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Abstract—As the circuit feature size continuously shrinks
down, hotspot detection has become a more challenging problem
in modern design for manufacturability flows. Developed deep
learning techniques have recently shown their superiorities on
hotspot detection tasks. However, existing hotspot detectors can
only handle defect detection from one small layout clip each
time, thus, may be very time-consuming when dealing with a
large full-chip layout. In this article, we develop a new end-to-
end framework that can detect multiple hotspots in a large region
at a time and promise a better hotspot detection performance.
We design a joint auto-encoder and inception module for effi-
cient feature extraction. A two-stage classification and regression
framework is designed to detect hotspot with progressive accurate
localization, which provides a promising performance improve-
ment. Experimental results show that our framework enables a
significant speed improvement over existing methods with higher
accuracy and fewer false alarms.

Index Terms—Design for manufacturability, hotspot detection,
machine learning.

I. INTRODUCTION

ITH the development of the semiconductor industry,
Wtransistor feature size shrinks rapidly, which signif-
icantly challenges manufacturing yield. For instance, low-
fidelity pattern on wafer (also known as “hotspot”) is one
of the emerging issues in the manufacturing [1], [2]. To
ensure the printability of layout designs, an efficient and accu-
rate hotspot detector is indispensable. Currently, there are
three main classes of methods: 1) lithography simulation;
2) pattern matching; and 3) machine learning. By using com-
plicated lithography models to identify hotspots, lithography
simulation [3], [4] is accurate but extremely time-consuming.
High-performance clusters with amounts of nodes are needed
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in the whole simulation flow and several days are required to
complete it.

As good replacements of simulation-based methods, pattern
matching and machine learning-based techniques are proposed
to accelerate the hotspot detection flow while the detection
accuracy is attained as much as possible.

Pattern matching is to set up a collection of hotspot lay-
out patterns to identify any matched patterns in a new design
as hotspots [5]-[9]. For example, in [7], critical topological
features of hotspots are extracted as design rules in design
rule checking to locate the hotspot positions. To handle par-
tially variant layout patterns from the predefined hotspots,
Wen et al. [8] proposed a fuzzy matching model which inte-
grates both pattern-matching and machine-learning techniques
to dynamically tune the fuzzy region around a known hotspot.
Although the pattern matching overcame the runtime issue,
this approach, including fuzzy pattern matching, cannot give
a confident result on unseen hotspot patterns.

Machine learning-based methods have shown the capability
to offer accurate solutions to both known and unknown hotspot
patterns with generalized feature extractors [10]-[21]. A learn-
ing model is usually trained by features which are extracted
from a batch of labeled data and then conducts hotspot
prediction on new layout patterns efficiently. Ding et al. [12]
exploited a meta-classifier which combines pattern match-
ing and machine learning methods into a unified framework.
In [15], a detection flow based on critical feature extrac-
tion and PCA-SVM classifier is proposed. To update the
learning model with newly detected and verified layout pat-
terns, Zhang et al. [17] investigated a classifier based on
smooth boosting and optimized concentric circle sampling
feature extractor. Recently, Ye er al. [21] pointed out the
uncertainty problem in hotspot detection and presented a
Gaussian process assurance to provide confidence in each
prediction. Conventional machine learning approaches achieve
good performance, but they are limited to manually crafted
feature extractors. Besides, these approaches are challenged by
scalability requirements for printability estimation of a large
scale layout.

Convolutional neural networks (CNNs) have become
a powerful technique to improve hotspot detection
performance [22]-[31], thanks to its nonlinearity and
multilevel feature extraction in an automatic manner. For
example, Yang et al. [24] investigated a deep CNN which
considered the data unbalanced issue and achieved high
classification accuracy. Additionally, they designed a biased
learning technique for an unbalanced dataset and applied
discrete-cosine transformation (DCT) to give proper feature
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Fig. 2. Proposed R-HSD flow.

expression [25]. To handle the scenario that labeled data are
limited, a semi-supervised neural network is built in [29].
Jiang et al. [30] proposed a binarized neural network to
further enhance the performance of the detector.

In literature, however, hotspot detectors only work on small
clips extracted from a whole chip layout and can only detect
one hotspot location at a time that occurs at a center (i.e., core
in [32]) of each clip. Fig. 1 illustrates a conventional hotspot
detection scheme, which requires repeatedly scanning over-
lapping regions of a full chip design. Therefore, it could
be a waste of computational resources and time-consuming
when facing with extremely large layouts. To solve this
problem, Chen et al. [33] proposed a new faster region-
based hotspot detection (R-HSD) framework, which can mark
multiple hotspot locations within a region that is much larger
than a clip applied in previous works, as shown in Fig. 2. To
the best of our knowledge, [33] is the first art to design a
hotspot detector on detecting multiple processes weak points
within very large scale layout clips in one step feed-forward
detection. The framework contains a regression and classifi-
cation multitask flow which guide to higher accuracy, higher
detection speed, and lower false alarm penalty. However, there
still exist some defects in our design for region-based hotspot
detector. For example, due to the single-scale description
of layouts, the encoder—decoder structure limits the feature
expression of our extractor. Additionally, the regression loss
in [33] handles the coordinates individually where the geo-
metric constraint is not considered. Consequently, multibranch
design for encoder—decoder and intersection of union (IoU)
regularizer are proposed to enhance the preliminary region-
based hotspot detector. The main contributions of this article
are listed as follows.

1) We construct a deep neural network specifically for
the R-HSD task and our network framework can be
efficiently trained end-to-end.

2) A clip proposal network and a refinement stage are built
to further improve accuracy and reduce false alarm.

3) We apply a novel classification and regression (C&R)
strategy to reduce the detection region and make the

multiple hotspot detection become realizable in large
scales.

4) Multibranch design for encoder—decoder and IoU reg-
ularization is introduced to further strengthen the
proposed region-based hotspot detector.

5) Experimental results show that our proposed framework
has great advantages over the state-of-the-art detectors.
It can achieve 7.40% accuracy improvement and 13x
speedup on average.

The remainder of this article is organized as follows.
Section II introduces basic concepts and gives problem for-
mulation. Section III discusses the details of the proposed
end-to-end neural framework. Section IV introduces the tech-
niques to raise the performance of the proposed detector.
Section V lists experimental comparisons with state-of-the-art
methods, followed by conclusion in Section VI.

II. PRELIMINARIES

Due to the manufacturing process variation, designed lay-
out patterns stochastically cause defects on wafers during the
lithographic process. These sensitive patterns may cause a
reduction of manufacturing yield or even potential circuit fail-
ures. Layout patterns that are sensitive to process variations
are defined as hotspots. We also define a hotspot clip as a clip
that contains at least one hotspot at its core region [32]. Here,
the core region is the middle area in the clip. In this article,
the following definitions and metrics are used to evaluate the
performance of a hotspot detector.

Definition 1 (Accuracy): The ratio between the number of
correctly detected hotspots and the number of ground truth
hotspots.

Definition 2 (False Alarm): The number of nonhotspot clips
that are detected as hotspots by the classifier.

Definition 3 (F1 Score): The weighted harmonic mean of
the test’s precision and recall. The score is calculated accord-
ing to

2
F1 =( ] — 1). &)
recall”" + precision™

It should be noted that the accuracy is also equivalent
to the true positive rate and the false alarm corresponds
to the number of false positives. Because a good hotspot
detector aims to recognize as many real hotspots as possible
and avoids incorrect predictions on nonhotspot patterns, with
the evaluation metrics above, we define the R-HSD problem
as follows.

Problem 1 (R-HSD): Given a layout region that consists
of hotspot and nonhotspot patterns, the objective of R-
HSD is training a model to locate and classify all the
hotspot and the nonhotspot within the region, such that the
detection accuracy is maximized with minimum false alarm
penalty.

III. R-HSD NEURAL NETWORK

Our proposed R-HSD neural network, as illustrated in
Fig. 2, is composed of three steps: 1) feature extraction; 2) clip
proposal network; and 3) refinement. In this section, we will
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discuss each step with details. At first glance, the R-HSD
problem is similar to the object detection problem, which is
a hot topic in the computer vision domain recently. In object
detection problem, objects with different shapes, types, and
patterns are the instances to be detected. However, as we will
discuss, there is a gap between hotspot detection and object
detection, e.g., the hotspot pattern features are quite differ-
ent from the objects in real scenes, thus typical strategies and
framework utilized in object detection cannot be applied here
directly.

A. Feature Extraction

Because of wide variations between traditional objects in
real scenarios and VLSI layout patterns, it is extremely crucial
to design an appropriate feature extractor in our neural network
framework. Our feature extractor aims at transforming original
layout features nonlinearly while reducing computation over-
head. Besides, we also tend to enrich the feature diversity
with fewer parameters. Based on these two major principles,
a feature extractor based on encoder—decoder structure and
inception-based modules for efficient extraction is designed.
Three convolution layers and two max-pooling layers connect
the encoder—decoder structure and inception-based modules.
This connection is applied to compress the feature map size
from 224 x 224 to 56 x 56 which can bring speed-up at the
training stage and inference stage.

Yang et al. [24] successfully applied DCT to manually
extract layout pattern features. Although DCT keeps the spa-
tial information, inevitably, this manual design of the feature
expression ignores some key features thus may not give a
comprehensive expression. Furthermore, the processing of the
DCT is very time-consuming. Compared to the manually rule-
based DCT, our proposed feature extractor can transform the
origin layout into a network-compatible expression automati-
cally. As the feature extractor is a part of the whole CNN, the
training procedure is more flexible and efficient.

The convolutional network structure designed by [24] per-
forms well feature extraction, but its structure is too simple
thus is limited to the single clip hotspot detection problem.
The naive replacement on DCT without redesign on further
extractor is not available to the region-based task. There are
two metrics for us to think about how to design a new struc-
ture in our work. One is going deeper with more layers, while
the other is going wider with multiple branches.

1) Encoder—Decoder Structure: The encoder—decoder
structure has been successfully applied to many computer
vision tasks, including object detection [34]-[36]. The
vanilla encoder consists of several convolution layers and the
decoder includes the same number of deconvolution layers.
The encoder gradually extracts the features from the origin
image space to high dimensions latent space by increasing
the number of the convolution kernels, then the decoder
gradually downsamples the features from high dimensions to
origin image space with the symmetrical kernel settings.

Convolution Layer: The convolution layer is the major
part of the convolution neural network which has been
widely used. The operation between tensor and kernel can be
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expressed as

FOK(,H =) > > F(ij—mok—no)Kimo,no) (2)

i=1 mg=1 np=1

with tensor F € R°*P*P and kernel K € RO,

Deconvolution Layer: In contrast to convolutional layers,
deconvolution layers do the inverse operation which maps the
single input feature point to multiple outputs, which can be
considered as a feature generation. The expression can be
written as

TRKG.H=> > > T(.j—mo.k—no)

i=1 m0=] n0=1
x K(@m — mg, n — ng) 3)

where T € R“*™" is the tensor F € R“*P*P padded with zero
and n = (m — 1) x 2+ p, kernel K € R*"*™_Here, padding
size is the number of pixels we fill on the border of the origin
feature maps. In our experiments, the size of a padded feature
map is equal to the size of output. Kernel size is the size of
the deconvolution kernel. We use 3 x 3 kernel size which is the
same as the encoder part. During training, the feature map of
the deconvolution layer is updated with the back-propagation.

2) Inception-Based Structure: Empirically, a deeper neu-

ral network can give a much more robust feature expression
and get higher accuracy compared to a shallow structure as
it increases the model complexity. However, deeper networks
are prone to overfitting, and gradient vanishing attaches to it.
Even worse, it brings sacrifice on speed at both the inference
stage and the training stage. Another point we need to take
into consideration is that features extracted from the encoder—
decoder structure are still in low dimension space. In other
words, more convolution kernels are needed. Additionally,
salient parts in images (i.e., hotspots in our case) may have
pretty large variations in locations and sizes. According to
these issues, we propose an inception-based structure. The
following three points are the main rules of our design.

1) Increase the number of filters in width at each stage.
For each stage, multiple filters do the convolution oper-
ation with different convolution kernel size and then
concatenate them in channel direction as feature fusion.

2) Prune the depth of the output channel for each stage.

3) Downsample the feature map size in height and width
direction.

With the above rules, the inception structure [37] can take

a good balance between the accuracy and the time. The blobs
showed in Fig. 3 are what we apply in our framework. We
construct the module A with the operation stride one and four
branches. The aim of module A is to extract multiple features
without downsampling the feature map. The operation stride
of each layer in module B is two. Here, the stride denotes
the convolution operation step of kernels on feature maps, the
larger strides can decrease the tensor size and reduce the num-
ber of operations in subsequent layers. Note that module B has
the same design principles as module A, the bonus of module
B is to reduce the spatial size of features. We only use one
module B here, because the feature map size should not be too
small, while the low dimension of feature expression in final
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Fig. 4. Kernel work flow of clip proposal network.

layers may bring negative effects to the final result. The out-
put feature size of final module A in Fig. 3 is 14 x 14, which
is the input feature map of clip proposal network in Fig. 4.
It can be seen that 1 x 1 convolution kernel has been applied
in both modules. The exploited 1 x 1 convolution kernel with
low channel numbers offers a channel-wise pooling, which
brings the dimension reduction by decreasing the number of
feature maps whilst retaining their salient features. This tech-
nique successfully controls the number of the parameters and
convolutional operations, and thus reduces the computational
overhead.

In summary, the inception structure brings more abundant
feature expressions, which gives the network the ability to do
the kernel selection with no operation penalty.

B. Clip Proposal Network

Given the extracted features, a clip proposal network is
developed here to detect potential hotspot clips. For both fea-
ture maps and convolutional filters, the tensor structures of

the clip proposal network are illustrated in Fig. 4. Per pre-
liminary experiments, clips with a single aspect ratio and
scale (e.g., square equal to the ground truth) may lead to bad
performance. Therefore, for each pixel in a feature map, a
group of 12 clips with different aspect ratios is generated.

The network is split into two branches: one is for classi-
fication and the other is for regression. In the classification
branch, for each clip, a prediction of hotspot and nonhotspot
is calculated through the softmax function. The basic sam-
pling strategy to train the classifier is that the clips highly
overlapped with ground-truth are regarded as positive samples
and the ones with lower overlaps are considered as negative
samples. Apparently, it needs some tweaks and compromises
to separate hotspots and nonhotspots. In regression branch, the
location and the shape of each clip are determined by a vector
[x, v, w, h], where x and y refer to the location of a clip center
while w and h, respectively, record the width and the height
of a clip. One criterion for the regressor during training is that
clips labeled as nonhotspots are not fed into the regression
branch since there are no ground-truth clips for them. The
output of our clip proposal network is a bunch of proposals
that will be examined by the above-mentioned classifier and
regressor to eventually check the occurrence of hotspots. More
precisely, it predicts the possibility of a clip being a hotspot
or not, and refines the clip.

1) Clip Pruning: While the number of clips is extremely
large during training, high-quality clips should be reserved
to train the classifier and the low-quality clips which have
medium intersection area to the ground truth should be
removed as they are the noises to the classifier. For the clip
regression task, it is not reasonable to consider linear regres-
sion on these clips with large offset to the ground-truth clips.
To overcome this problem, we consider automatic clip pruning
in our neural network.

We first define IoU as follows:

Chpgroundtruth ﬂ clip generated

IoU = — : .
Cllp groundtruth U Chp generated

“)

Then the following clip pruning rules are established.

1) A clip’s IoU with ground-truth clip higher than 0.7

should be reserved as a positive sample.

2) The clip’s IoU with any ground truth highest score

should be reserved as a positive sample.

3) A clip’s IoU with ground-truth clip lower than 0.3 should

be reserved as a negative sample.

4) Rest of the clips do no contribution to the network

training.

2) Hotspot Nonmaximum Suppression: After the C&R, the
distance between some neighbor hotspots is quite close to each
other, there exists a set of overlapped clips which have the
same regression target. To avoid these redundant calculations
at training and inference stages, we develop a hotspot nonmax-
imum suppression (H-NMS) strategy to remove these clips.
The H-NMS strategy is shown in Algorithm 1.

The elements of sorted_ws are arranged in descending
order according to the classification score (CS) (line 1).
Centre_TIoU is a function returning the IoU score which
focus on the overlap of cores (line 7). If the IoU is larger
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Algorithm 1 H-NMS
1: sorted_ws < sorted clip set;

2: k < size of clip set;
3: for i < 1,2,....k do
4: current_w < sorted_ws[i];
5: for j<—i,i+1,...k do
6: compared_w <« sorted_ws[j];
7: Overlap <« Centre_TIoU(current_w, com-
pared_w);
8: if Overlap > threshold then
9: Remove compared_w; k < k — 1;
10: end if
11: end for
12: end for
13: return sorted_ws;
CS: 09 CS: 09 CS:09
CS:05 T o Cs:05
! 1
=>1 5 -
() I
CS:038 CS:038 CS: 038
(a) (b)
Fig. 5. Examples of (a) conventional nonmaximum suppression and (b)

proposed H-NMS.

than the threshold, we remove the clip with the lower score
from the list (lines 8—10). The removed clips will not con-
tribute to further operation. Note that applying H-NMS with
a higher threshold could lead to a drop on accuracy due to
aggressive suppression, while suppressing nearby clips with a
lower threshold would increase the false alarm since the less
confident proposals are less likely to be suppressed. To some
extents, the threshold value makes a tradeoff between two con-
flicting needs. In our experiment, the IoU threshold value is
set to 0.7.

Compared to conventional nonmaximum suppression
method, our proposed method takes advantage of the structural
relation between the core region and clips, thus can avoid error
dropout during the training. More importantly, the H-NMS
does not harm the ultimate detection accuracy but substan-
tially reduces the number of proposals. An example is shown
in Fig. 5, the clip with 0.5 CS is removed in conventional
methods, while saved in our method if we consider the core
within each clip.

C. Refinement

After the prediction of the first C&R in the clip proposal
network stage, we get a rough prediction on hotspot local-
ization and filtered region which is classified as nonhotspot.
While the greedy method of clip filtering cannot guarantee
all the reserved clips are classified correctly, the false alarm
may be too high. To bring a robust detection with lower false
alarms, we further construct refinement stage in the whole neu-
ral network, which includes a region of interests (Rol) pooling
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Fig. 7. Visualized 7 x 7 Rol pooling.

layer, three inception modules, as well as another C&R. The
structure of refinement is shown in Fig. 6.

Rol Pooling: The coordinates of each clip are the actual
location from the original input image. We scale down the
coordinates to conform with the spatial extent of the last
feature map before the refinement. In traditional image pro-
cessing, the most common ways to resize the image are
cropping and warping. The crop method cuts the pattern
boundary to fix the target size which leads to information loss.
The warping operation will change the shape of origin fea-
tures. Here, we apply Rol pooling to transform the selected
feature region i x w to a fixed spatial size of H x W (H and W
are the hyper-parameters, and we use 7 x 7 in this work). For
each pooled feature region |h/H x w/W ], the max-pooling is
applied independently. More specifically, the scaling is done
by the following two steps. First, each clip proposal is divided
into equal-sized sections, the number of which is the same as
the dimension of the output. Afterward, the largest value is
found and output in each section. Consequently, the dimension
of the output does not depend on the size of the input feature
map nor on the size of the clips. On the contrary, it is deter-
mined solely by the number of sections we divide the proposal
into (i.e., H x W in our algorithm). The Rol pooling transforms
clips with different sizes into a fixed size which reserves the
whole feature information and makes further hotspot C&R fea-
sible. It bridges the two stages of our region-based hotspot
detector, thus training object detection systems in an end-
to-end manner is allowed. Additionally, it also benefits the
processing speed in both the training and testing stage. Fig. 7
gives an example of Rol pooling operations.

Besides C&R in clip proposal network, here additional C&R
are designed to finetune the clip location and give a more
reliable classification result. At this stage, most nonhotspot
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O Unclassified ©Classified as non-hotspot ~ © Classified as hotspot

Fig. 8. (a) First hotspot classification in clip proposal network. (b) Labelled
hotspots are fed into second hotspot classification in refinement stage to reduce
false alarm.

clips have been removed, thus two stage of hotspot classifi-
cation can efficiently reduce false alarm. Fig. 8 illustrates an
example of the two stage hotspot classification.

D. Loss Function Design

We design a multitask loss function called C&R to calibrate
our model. As shown in Figs. 4 and 6, C&R is applied both
in the clip proposal network stage and refinement stage. The
input tensors of first C&R are boxes in Fig. 4. W, H, and C are
width, height, and channel, respectively. The probability score
of the hotspot, nonhotspot, and prediction of clip coordinates
are grouped in the channel direction. As aforementioned, x,
y are the coordinates of the hotspot, which means the centre
of the clip area. w, h are the width and height of the clip. In
second C&R, the tensor flow of the C&R is the same as [38]
using fully connected layers.

In the task of R-HSD, h; is the predicted probability of
clip i being a hotspot. /; is the ground truth of clip i, which
equals to 1 if a hotspot is located in the centre and 0 vice
versa. j = {ly, ly, Ly, I} € RY and I} = L, 0,0, 1} € R
are assigned as coordinates of clips W1th index i representing
the encoded coordinates of the prediction and ground truth,
respectively. The encoded coordinates can be expressed as

I = (x —xg)/wg, ly = (y _Yg)/hg

I = (¥ —xg) /wg, l; = (Y = yg)/wg
Ly = log(w/wy), I =1log(h/hy)
I, =log(w'/wg), U, =1log(h'/hg) (3)

where variables x, xg, and x' are for the prediction of clip,
g-clip, and ground-truth clip, respectively (same as the y, w,
and h).

The C&R loss function for clips can be expressed as

Legr (hi’ 71) = Qloc Z h;'lloc (?,', Z) + Z lhotspot (hiv h;)
i i

1 = >
+ 58(ITicll; + | Trorparl) ©)

where B is a hyper-parameter which controls the regulariza-
tion strength. ajoc is the hyper-parameter which controls the
balance between two tasks. The term /}loc (/;, I}) indicates that
regression loss is only activated for clips labeled as hotspots.
ﬁoc and fhotspot are the weights of the neural network. For

elements /;[j] and L[j] (j € [1, 4]) in 7,~, 7;, respectively, ljoc can
be expressed as
{ l
@)

which is the so-called robust loss or smooth L; loss (defined
in [39]) applied to avoid the exploding gradients problem
at training stage. lhospot 18 the cross-entropy loss which is
calculated as

lhotspot (hia h;) =

In (6), we apply the L, regularization to the loss function,
which is the sum of the squares of all the weights in the
network. The L, regularization penalizes peaky weight vectors
and prefers diffuse weight vectors. Due to multiplicative inter-
actions between weights and features, the L, regularization
term has the appealing property of encouraging the network
to use all of its inputs rather than skewed on partial of its
inputs.

(4Lj) | A1) S A e 1 [

hoe (i
toc (4ilj], l/[1]| ~o. 5, otherwise

—(hilog b} + hlog h;). ®)

E. Example of Detection Flow

An example of R-HSD flow is illustrated in Fig. 9. We first
extract output tensors of each stage and sum up in channel-
wise for visualization. Note that we visualize the features in
grayscale, where the locations with lighter colors have higher
values and darker locations have lower values vice versa. With
feature extraction going deeper, values of features at hotspot
regions have higher response comparing to the nonhotspot
regions. The hotspot and nonhotspot areas presented as rect-
angles (for a clear explanation, not all rectangles are shown in
the figures) in clip proposal network are cropped and down-
sampled to the same size with Rol pooling at the refinement
stage. After the second stage classification and regression, a
more accurate result is given.

IV. ENHANCED R-HSD NEURAL NETWORK

In previous sections, the preliminary R-HSD neural network
has been proposed. However, there still exists some room to
improve the performance of our region-based hotspot detector.
For example, the encoder—decoder structure in feature extrac-
tor becomes a bottleneck since it lacks a multilevel description
of an input layout. Therefore, based on the preliminary design
for R-HSD neural network, two new concepts are introduced
for further enhancement.

A. Multibranch Design for Encoder

The encoder—decoder in prior arts is in a single-branch
structure, which may bring the following issues into the
learning process. One is a fixed-size kernel cannot capture
multiscale information. The other is naively stacking large
convolution operations is computationally expensive.

To alleviate the above issues, we propose our multibranch
design based on the basic idea of Inception network [37] and
atrous convolution [40]-[42]. The core of the proposed design
is that convolutional kernels with multiple sizes operate on the
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Fig. 9. Example of features presentation in our framework.
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| With kernel size =3 With kernel size =3

ilated rate =2 || Dilated rate =

Fig. 10. Illustration of atrous convolution.

same level simultaneously. By aggregating the feature maps on
different scales, the encoder—decoder structure has the poten-
tial to surpass other feature extractors. Furthermore, to reduce
the computational complexity, we exploit atrous convolution
as an alternative to the standard convolution. As a generaliza-
tion of standard convolution operation, atrous convolution is
a powerful technique that explicitly controls the resolution of
features computed by CNNs and adjust kernel’s field of view
to handle multiscale information. Except for the dilated rate, it
works in a similar way as standard convolution which moves
across the whole image with a stride-size column change on
the horizontal movements, and a stride-size row change on
the vertical movements. We visualize the computation process
of atrous convolution in Fig. 10, where only grids filled with
dashed and oblique lines need to compute. It can be seen that
the dilated rate controls the field-of-view scope of a kernel and
affects the resolution of the output feature map. Note that when
dilated rate equals to 1, the atrous convolution degrades to
standard convolution. Hence, we can rewrite (2) as following:

F ® K@, k)
c m m
= Z Z Z F(i,j — rxmg, k — r =+ no)K(mo, ng) (9)
i=1 mo=1 np=1

where r refers to the dilated rate. Implicitly expressed by (9),
the advantage of atrous convolution is that it expands kernel
size without introducing additional computational complexity.
Building on top of the aforementioned ideas, our multi-
branch framework is designed as in Fig. 11. Three branches
with different dilated rates (e.g., 1, 3, 5 as fine-tuned con-
figurations) work collaboratively, and then all output tensors
concatenate as a fusion feature map via channel dimension.

[J Hotspot Non Hotspot

‘< = L

Yy 4

Dilated rate = 1 Dilated rate =3  Dilated rate = 5

Multi-branch Encoder

Fig. 11. Illustration of proposed multibranch design.

[] The ground truth = (2, ', w’, k')

[ The prediction = (,y, w, h)

Intersection (L,L1)
Union ([_|,[])

IoU regularizer = — In

Fig. 12. Tllustration of the IoU regularizer.

B. IoU Regularizer for Loss Function Design

To accelerate bounding box prediction, we leverage a novel
ToU [43], [44] regularization term in our loss function. Hence,
our loss function is redesigned as

Lcgr (hia 71) = UJoc Z h;'lloc (71', 7:) + Z lhotspot(hiy h:)
i i

L iz 12, 15 2
+ 5B(I el + | Trorspar 5 + Ricv) (10)

where Rjoy is the proposed IoU regularizer.

IoU, also known as the Jaccard index, is a widely exploited
metric for comparing the similarity between two geometric
shapes. IoU encodes the shape and position properties of the
objects under comparison, e.g., the indices of the left upper
corner and right bottom corner of two clips in our case, into
the region property, and then calculates a normalized measure
that focuses on their areas. This property makes IoU robust
to the scale of the problem under consideration. Thanks to
this appealing property, this metric is the foundation of all
performance measures in segmentation, object detection, and
tracking tasks. The exploited IoU regularizer, shown in Fig. 12,
directly enforces the maximal overlap between the predicted
clip and the ground truth, and jointly regresses all the bound
variables as a whole unit.

To give a more mathematical understanding of the proposed
IoU regularizer, the deduction of back-propagated information
of itself is shown as follows. Assume the predicted clip and
corresponding ground truth are located as shown in Fig. 12.
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TABLE I
BENCHMARK INFORMATION. cASE2, cASE3, AND cast4 ARE THREE CASES FROM ICCAD CAD CONTEST 2016 BENCHMARK SUITE [45]. V1a Is
GENERATED BY OPEN SOURCE LAYOUT GENERATOR AND SIMULATED USING MENTOR CALIBRE. CLIPS FOR TRAINING ARE GENERATED BY RANDOM
CROPPING ON LAYOUTS

Bench Train #HS  Test #HS | Train #Clips Test #Clips | Training Set Size (um X um Testing Set Size (um X um
p p g Y w g Y w

case2 40 39 1000 8 6.95 x 3.75 6.95 x 3.75

case3 1388 1433 1000 33 12.91 x 10.07 12.91 x 10.07

case4 90 72 1000 55 79.95 x 42.13 79.95 x 42.13

Via 2184 2184 1000 1947 53.82 x 53.82 53.82 x 53.82
TABLE II

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS. FASTER R-CNN [46] AND SSD [47] ARE TWO CLASSICAL TECHNIQUES MATCH
TO THE R-HSD OBJECTIVES. TCAD’ 19 [25] Is A DEEP LEARNING-BASED HOTSPOT DETECTOR. R-HSD AND ENHANCED R-HSD ARE THE METHODS
PROPOSED IN [33] AND IN THIS WORK, SEPARATELY

TCAD’19 [25] Faster R-CNN [46] SSD [47] R-HSD [33] Enhanced R-HSD
Bench Accu Accu Accu Accu Accu

%) FA Fl (%) FA Fl (%) FA Fl (%) FA F1 (%) FA Fl
case? 77.78 48 0.51 1.80 3 0.05 | 71.90 519 0.53 | 93.02 17 0.78 | 95.74 15 0.81
case3 91.20 263 0.87 | 57.10 74 0.11 | 57.40 1730 0.61 | 94.50 34 0.96 | 94.72 78 0.94
cased 100 511 0.22 6.90 69 0.07 | 77.80 275 0.03 100 201 0.38 100 92 0.61
Via 81.30 2672 0.54 | 86.52 25551 0.12 | 64.21 65319 038 | 87.20 2577 0.57 | 89.40 2435 0.58
Average | 87.57 8735 054 | 38.08 64245 0.24 | 67.83 16960 0.39 | 93.68 707.3 0.67 | 94.97 655 0.74
Ratio 1.00 1.00 1.00 0.43 7.35 0.44 0.77 1942 0.72 1.07 0.96 1.24 1.08 091 137

First, the partial derivatives of the area of the predicated clip
with respect to (W.r.t.) yi, v, Xi, X, are computed as

X

hotspot locations are labelled according to the results of indus-
trial 7-nm metal layer EUV lithography simulation under a
given process window.! As there are limited defects found

=X — X (11)  with lithography simulation on the first benchmark, all our
dyi(or dy,) : :
experiments are conducted on rest three designs. Each layout
and is split into two equal halves with one part used for training
X Y= (12) and the other one used for testing. Besides these three cases,
r .

ax(or 9x,)

For simplicity, we use VX refer to any derivatives w.r.t. y;, y,,
X1, xr. Next, the partial derivatives of the intersection area /
w.r.t. any y;, yr, X;, X, marked as VI, is deduced as

we generate a much larger benchmark called Via to present a
more comprehensive comparison with previous related works.
Via benchmark is generated following an open source lay-
out generator,” and simulated using Mentor Calibre. More
details about benchmarks are shown in Table I. We imple-

ﬂ =x, — x; (13) ment our R-HSD framework with Tensorflow [48] in Python,
ay1 and test it on a platform with a Xeon Silver 4114 proces-
while (d1/9y,) = 0 and sor and an Nvidia GTX Titan graphic card. Nvidia GTX
91 Titan has a comparable computational capacity as the high-
P Y= Vi (14)  performance clusters with 24 Maxwell stream processors. Note
S

while (97/0x;) 0. Eventually, the back-propagated
information of proposed regularization w.r.t. p is

(VX — VI) — UVI
VRiou =

that three training layouts are merged together to train one
model that will be used in the inference stage. In the follow-
ing experiments, the neural network is trained with following
parameter settings: input size = 256 x 256 (corresponding to

U2ToU 2.56 um x 2.56 pum), batch size = 12, initial learning rate =
1 U+1 0.002 (decay ten times for each 30000 steps), aspect ratio =
=g X~ v (3" 10.5,1.0,2.0] and scales = [0.25, 0.5, 1.0, 2.0]. The parame-

where the union area U equals to (X +X’). According to (15),
the first term (1/U)VX penalizes the predicted clip, whilst the
second term is a soft constraint on the intersection area. When
the gradient equals to zero, the limit case which means the
predicted clip exactly matches the ground truth are attained.

V. EXPERIMENTAL RESULTS

Our R-HSD flow is evaluated on ICCAD CAD Contest 2016
benchmark suite [45], which contains four designs that are
shrunk to match EUV metal layer design rules. Ground truth

ters of the loss function are heuristically chosen, what we use
are B = 0.2, ajoc = 2.0. At the inference stage, we follow the
same data generation rule applied in [25].

We list the detailed result comparison in Table II. Column
“Bench” lists three benchmarks used in our experiments.
Columns “Accu,” “FA,” “Time” denote hotspot detection accu-
racy, false alarm count and detection runtime, respectively.

IShrunk benchmarks and their hotspot information is available at
https://github.com/phdyang007/ICCAD16-N7M2EUV.
2https://github.com/phdyang007/1ayout—gem—:rator
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TABLE III
RUNTIME COMPARISON WITH STATE-OF-THE-ART METHODS

Bench ‘ TCAD’19 [25] ‘ Faster R-CNN [46] ‘ SSD [47] ‘ R-HSD [33] ‘ Enhanced R-HSD

case2 60.0 1.0 1.0 2.0 23

case3 265.0 11.0 3.0 10.0 10.8

cased 428.0 8.0 2.0 6.0 6.6

Via 87.8 57.1 213 435 463

Average | 2102 | 19.3 68 | 154 | 16.5
TABLE IV

Column “TCAD’19” lists the result of a deep learning-based
hotspot detector proposed in [25] that adopts frequency-
domain feature extraction and biased learning strategy. We
also implement two baseline frameworks that employ Faster
R-CNN [46] and SSD [47], respectively, which are two clas-
sic techniques the match our R-HSD objectives well. Note
that we do not apply the pretrained model in this work, all the
models are trained from scratch. The corresponding results are
listed in columns “Faster R-CNN [46]” and “SSD [47].” The
rest two columns, “R-HSD” and “Enhanced R-HSD”, denote
the methods proposed in [33] and the framework presented
in this work. The results in R-HSD surpass [25] with aver-
age of 6.11% improvement on hotspot detection accuracy and
~ 170 less false alarm penalty, while our enhanced R-HSD
behaves even better with an average accuracy of 94.97% and
further decrease on the false alarm compared to the R-HSD.
Especially, our framework gets much better on case2 with
95.74% detection accuracy compared to 77.78%, 1.8% and
71.9% for [25], Faster R-CNN, and SSD, respectively.

The advantage of the proposed two-stage C&R flow can
also be seen here that [25] achieves similar hotspot detection
accuracy compared to our frameworks but has extremely large
false alarms that will introduce additional issue. As shown in
Table III, the detection runtime for the proposed region-based
framework is much faster than [25] thanks to the region-based
detection scheme. We can also observe that although Faster
R-CNN and SSD are originally designed for large region
object detection, they perform very poor on hotspot detec-
tion tasks which reflects the effectiveness and efficiency of
our customized frameworks. Different from the atrous spa-
tial pyramid pooling (ASPP) proposed in [40] and [42] which
extracts features in multiple scales. Multibranch encoder with
atrous convolution layer designed for clip-wise feature extrac-
tions has much lower dilation rate than ASPP, because the size
and scale of clips are much regular than objects in real life.
The setting of ASPP is not compatible with the hotspot detec-
tion task. The experiments in Table IV show that our proposed
design in hotspot detection task outperforms ASPP by a large
margin.

We also study how different configurations of our frame-
work affect performance. Table V and Fig. 14 summarize
the contributions of encoder—decoder structure, multibranch
encoder—decoder, L, regularization, IoU regularizer, and
refinement stage to our backbone neural network. “w/o. ED”
denotes the framework without the encoder—decoder structure,
“w/o. MBED” denotes the framework without the multi-
branch design for the encoder—decoder structure, “w/o. Lp”
stands for the framework without the L, regularization,

COMPARISON WITH ASPP MODULE. ASPP MODULE IS APPROACHED
IN [42], WHICH IS DESIGNED FOR GENERAL OBJECTS

ASPP [42] + R-HSD [33] Enhanced R-HSD

\
Bench Accu Time Accu Time
FA F1 FA F1
‘ (%) (s) (%) (s)
case2 82.05 22 0.68 3.6 95.74 15 0.81 23
case3 90.95 96 0.92 11.0 94.72 78 0.94 10.8
cased 100 143 0.50  4.45 100 92 0.61 6.6
Via 87.61 2558  0.58 44.7 89.4 2435 058 463
Average | 90.39 704.8 0.67 15.38 | 94.97 655 0.74 16.5
Ratio 1.00 1.00 1.00 1.00 1.05 097 1.10 1.07

“w/o. IoU” denotes the framework without the IoU regularizer,
“w/o. Refine” denotes the framework without the refinement
C&R, and “Full” is our framework with entire techniques. The
ablation study shows that with the encoder—decoder structure,
we get 7.17% accuracy improvement on average, which indi-
cates that the encoder—decoder structure gives a more efficient
feature expression than the original input. After incorporat-
ing multibranch design for the encoder—decoder structure, the
accuracy is improved by 1.82% on average, which demon-
strates the effectiveness of this configuration. It can be seen
that without IoU regularizer, the performance degrades with
45 additional false alarms. With the L, regularization, the
framework gets around 3% improvement in all cases, which
means under the same experiment settings, the L, regulariza-
tion resolves the overfitting problem effectively. Comparing
the whole framework with the model without refinement, the
model with refinement reduces around 20% false alarms and
achieves 5.25% further improvement on average accuracy.
Table VI shows an ablative comparison on different anchor
generation settings. “Anchor number” denotes the number of
anchors we generate for each location. “Scales” denotes the
size ratio compared to a standard anchor with the shape of
16 x 16. “Aspect Ratios” denotes the ratio between anchor
width and height. With the increasing of anchors, the number
of false alarms can be reduced signficantly, which indicates a
sufficient sampling is necessary for the training.

VI. CONCLUSION

In this article, we have proposed an innovative end-to-end
R-HSD framework. Our feature extractor based on multibranch
encoder—decoder design and inception module provides a self-
adaptive way to perform feature transformation, which is very
compatible with convolution neural networks. With pruning
and H-NMS strategies, the clip proposal network locates the
potential hotspot in an efficient regression way. We take advan-
tage of L, regularization’s property to prevent over-fitting
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TABLE V
ABLATION STUDY ON EACH PROPOSED STRATEGY

Bench | w/o. ED | w/o. MB ED | w/o. Lo | w/o. IoU | w/o. Refine | Full
| Accu (%) FA | Accu (%) FA | Accu (%) FA | Accu (%) FA | Accu (%) FA | Accu (%) FA
case?2 75 31 93.32 20 91.9 1 94.11 21 75.76 394 95.74 15
case3 92.8 27 94.72 31 91.7 64 94.91 23 94 23 94.72 78
cased 98.6 166 100 220 97.2 127 100 240 100 201 100 92
Via 85.12 2762 84.57 2812 86.5 2697 88.7 2516 89.1 2516 89.4 2435
Average 87.8 746.5 93.15 770.8 91.82 722.3 94.43 700 89.72 783.5 94.97 655
Ratio 0.925 1.06 0.981 1.07 0.967 1.04 0.994 1.07 0.94 1.20 1.00 1.00
TABLE VI

ABLATION STUDY ON ANCHOR GENERATION

Anchor number | Scales Aspect Ratios | Average Accu (%)  Average FA
3 [0.25, 0.5, 1.0] [0.5] 89.13 32445
6 [0.25, 0.5, 1.0] [0.5, 1.0] 92.31 1820
9 [0.25, 0.5, 1.0] [0.5, 1.0, 2.0] 90.12 1725.5
12 (final result) | [0.25, 0.5, 1.0, 2.0]  [0.5, 1.0, 2.0] | 94.97 1655

[ Detected Hotspot | |False Alarm  [_| Missed Hotspot

Fig. 13. Visualization of different hotspot detection results. (a) Ground-truth. (b) TCAD’19 [25]. (¢) R-HSD [33]. (d) Enhanced R-HSD.

1 wlo. ED models. The defect results in this article come from the rigor-
— g
Z 16} | Emmw/o. MB ED ous EUV model simulation model. In our future work, more
2 B | w/o. experiments with compact lithography simulation will be dis-
E 15 — 2 p p graphy
b= = w/o. IoU cussed. We hope this article can give a new perspective on deep
é 14 | mmm w/o. Refine learning-based hotspot detection and provide a more powerful
13 L | Full solution for the advanced design for manufacturability (DFM)
research.
Fig. 14. Runtime comparison among different settings.
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