expected improvement

(EI) function are defined in Equation (10). To choose the appropriate acquisition function, a pre-
liminary experiment is performed on a smaller dataset sampled from the original dataset. The
experimental results show that the three acquisition functions can get structures with comparable
accuracy and FA ratio, but the LCB function needs 13% fewer iterations than the other two acqui-
sition functions to achieve the optimal structure. As a result, we adopt the LCB function as the
acquisition function in this article.

LCB (x ) = μ (x ) − κσ (x ),

PI (x ) = Φ(λ),

EI (x ) = σ (x ) (λΦ(λ) + ϕ (λ)),

λ =
τ − ξ − μ (x )

σ (x )
,

(10)

where μ (x ) is the predicted expectation and σ (x ) is the the uncertainty of prediction by the GP
model.

The BO procedure is shown in Algorithm 1. We first randomly sample Ninit points in the search
space and use these point to train the initial GP model. Then, in each iteration we find the optimal
x that optimizes the acquisition function as the next sample point. Then, we update the GP model
with the new sample point. Finally, the best f (x ) recorded until the iterations stop is regarded as
the optimum of f (x ).

2.4 Neural Architecture Search

The choice of the network architecture has proven to be critical for the tasks in computer vision. Re-
cently, deep neural networks have been proposed for hotspot detection [14, 31] as well. Reference
[31] applies a plain CNN architecture, which is shown in Figure 2(a) for hotspot detection. Refer-
ence [14] designs a ResNet-like BNN model whose structure is shown in Figure 2(b) for hotspot
detection.

Nowadays people design neural networks by trying slight variations of the known architectures.
Although it has become much easier, designing neural network architectures still requires much
time and profound experience, which leads to the development of a wide variety of automated
methods for building deep neural networks such as neural architecture search.
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Fig. 2. Examples of neural architectures. Both (a) and (b) are manually designed neural networks for hotspot

detection.

ALGORITHM 1: Bayesian Optimization

Input:

1: Niter : number of iterations;
2: Ninit : number of initial sampling points.

Output: Optimal f (x ).
3: Randomly sample Ninit points in the search space;
4: Construct the initial GP model;
5: for i = 1 to Niter do

6: Find xi that optimizes the acquisition function;
7: Compute f (xi ) as the ground truth of xi ;
8: Update the GP model;
9: end for

10: return best f (x ) recorded during iterations.

Neural architecture search algorithms mainly contains evolutionary algorithms [16, 23, 26],
Bayesian optimization [15] and reinforcement learning [21, 33]. Evolutionary algorithm-based
NAS algorithms are more flexible for composing novel neural architectures but hard to perform
well when adopted in a large scale and often require many heuristics to work well. Reinforcement
learning-based NAS algorithms are widely applied recently whose basic process is presented in
Figure 3. The structure of a neural network architecture can be encoded with a variable-length
string. The controller (e.g., an RNN) can generate such strings that can be transformed to “child
networks”. Child networks are then trained on the training set and validated on the validation set.
The policy gradient is computed to update the controller with the validation accuracy of the child
networks as the reward signal. Thus, the neural architectures with higher accuracy will get higher
probabilities in the next iterations. The auto-regressive structure enables the controller to improve
the network.

3 PROPOSED NEURAL ARCHITECTURE SEARCH-BASED HOTSPOT DETECTOR

In this section, we will present the proposed neural architecture search method for layout hotspot
detection.

3.1 Search Space Formulation

Following the practice of [17], we search for the cells instead of searching for the whole neural
network architecture. The searched cell then can be stacked to build the final neural network. The
search space is represented by a directed acyclic graph (DAG). Figure 4 gives an example of a
network architecture represented by DAG. Each cell consists of N ordered nodes each of which is
a tensor x i . Each edge (i, j ) is an operation oi, j , which transforms node x i to node x j .

Nodes categories are shown as follows: (1) input nodes, which are the output tensors of the
previous cells such as nodes I0 and I1 in Figure 4; (2) intermediate nodes such as nodes 2, 3, 4,
and 5 in Figure 4; and (3) output nodes such as node output in Figure 4. All intermediate nodes
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Fig. 3. Overview of neural architecture search.

Fig. 4. Example of neural architecture represented by DAG. Nodes I0 and I1 are input nodes; nodes 2, 3, 4,

and 5 are intermediate nodes; node output is the output node.

are concatenated as the output node. There are eight types of operations for each edge to choose:
(1) separable convolution layer with 3× 3 kernel; (2) separable convolution layer with 5× 5 kernel;
(3) dilated separable convolution with 3×3 kernel; (4) dilated separable convolution with 5×5 ker-
nel; (5) max pooling with 3×3 kernel; (6) average pooling with 3×3 kernel; (7) identity; and (8) zero.
The nodes with multiple input edges are computed as the element-wise sum of the input edges.

Each cell can be seen as a convolutional neural network that maps a tensor with shape c ×h×w
to the tensor with shape c ′ × h′ ×w ′. In the reduction cells stride of the convolution operations is
2, which leads to the fact that h = 2h′ andw = 2w ′. In the norm cells, the stride of the convolution
operations is 1 so that h = h′ and w = w ′. Following the common heuristic in designing neural
architectures that h × c = h′ × c ′ (usually h = w), in the reduction cells c ′ = 2c and in the norm
cells c ′ = c . As mentioned before the final neural architecure is composed of several stacked cells
including norm cells and reduction cells.

3.2 Bayesian Optimization-based Neural Architecture Searching Scheme

The architecture search space introduced in Section 3.1 is discrete; thus, it is important to map it to a
continuous space. The distance feature needs to be defined to show the difference between different
architectures. Since that the search space can be represented by a DAGG = (V ,E), inspired by [27]
we define three feature matrices to construct the distance feature.
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ALGORITHM 2: Feature Matrix

Input:

1: G = (V ,E): graph that represents the architecture;
2: D: Nnode × Nnode matrix;
3: w : edge weights.

Output: Feature matrix of the architecture.
4: Initialize D as all zero;
5: for each edge (i, j ) in E do

6: Di,i = Di,i +w (i, j );
7: D j, j = D j, j +w (i, j );
8: Di, j = Di, j −w (i, j );
9: D j,i = D j,i −w (i, j );

10: end for

11: return D.

ALGORITHM 3: Distance Feature

Input: L: feature matrix of the architecture.
Output: Distance feature of the architecture.

1: Compute the eigenvectors and the eigenvalues of the feature matrix L;
2: Sort the eigenvalues and pick the second smallest and the third smallest eigenvalues as v2

and v3;
3: Pick the corresponding eigenvector q2, q3 and calculate their absolute values;
4: return the merged vector ( |q2 |, |q3 |).

The first feature matrix D is the Laplacian matrix of the DAG, which is defined in Algorithm 2.
For each edge in the DAG, the number at corresponding index is adjusted with the predefined edge
weight.

The second feature matrix A defined in Equation (11), which is a diagonal matrix is to scale the
matrix D,

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

Ai, j = 0, i � j;

Ai, j =
1√ ∑

(k,i )∈E

w (k,i )
, i = j . (11)

Where each diagonal element is the weighted in-degree of the corresponding node and w (k, i ) is
the corresponding predefined weight. The scaled feature matrix L is defined in Equation (12),

L = A · D · A, (12)

where (.) · (.) is inner product of matrices.
The distance feature is defined in Algorithm 3. The eigenvectors that correspond to the second

smallest and third smallest eigenvalues of the feature matrix L are picked out. Their absolute values
are merged as the final distance feature.

To show the practicality of the distance feature definition, we first randomly sample an archi-
tecture д1 and generate its distance feature denoted by d1. Then, we make a few small changes
and get a similar architecture д2 whose distance feature is denoted by d2. We then randomly sam-
ple another totally different architecture д3 and get its distance feature d3. Finally, ‖d1 − d2‖ and
‖d1−d3‖ are calculated where ‖.‖ is the l2 norm of the vector. An example is shown in Figure 5. For
the example in Figure 5, ‖d1 − d2‖ = 0.498 and ‖d1 − d3‖ = 1.241, which shows that the distance
feature can discrimate the similar architectures and different architectures.
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Fig. 5. The distance features of similar and different architectures. д1 is a randomly sampled architecture

in the search space. д2 is similar to д1 with some small modifications. д3 is another randomly sampled

architecture, which is totally different from д1.

ALGORITHM 4: Bayesian Optimization based Searching Scheme

Input:

1: Niter : number of iterations;
2: Ninit : number of initial sampling points.

Output: Optimal architecture.
3: Randomly sample Ninit architectures in the search space;
4: Map these architectures to the distance vectors with Algorithm 3;
5: Train and evaluate these architectures;
6: Construct the initial GP model with the generated data;
7: for i = 1 to Niter do

8: Construct the acquisition function with existing GP model;
9: Find optimal architecture that optimizes the acquisition function using evolutionary algo-

rithm (EA);
10: Map this architecture to the distance vector with Algorithm 3;
11: Train and evaluate the new architecture;
12: Update the GP model;
13: end for

14: return best architecture during iterations.

After the definition of the distance feature, we illustrate the whole process of our searching
algorithm in Algorithm 4. Firstly, Ninit architectures are randomly sampled from the search
space as the initial points. Then train and evaluate these architectures and build the initial GP
model with the accuracies and distance features mapped from the architectures. The LCB acqui-
sition function is then constructed. In each iteration of the BO procedure, we find the architec-
ture that optimizes the acquisition function with evolutionary algorithm (EA). The optimal
architecture is then trained and evaluated. The GP model is updated using the distance vector
mapped from the new architecture and its accuracy. Finally, we select the architecture with best
performance during the iterations as the final architecture. It is then trained from scratch and
tested.
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Table 2. Performance Degradation Caused by Accuracy Prediction Model

1 epoch Model (5 epochs) 100 epochs 200 epochs

Mean Square Error − 0.054 − −
Accuracy 98.0 98.4 98.6 98.3

FA 15.7 14.1 14.5 13.8

Since training a CNN architecture from scratch is quite time-consuming, a linear regression
model is applied to help accelerate the training procedure. The model predicts the performance of
the architecture based on the training results of first k epochs as shown in Equation (13),

hθ (x ) =
n∑

i=0

θixi ,

J (θ ) =
1

2

m∑
i=1

(hθ (x (i ) ) − y (i ) )2,

θ∗ = arg min
θ

J (θ ),

(13)

where x (i ) = x1 . . . xn is the training and validating accuracies of the ith architecture in the first k
epochs and y (i ) is the the groundtruth accuracy of the ith architecture. The model parameter θ is
optimized to minimize the loss denoted by J (θ ).

To study the performance degradation caused by the accuracy prediction model, a preliminary
experiment is performed on a smaller dataset randomly sampled from the ICCAD 2012 dataset.
Table 2 shows the performance of neural architectures searched under different settings. Column
“1 epoch” shows the result of training for 1 epoch during searching. Column “5 epochs” shows
the result of training for five epochs with accuracy prediction model during searching. Columns
“100 epochs” and “200 epochs” show the results of training for 100 and 200 epochs during search-
ing. The experimental results show that the accuracy prediction model can achieve comparable
accuracy and false alarm although it might lead to some precision loss (the mean square error
is 0.054).

Thus, we only need to train the architectures fork epochs (k = 5 in this article) during the search
procedure, which can save much time. In addition to save the time of pretraining, we can also set
the parameters of the linear model as hyperparameters to tune. To further improve the search-
ing efficiency shallower architectures with fewer stacking cells are adopted during the search
procedure.

3.3 Customizations for Hotspot Detection

The hotspot detection problem is different from the problems that normal NAS algorithms handle
such as language modeling and image recognition. Thus there are some customizations for hotspot
detection.

(1) The feature extraction process is significant for hotspot patterns. For the CNN architecture-
based hotspot detector we apply the DCT-based feature extraction [31].

(2) Because of the imbalanced dataset, the hotspot samples are up-sampled during the searching
and training process. The hotspot samples get more chance to be sampled during training so that
each mini-batch contains nearly the same amount of hotspots and non-hotspots. We also adopt
the biased learning algorithm in [31] to achieve a better balance between the detecting accuracy
and false alarm. The trained model is fine-tuned with biased label.
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Fig. 6. Clip samples in the dataset. Figure (a) and (b) contains hotspots; figure (c) and (d) does not conatin

hotspots.

Table 3. Statistics of the ICCAD 2012 and 2019 Benchmarks

Benchmark #Train HS #Train NHS #Test HS #Test NHS

ICCAD 12 1,204 17,096 2,524 13,503
ICCAD 19-1 467 17,758 1,001 14,621
ICCAD 19-2 467 17,758 64,310 65,523

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

All our training and testing code is built with Python based on the PyTorch [20] library. The testing
platform is a workstation with Intel Xeon E5 CPU and Nvidia Tesla K80 GPU.

Two benchmarks are employed including ICCAD 2012 benchmark [28] and ICCAD 2019 bench-
mark [24]. Figure 6 shows some samples in the benchmarks. Figure 6(a) and (b) contains hotspots;
Figure 6(c) and (d) does not contain hotspots. The details of ICCAD 2012 dataset are listed in Table 3.
The ICCAD 2019 benchmark is divided into two subsets, which share the training set: ICCAD19-1
and ICCAD19-2 benchmarks. The statistics of the ICCAD 2019 dataset are listed in Table 3 as well.
In the table, columns “# Training HS” and “# Training NHS” denote the numbers of hotspots and
non-hotspots in training set, respectively. Columns “# Testing HS” and “# Testing NHS” denote the
numbers of hotspots and non-hotspots in testing set.

4.2 Implementation Details

4.2.1 Data Preprocessing. We follow the practice in the previous article [31] for data preprocess-
ing. The DCT-based feature extraction method is applied before sent to the convolutional neural
networks. Random horizontal and vertical flipping and Cutout [3] are performed for data augu-
mentation.

Because of the imbalance between the hotspot class and non-hotspot class, we choose the strat-
egy with minority class (hotspots) over-sampled and majority class (non-hotspots) down-sampled
during training.

4.2.2 Training Hyperparameters. We use SGD with momentum to optimize the weights. Table 4
shows the hyperparameter settings for training. The learning rate is annealed down to 0 with the
cosine schedule. We set the path dropout probability to 0.2 following the practice in previous
work [17]. The cutout length is set to 16 for data augumentation. The search scheme runs for 200
iterations to get the optimal neural architecture. The searched architecture is then trained from
scratch.
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Table 4. Training Hyperparameter Settings

Hyperparameter Value

Batch Size 128
Bias Term (ϵ) 0.2

Data Augumentation Method Random flipping and cutout
Initial Learning Rate (λ) 0.025

Optimizer SGD with Momentum
Momentum 0.9

Weight Decay 2 × 10−4

Cutout Length 16

Fig. 7. The searched norm cell for ICCAD12.

4.2.3 Other Details. The number of input nodes in a cell is set as 2, intermediate nodes number
is set as 4, and output node number is set as 1. Each node will be connected with two previous
nodes following the practice in [17].

All outputs of each channel are globally averaged after the last convolution layer as the input
of the softmax layer. This is to reduce the number of the parameters in the dense connection so as
to avoid the overfitting problem.

While a layer is connected to several previous layers, the outputs of these previous layers are
concatenated in their depth dimension and convolved with kernel size 1 × 1.

4.3 Performance Comparison with State-of-the-art

Figures 7 and 8 are our generated cell architectures searching on the ICCAD 2012 dataset. Figures 9
and 10 are our searched cells based on the ICCAD 2019 benchmark. The two green nodes are
the input nodes and the four blue nodes are the intermediate nodes. The yellow node c_{k} is
the output node. The operations between the nodes is labeled on the corresponding edges. Each
intermediate node gets two input edges from the previous nodes.

Table 5 summarizes the results of our proposed algorithm and three state-of-the-art hotspot de-
tectors. Columns “Accu”, “FA”, “F1”, and “Time” show the hotspot detection accuracy, false alarm ra-
tio, F1 score and runtime of the algorithm. Columns “TCAD’19 [31]”, “DAC’19 [14]”, “TCAD’19 [2]”,
and “Ours” show the results of the selected state-of-the-art hotspot algorithms and our proposed
hotspot detection scheme. Our proposed algorithm gets higher accuracy than other state-of-the-
art algorithms on average (87.6% of TCAD’19 [31], 89.9% of DAC’19 [14], and 76.4% of TCAD’19
[2] v.s. 92.1% of ours). Our proposed hotspot detector achieves comparable average false alarm
rate (34.6% of ours compared with 34.3% of TCAD’19 [2]). As a result, the average F1 score of our
searched neural network is the highest among the four approaches. Our proposed method is of
great efficiency as well. The average runtime of our searched architectures is the lowest among all
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Fig. 8. The searched reduction cell for ICCAD12.

Fig. 9. The searched norm cell for ICCAD19.

Fig. 10. The searched reduction cell for ICCAD19.

Table 5. Performance Comparison with State-of-the-art Approaches

Dataset
TCAD’19 [31] DAC’19 [14] TCAD’19 [2] Ours

Accu (%) FA (%) F1 Time (s) Accu (%) FA (%) F1 Time (s) Accu (%) FA (%) F1 Time (s) Accu (%) FA (%) F1 Time (s)

ICCAD12 98.4 26.2 0.581 397 99.2 20.6 0.641 62 97.7 17.9 0.666 401 98.9 9.9 0.785 30
ICCAD19-1 76.0 2.6 0.710 53 80.9 3.5 0.667 63 46.9 1.5 0.556 56 87.2 9.7 0.530 44
ICCAD19-2 88.4 87.8 0.636 429 89.7 84.1 0.651 496 84.5 83.6 0.627 445 90.3 84.1 0.654 363

Average 87.6 38.9 0.642 293 89.9 36.1 0.653 207 76.4 34.3 0.616 301 92.1 34.6 0.656 146

Ratio 0.95 1.12 0.98 2.01 0.97 1.04 0.995 1.42 0.83 0.99 0.94 2.06 1 1 1 1

The bold values are the best performed ones.

hotspot detectors (293s of TCAD’19 [31], 207s of DAC’19 [14], and 301s of TCAD’19 [2] v.s. 146s
of our architecture).

To show the performance improvement brought by our proposed algorithm, we perform an ab-
lation study. We randomly sample 10 architectures in our proposed search space and train them
from scratch on both ICCAD 2012 and 2019 benchmarks. We also train the best searched archi-
tecture in 50, 100, 200, and 400 iterations from scratch to study the relation between performance
and search iterations. Table 6 illustrates the performance of randomly generated architectures and
searched architectures at different iterations. Column “random” shows the average performance
of 10 randomly sampled architectures. Columns “50 iterations”, “100 iterations”, “200 iterations”,
and “400 iterations” refer to the performance of the best architecture searched in 50, 100, 200, and
400 iterations. Columns “Accu”, “FA” show the hotspot detection accuracy, false alarm ratio. The
final searched architecture achieves 5.3% higher accuracy and 3.1% lower false alarm rate than the
randomly sampled architectures on average. The performance significantly imrpoves as the num-
ber of iterations grows before 200 iterations. The search scheme converges at 200 iterations and
searching for 400 iterations does not make any change.
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Table 6. Performance Comparison with Randomly Generated Architectures and

Searched Architectures at Different Iterations

Dataset
random 50 iterations 100 iterations 200 iterations 400 iterations

Accu (%) FA (%) Accu (%) FA (%) Accu (%) FA (%) Accu (%) FA (%) Accu (%) FA (%)

ICCAD12 95.2 13.1 97.9 10.7 98.3 9.1 98.9 9.9 98.9 9.9
ICCAD19-1 81.2 10.3 84.6 10.5 86.7 10.1 87.2 9.7 87.2 9.7
ICCAD19-1 83.9 89.7 87.1 86.1 90.3 87.4 90.3 84.1 90.3 84.1

Average 86.8 37.7 89.9 35.8 91.8 35.5 92.1 34.6 92.1 34.6

Ratio 0.942 1.090 0.975 1.034 0.996 1.027 1 1 1 1

The bold values are the best performed ones.

Table 7. Performance Comparison with Baseline NAS Algorithm

Dataset
DARTS [17] Ours

Accu (%) FA (%) Runtime (s) Search Time (h) Accu (%) FA (%) Runtime (s) Search Time (h)

ICCAD12 98.5 9.9 31 19 98.9 9.9 30 12
ICCAD19-1 85.1 4.8 40 18 87.2 9.7 44 12
ICCAD19-2 92.0 89.5 349 30 90.3 84.1 363 12

Average 91.9 34.7 140 22.3 92.1 34.6 146 12

Ratio 0.998 1.004 0.959 1.86 1 1 1 1

The bold values are the best performed ones.

The proposed NAS approach shares the same search space with the baseline method DARTS [17]
but search for the optimal neural architecture with a different algorithm (Bayesian optimization-
base algorithm). To show the advantage of our proposed search algorithm, we compare our result
with DARTS as well. Table 7 summarizes the results of the two methods. “Accu”, “FA”, “Runtime”,
and “Search Time” show the hotspot detection accuracy, false alarm ratio, runtime of the algo-
rithm, and search time of the algorithm. The experimental results show that our proposed search
approach can generate a competitive architecture (0.2% higher accuracy, 0.1% lower false alarm
rate, and 6s more runtime on average) with 1.86× speed on average.

5 CONCLUSION

Deep learning-based hotspot detection approaches have shown great potential recently. How-
ever, designing and tuning the deep learning models can be quite time consuming. For the first
time, we propose a bayesian optimization-based neural architecture search scheme for automated
hotspot detection. Time-consuming manual tuning is replaced with efficient searching process.
The searched neural architecture can be reused while dealing with more layout patterns in-
stead of slow lithographic simulation. The experimental results on ICCAD 2012 and ICCAD 2019
benchmarks show that the architectures designed by our proposed scheme outperform the manu-
ally designed architectures in both accuracy and efficiency as well. With the transistor size shrink-
ing rapidly, we wish to apply our scheme for a more convenient and efficient hotspot detector
designing.
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