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Bridging the Gap Between Layout Pattern Sampling
and Hotspot Detection via Batch Active Learning
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Abstract—Layout hotpot detection is one of the main steps in
modern very-large-scale-integration (VLSI) chip design. A typical
hotspot detection flow is extremely time consuming due to the
computationally expensive mask optimization and lithographic
simulation. Recent researches try to facilitate the procedure with
a reduced flow, including feature extraction, training set gener-
ation, and hotspot detection, where feature extraction methods
and hotspot detection engines are deeply studied. However, the
performance of hotspot detectors relies highly on the quality of
reference layout libraries which are costly to obtain and usu-
ally predetermined or randomly sampled in previous works. In
this article, we propose an active learning-based layout pattern
sampling and hotspot detection flow, which simultaneously opti-
mizes the machine-learning model and the training set that aims
to achieve similar or better hotspot detection performance with
much smaller number of training instances. Experimental results
show that our proposed method can significantly reduce lithog-
raphy simulation overhead while attaining satisfactory detection
accuracy on designs under both DUV and EUV lithography
technologies.

Index Terms—Active learning, hotspot detection, lithography,
sampling.

I. INTRODUCTION

ALONG with aggressive feature size scaling, even
equipped with various resolution enhancement tech-

niques and hierarchical design strategy, modern chip designs
are more complicated and greatly challenged by manufactura-
bility issues. In chip design, one of the most critical steps is to
detect layout hotspots, which are potentially problematic pat-
terns after chip manufacturing. A hotspot is costly to estimate
because of the complicated mask optimization and lithogra-
phy simulation [1]. Many researches have been conducted to
facilitate the procedure which usually share a flow as shown
in Fig. 1, including feature extraction, training set generation,
and hotspot detection.

Feature extraction aims to convert layout geometry
information (e.g., density [2], [3], frequency [4], [5], design

Manuscript received February 18, 2019; revised June 28, 2019, October 29,
2019, February 19, 2020, and May 24, 2020; accepted July 16, 2020. Date of
publication August 11, 2020; date of current version June 18, 2021. This work
was supported in part by the Research Grants Council of Hong Kong SAR
under Project CUHK24209017. This article was recommended by Associate
Editor S. Held. (Corresponding author: Bei Yu.)

Haoyu Yang, Shuhe Li, and Bei Yu are with the Department of Computer
Science and Engineering, Chinese University of Hong Kong, Hong Kong
(e-mail: byu@cse.cuhk.edu.hk).

Cyrus Tabery is with ASML Brion Inc., Santa Clara, CA 95131 USA.
Bingqing Lin is with the College of Mathematics and Statistics, Shenzhen

University, Shenzhen 518060, China.
Digital Object Identifier 10.1109/TCAD.2020.3015903

rule [6], and geometry [7], [8]) into reduced mathematical
representations, which are expected to improve hotspot detec-
tion accuracy. Recently, deep neural networks also exhibit
powerful feature learning ability that can obtain layout rep-
resentations without prior knowledge [5], [9]–[13]. In the
hotspot detection stage, all selected samples and labels are
fed into hotspot detection engines based on, mostly, pat-
tern matching and machine learning. In a pattern matching
flow, similar patterns within a specific radius are clus-
tered together based on the constraints of translation, area,
and/or edge displacements [3], [14], [15]. Lithography simu-
lation will be performed on the representative clips results
from which will be then labeled to the whole cluster. Above
process indicates that fuzzy matching results are drastically
affected by in-cluster variance. We will show the breakdown
of the cluster distributions in advanced technology process
that fuzzy matching possibly fails with an 95% area con-
straint. Although aggressive constraints can be introduced
to ensure a low in-cluster variance, additional cluster count
will significantly increase lithography simulation overhead.
On the other hand, machine learning technologies tackle the
problem through fitting layout representations into efficient
machine learning models. Yu et al. [6] and Ding et al. [16]
employed support vector machine for efficient hotspot detec-
tion. Matsunawa et al. [2] and Zhang et al. [17] enhanced
hotspot detectors with boosting algorithms and additional
learning strategies. References [5], [9]–[11] adopt emerging
deep neural networks that automatically learn layout represen-
tations and perform classification. Still, overfitting is inevitable
due to weakly distributed training data.

Previous works show that although pattern matching-based
methods and machine learning-based methods exhibit different
functionalities, they all rely highly on the quality of refer-
ence layout libraries. For example, in-cluster pattern variance
directly affects pattern matching results and pattern diver-
sity contributes to the generality of trained machine learning
models. Layout pattern sampling problems are addressed by
several works that are, to some extent, related to cluster-
ing approaches. Representative methods include clustering on
frequency domain [4], [18], Bayesian clustering [19], and
clustering based on layout topology [14], [15], [18], [20].
However, sampling and hotspot detection are mostly conducted
exclusively which ignores the beneath integrity between them.

In this article, we will propose an active learning-based
framework that can bridge the gap between the layout pattern
sampling procedure and the hotspot detection problem. Active
learning targets at machine learning problems with massive
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Fig. 1. Conventional process of layout hotspot training set and detection
model generation.

data that is costly and time consuming to label. A major step
of active learning is querying instances to determine whether
the instance should be labeled and added into the training
set from a perspective of machine learning model general-
ity [21]. Representative querying strategies include uncertainty
sampling (US [22]), query by committee (QBC [23]), and
expected model change (EMC [24]). US aims to find the
instances which the prediction model is most uncertain about
and have the posterior probability around 0.5; QBC selects
instances based on the disagreement among multiple classi-
fiers; and EMC labels the most influential data in terms of
the existing model. A common idea behind these strategies is
labeling instances that are hardly distinguished by the classi-
fier. However, there are several drawbacks of existing active
learning strategies: 1) only one sample is selected in each
iteration in most active learning flows which is lacking in
efficiency; 2) machine learning models have to be retrained
from raw state once the training set is updated; and 3) training
set diversity is not considered in sampling flow which might
cause serious overfitting problem [21], [25], [26]. Although
Kullback–Leibler (KL) divergence [27] on posterior probabil-
ities of unlabeled samples can be applied for diversity anal-
ysis [28], the effectiveness is limited on binary classification
problems.

To address these concerns, we propose a batch mode active
learning method that considers both model uncertainty and
training set diversity for a better hotspot detection results. We
embed the active learning engine into deep neural networks
thus data sampling and incremental model training can be
conducted alternatively. Guaranteed by the online property of
the stochastic gradient descent, we only need to finetune the
neuron weights according to new labeled instances instead of
training model from scratch in each iteration. The rapid devel-
opment of deep neural networks also makes it possible to
learn representative features from raw image, which becomes
another reason that we pick CNN as our learning engine. We
take advantage of this characteristic and construct a diversity
matrix of automatically learned features which will contribute
as a partial criterion for data sampling in each iteration.

The main contributions of this article are listed as follows.

1) A novel layout pattern sampling and hotspot detection
(PSHD) flow is proposed to simultaneously optimize
training set and machine learning model.

2) We develop a batch mode active learning engine that
samples multiple instances in each iteration according
to the training set diversity and data uncertainty, where
a specific distance metric is designed to guarantee a con-
vex objective that makes the sampling procedure more
efficient.

3) We conduct experiments on metal layers under 7 nm and
28 nm technology nodes which demonstrate the gen-
erality of the proposed flow that significantly increases
hotspot detection accuracy while minimizing lithography
simulation overhead.

The reminder of this article is organized as follows.
Section II introduces the basic terminologies and definition.
Section III lists theoretical and algorithmic details. Section IV
presents experiment settings and results, followed by conclu-
sion in Section V.

II. PRELIMINARIES

A. Some Terminologies and Problem Formulation

This section introduces some terminologies and related
problem formulation. Throughout this article, scalers are writ-
ten as lowercase letters (e.g., x), vectors are bold lowercase
letters (e.g., x), and matrices are represented as bold upper-
case letters (e.g., X). Particularly, we use Jn(·) to represent the
Bessel function of the first kind of order n. All layout images
are with a resolution of 1 nm/pixel. The framework evaluation
metrics are defined as follows.

Definition 1 (Hit): A hit is defined as when the detector
reports hotspot on a clip of which at least one defect occurs
at the core region. We also denote the ratio between number
of hits and total hotpsot clips as detection accuracy.

Here the detector in this article refers to a hotspot detector
with its input being a layout clip and its output being a label
indicating whether the clip contains manufacturing issues.

Definition 2 (Extra): An extra is defined as when the detec-
tor reports hotspot on a clip of which no defect occurs at the
core region.

Definition 3 (Litho-Clip): A litho-clip is a pattern
in the training set or a pattern that is labeled hotspot by the
machine learning model. The count of litho-clips reflects the
lithography simulation overhead.

According to the evaluation metrics above, we define the
problem of layout PSHD as follows.

Problem 1 (PSHD): Given a layout design, the objective
of PSHD is sampling representative clips that will generalize
the hotspot pattern space and maximize the machine learning
model generality, i.e., maximizing the detection accuracy while
minimizing the number of litho-clips.

From the definition, we can observe that our problem for-
mulation differs from traditional hotspot detection in previous
works. Here, we are dealing with a practical application, where
no training set and testing set are given in advance. In short,
we seek to conduct full-chip hotspot detection with small-
est lithography simulation overhead. Accordingly, the input of
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Fig. 2. Simple lithography imaging system.

our framework will be full-chip layout design and the outputs
include a training set (labeled dataset), a trained model, and an
unlabeled dataset. The evaluation metrics of such framework
include overall hotspot detection accuracy

Acc = HSTrain + Hits

HSTotal
(1)

where HSTrain, Hits, and HSTotal denote hotspot number in the
training set, correctly predicted hotspot number in the unla-
beled dataset, and total hotspot number, and the lithography
overhead as in the following equation:

Litho = Tr + FA (2)

where Tr represents the total number of clips in the training
set and FA is the detection false alarm in the unlabeled dataset.

B. Lithography Proximity Effect

Most challenges in optical lithography come from the prox-
imity effects caused by diffraction as light goes through the
mask stage, as shown in Fig. 2. In a lithography imaging
system, the electric field of the diffracted pattern is given by
the Fourier transform of the original mask pattern. Afterward,
diffracted patterns will be collected by the objective lens to
project images on the wafer. Because of the limited size of
objective lens, higher order diffraction patterns will be dis-
carded when forming the image on the wafer that results in a
lower pattern fidelity [29]. Typically, to ensure the mask image
can be transferred onto the wafer as accurate as possible, at
least the zero and ±1st diffraction order should be captured
by the objective lens. Accordingly, the smallest design pitch
can be defined as in the following equation:

1

p
= NA

λ
(3)

where p denotes the design pitch, λ is the wavelength of the
light source, and NA is the numerical aperture of the objective
lens which determines how much information can be collected
by the objective lens and is given by

NA = n sin θmax = D

2f
(4)

where n is the index of refraction of the medium, θmax is the
largest half-angle of the diffraction light that can be collected
by the objective lens, D denotes the diameter of physical aper-
ture seen in front of the objective lens, and f represents the
focal length [30].

The existence of diffraction makes it also interesting to ana-
lyze the minimum distance when two shapes stop affecting
the aerial images of each other. Fraunhofer diffraction occurs
in classic lithography system, where the diffracted patten is
determined by the Fraunhofer diffraction integral [30]. For
simplicity, we consider the contact hole as an example whose
diffraction pattern resembles the Airy disk. The light intensity
in terms of observation angle θ at the entrance of the objective
lens is shown in the following equation:

I(θ) =
(

2J1(kr sin θ)

kr sin θ

)2

· I0 (5)

where I0 denotes the center intensity of airy disk, r = (D/2)

is the radius of the entrance pupil, and k = (2π/λ) is the
wavenumber. According to the properties of the Bessel func-
tion, dark regions of Airy disk that correspond to zeros of
I(θ) appear periodically with a degradation of total energy.
The total energy within an observation angle can be derived
by integrating (5) over θ

P(θ) =
[
1− J2

0(kr sin θ)− J2
1(kr sin θ)

]
(6)

which reflects by how much the diffraction information can be
collected. If we pick the 6th zero point of I(θ) at kr sin θ ≈
19, we can derive P(θ) ≈ 96.73%, which is the fraction of
diffraction collected with in a given window size. Besides, we
assume n = 1 in the air

sin θ = 19

kr
= NA. (7)

Combining (7) and (4)

D = 6.05 · λ

NA
. (8)

Here, D determines the minimum distance when two shapes
can be regarded as isolated patterns, which can be derived to
be 230 nm using NA = 0.35 and λ = 13.5 nm under extreme
ultraviolet (EUV) lithography technologies.

III. ALGORITHM

In this section, we will discuss the details of our PSHD flow,
including initial training set selection, batch active sampling
algorithm, and some mathematical analysis.

Because it is extremely costly to label layout clips, our
flow aims to sample as small number of clips as possi-
ble while ensuring good machine learning model generality.
Conventional layout pattern sampling methods conduct clus-
tering on layout clips and obtain representative patterns based
on the results of pattern matching or clustering. Although
the clustering can effectively reduce the sample number,
it does not consider the behavior or requirement of, espe-
cially, machine learning-based hotspot detectors. As shown
in Fig. 3(a), pattern matching collects a lot of less critical
patterns that lie far from the decision boundary while ignor-
ing important patterns. In conventional active learning-based
sampling [see Fig. 3(b)], prediction uncertainty of each clip
is included in the selection criteria. That is, patterns with
posterior probability around 0.5 will be sampled with higher
priority. However, in a layout PSHD task, we care more about
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(a) (b) (c)

Fig. 3. Visualization of different layout pattern sampling methods. (a) Pattern matching. (b) Conventional active learning. (c) Proposed layout pattern sampling.

Fig. 4. PSHD flow.

hotspot regions. Therefore, apart from considering diversity of
training instances, we tend to select clips with higher proba-
bility being hotspot in our sampling approach, as illustrated in
Fig. 3(c).

A. Flow Summary

The proposed layout PSHD flow is illustrated in Fig. 4.
To analyze the printability of a full-chip design, we dispatch
the layout into clips based on the lithography proximity effect
analysis, such that the whole chip is covered by the core region
of each clip that contains enough information to conduct print-
ability estimation. And then, the training set and the machine
learning model will be updated until convergence, when all
the clips will be either labeled or dropped. Finally, the full-
chip hotspot detection will be conducted on the dropped clips
with the final learning model. We go through the framework
details in the rest of this section.

B. Diversity-Aware Batch Sampling

Discriminative machine learning models are usually
designed to find the optimal hyperplane that separates the
whole data space. The quality of a model is measured by its
generative loss which is associated with the prediction error on
the future instances. In this section, we will discuss an instance
selection policy considering both model uncertainty and data
diversity, thus the selected instances are expected to con-
tribute most on the trained model generality. The uncertainty
describes how confident of the classifier when recognizing new
instances. A model is uncertain on a given instance if the
prediction probability draws around 0.5 according to the pos-
terior distribution or the instance is too close to the hypothesis
plane in the feature space. Data diversity corresponds to the

instance distribution in the dataset. The underneath idea is to
label instances into the training set such that the training set
entropy is maximized. Most active learning algorithms, such
as US [22], QBC [23], and EMC [24], are designed to pick
one instance in each iteration, which is not efficient as problem
sizes grow. Even these methods are applied for batch selection,
samples touch the selection criteria are labeled into the train-
ing set, when redundant instance samples are more likely to be
chosen. Here, we consider a batch selection mechanism that
takes both model uncertainty and data diversity into account.

Suppose we have a training set Lt and an unlabeled set Ut

at time t. Let wt be the classifier parameters trained on Lt.
The objective is to select a batch B with k points from Ut so
that the future learner wk+1, trained on Lt ∪B, has maximum
generalization capability. Let Y = {0, 1} be the set of possible
classes in the problem. For a given unlabeled layout clip xi, we
denote the related posterior probability as p(y|xi;wt). Usually,
the uncertainty of the unlabeled instance xi is defined as
the entropy of the predicted probabilities, as shown in the
following equation:

c(i) = −
∑
j∈Y

p(y = j|xi;wt) log p(y = j|xi;wt). (9)

However, in the layout pattern sampling problems, problematic
instances are of more interests. We therefore pick a simple but
more practical representation of c(i)

c(i) = p(y = 1|xi;wt) (10)

which corresponds to the probability of a given instance being
hotspot. Usually, the redundancy between unlabeled points xi

and xj can be calculated through the KL divergence, which
measures how two training instances differ from each other
in a statistic point of view. In the domain of layout hotspot
detection, however, we are dealing with yes or no problem,
which is less informative for diversity analysis. To benefit the
layout analysis problem, we use inner-product of two instances
in the normalized feature space as shown in the following
equation:

E(i, j) = x�i xj. (11)

We can further formulate the diversity matrix D ∈ R
n×n,

whose entries are defined by (11).
Given the matrix D, the batch mode active learning problem

is shown in mathematical formulation (12), where the objective
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is to select a batch of points with high aggregate uncertainty
scores and high divergences among the samples

min
m

m�Dm (12a)

s.t. mi ∈ {0, 1} ∀i (12b)∑
i

mi = k ∀i. (12c)

Here, k is the number of patterns that will be selected into
the training set, mi is a binary variable, and mi = 1 if pattern
xi is selected in the batch B. It should be noted that (12) is
binary quadratic programming, which is NP-hard. We relax
the integer constrains and derive the following problem:

min
m

m�Dm (13a)

s.t. mi ∈ [0, 1] ∀i (13b)∑
i

mi = k ∀i (13c)

which is a standard quadratic programming problem and can
be solved efficiently. It can be seen here one advantage of
the proposed distance metric over the KL divergence and the
Euclidean distance is that (11) ensures the objectives of (12)
and (13) to be convex by D � 0. Finally, the integer solution
can be recovered by picking k largest entries in m.

C. Layout Pattern Sampling and Hotspot Detection

The rapid development of deep neural networks makes
it possible to learn representative features from raw image
and complete effective classification jobs. Therefore, in this
project, we pick up a well-designed shallow convolutional neu-
ral networks from [5] as the preferred machine learning model
which will be embedded into the active learning flow. In par-
ticular, features obtained from the fully connected layers are
fed into (11) to calculate the divergence matrix. Most neural
networks are trained with mini-batch gradient descent (MGD),
where a random small batch of training samples are fed into
the neural networks to update neuron weights. The online
property of MGD makes it easier to update the model on new
instances without retraining the model from scratch compared
to the traditional support vector machine or logistic regres-
sion. It should be noted that the proposed classification-driven
active learning flow is very general that it can be plugged into
any incremental hotspot detectors.

In most cases D will be extremely large, especially for EUV
specific layers, which makes (13) hard to solve. We therefore
stochastically sample a subset Ût ⊆ Ut before entering the
quadratic programming phase to further reduce the compu-
tational cost. Finally, the neural network can be accordingly
updated as wt+1 = wt + α[∂l/(∂wt)]. Here, α denotes the
updating rate and l is the average cross-entropy loss of sampled
instances, defined as follows:

l = 1

k

k∑
i=1

log p(yi = 1|xi;wt). (14)

It should be noted that although the neural networks
may need multiple iterations to finish training, the compu-
tational cost is much less than training from a raw model.

Algorithm 1 Batch Active Sampling
Require: L0,U0, n, σ .
Ensure: w,D.

1: Initialize w ∼ N(0, σ );
2: L← L0,U← U0,D← ∅;
3: w←Train the machine learning model based on L.
4: while U 
= ∅ do
5: Û ← Sample n instances with highest probability

(predicted with current w) being hotspot from U;
6: U← U\Û;
7: B←Select k instances by solving Problem (13);
8: L← L ∪B;
9: D← Û\B ∪D;

10: w←Update machine learning model based on L;
11: end while
12: return w,D.

Reference [5] has shown that biased label is able to pro-
vide better tradeoffs on hotspot detection problem during the
fine-tune procedure. However, by our observation, stepped
bias significantly disturbs the pretrained model. We therefore
improves this technique by letting the bias change linearly
along with the training step.

Algorithm 1 presents the details of the layout pattern sam-
pling flow. The algorithm requires an initial training set
L = L0 with labeled patterns, an unlabeled pattern pool
U = U0, number of patterns to be queried n, and a stan-
dard deviation σ used to initialize the machine learning models
(lines 1 and 2); we first train an initial machine learning model
based on L0 (line 3). In each sampling iteration, we fetch n
instances from U without replacement and form a query set
Û (lines 5 and 6); k instances are sampled into a set B by
solving Problem (13) (line 7); then k instances will be added
up to the training set and rest n− k instances will be dropped
and accordingly, new training set L, discarded set D, and the
machine learning model are updated (lines 7–9). The algo-
rithm ends when the unlabeled instance pool is empty and
returns the trained model and remaining unlabeled patterns to
be verified by the machine learning model.

D. Initial Training Set Generation

Note that Algorithm 1 requires an initial labeled dataset L0
to obtain a pretrained model that will be used to extract fea-
tures for future layout patterns. Thus, L0 is critical on the
performance of the whole flow. Because it is almost impos-
sible to know which pattern is more likely to have defects at
beginning and hotspots are fetal but rare in layout spaces, we
select the initial training set through analyzing the distribution
of the unlabeled dataset, assuming that hotspots occur with
lowest posterior probabilities.

Details of initial training set generation can be found in
Algorithm 2 that takes the unlabeled dataset U, the number of
principle components nc, and the number of initial sampled
instances ni as inputs. We first convert layout patterns into
frequency domain via feature tensor extraction [5] (line 1)
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Algorithm 2 Initial Sampling
Require: U, nc, n, ni.
Ensure: L0,U0.

1: D←FeatureTensorExtraction(U);
2: F←PCA(D, nc);
3: µ← 1

n

∑n
i=1 fi,�← cov(F);

4: for fi ∈ F, i = 1, 2, ..., n do
5: pi = P(fi;µ, �);
6: end for
7: I0 ←Get the indices of ni patterns with smallest posterior

probabilities;
8: L0 ← UI0 ,U0 ← U\L0;
9: return L0,U0.

followed by one step principle component analysis for fur-
ther dimensionality reduction (line 2). A general Gaussian
model is established by calculating the mean and the covari-
ance (line 3). We then calculate the posterior probabilities
of the unlabeled dataset based on the estimated mean and
covariance (lines 4–6). Finally, we sample ni instances with
smallest posterior probabilities to form the initial training set
(lines 7–9).

E. Algorithm Analysis

In this section, we will discuss and analyze some tech-
nique details of our proposed framework. As described in
the previous section, we relax the integer constraints when
solving the sampling problem (12). Because each queried
instance will be sampled or dropped by solving the problem
in (13), the entries of the optimal solution will be rounded into
binary values. Here, we will analyze the loss of optimality of
problem (13) when reconstructing an integer solution as the
sampling choice, as claimed in Theorem 1.

Theorem 1: Let m be the optimal solution of problem (13)
that is binarized into mb by setting k largest entries to 1 and
rest n− k entries to 0, then

f (m) ≤ f (mb) ≤ 2f (m)+ 2λn

(
k − k2

n

)
(15)

where f (x) = x�Dx, n is total number of instances in each
query iteration, k is the number of instances that will be sam-
pled into training set, and λ1 ≤ λ2 ≤ · · · ≤ λn are the
eigenvalues of D.

Proof: f (m) ≤ f (mb) is trivial, and we will show that
f (mb) ≤ 2f (m) + 2λn(k − [k2/n]). According to (11), the
distance matrix D can be written as D = F�F, where each
column of F is the feature vector of each queried instance,
thus D � 0 and f is convex. By definition

1

2
f (m)+ 1

2
f (mb −m) ≥ f

(
1

2
mb

)
(16)

i.e.,

1

2
m�b Dmb −m�Dm ≤ (mb −m)�D(mb −m). (17)

By the Rayleigh–Ritz theorem [31]

(mb −m)�D(mb −m) ≤ λn‖mb −m‖22. (18)

(a) (b)

Fig. 5. Geometric view of mb −m. P1 and P2 denote the end points of m,
and in particular, P2 lies in the center of the base polygon. The solid segments
in each figure represents ‖mb −m‖22 for a given m.

Claim that

‖mb −m‖22 ≤ max
y∈T
‖mb − y‖22

= max
y∈T

min
x∈Tb,y∈T

‖x− y‖22 (19)

where T = {x ∈ R
n|∑n

1 xi = k, xi ∈ [0, 1] ∀i} and Tb = {x ∈
R

n|∑n
1 xi = k, xi ∈ {0, 1} ∀i}. Without loss of generality, we

assume all the entries of a given y are placed in an order

1 ≥ yδ1 ≥ yδ2 ≥ · · · ≥ yδn ≥ 0 (20)

thus according to the rounding strategy, mb is defined as
follows:

mb,i =
{

1 ∀i ∈ {δ1, δ2, . . . , δk}
0 otherwise.

(21)

Then as claimed in (19):

‖mb − y‖22 =
k∑

i=1

(
1− yδi

)2 +
n∑

i=k+1

y2
δi

= k +
n∑

i=1

y2
δi
− 2

k∑
i=1

yδi

≤ k +
n∑

i=1

y2
δi
− 2

k∑
i=1

yηi

= ‖x− y‖22 ∀x ∈ Tb, y ∈ T. (22)

Consider a right pyramids with a regular base, which has its
apex at the origin, Ck

n edges defined by the vectors defined
in Tb and a regular polygon base A lies in the hyperplane∑n

i=1 xi = k. As shown in Fig. 5, ‖mb − m‖22 reaches its
maximum value when m lies in the center of the pyramid
base.

That is, m = [(k/n), )(k/n), . . . , (k/n)]�, and

max
mb,m

‖mb −m‖22 = k

(
1− k

n

)2

+ (n− k)

(
k

n

)2

= k − k2

n
(23)

which, combined with (18), justifies the theorem.
Theorem 1 provides a theoretical guidance on choosing

proper n and k in the batch sampling procedure, which can
also be intuitively explained by the fact that if we sample all
or one instances in each querying iteration, we have no risk on
the integer relaxation error, however, at the cost of diversity
loss.
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TABLE I
BENCHMARK DETAILS

IV. EXPERIMENTAL RESULTS

A. Dataset and Configurations

Our layout PSHD flow is tested on two industrial benchmark
sets: ICCAD12 [32] and ICCAD16 [33].

Table I lists the benchmark details. To verify the effi-
ciency of our proposed method on EUV-oriented designs, we
shrink ICCAD16 layouts to reach a CD under 7-nm technol-
ogy node as indicated in the column “CD (nm)”. Columns
“HS #” and “NHS #” are numbers of hotspot and nonhotspot
clips in each benchmark and “Tech (nm)” is the technology
nodes of each design. ICCAD12 contains five benchmark sets
from [32] with labels which can be directly input to our flow.
To verify the scalability of our algorithm, we also merge all
28-nm designs from ICCAD12 into a much larger dataset
ICCAD12-28 with 3728 hotspot patterns and 0.15M non-
hotspot patterns. Very recently, Reddy et al. [34] found that the
designs from ICCAD12 may lack truly never seen before and
hard to classify patterns, and hence the dataset is less effec-
tive as an evaluation of the machine learning models. Derived
from designs in ICCAD12, they synthesized a new challenging
benchmark suit that contains both 28 nm and 32 nm designs
with ∼40% hotspot patterns. Statistics of the new benchmark
suit are shown as ICCAD19 in Table I. ICCAD16 contains
four layouts that are original designed for fuzzy matching
tasks. To locate defects in those layouts, we apply ASML
Tachyon optical proximity correction (OPC) and layout man-
ufacturability checker (LMC) tools on scaled layouts using
EUV lithography models for 7-nm metal layer. In the LMC
stage, we only consider three types of defects that are edge
placement error, bridge, and neck which contribute most to
circuit failures. Then all the locations where edge placement
error, bridging, and necking occur are marked as defects. To
perform efficient and parallel testing, clip-based scan is usu-
ally applied in classic hotspot detection flow, where the clip
size and scanning stride are empirically determined according
to the optical diameter (D = 230 nm) under given lithogra-
phy specifications. Fig. 6(a) shows that fail detected hotspot
count of exact pattern matching reduces to zero as clip size
increases to around 3 × D = 690 nm that will be chosen as
the clip size in our experiment. It should also be noted that
original ICCAD16 contains predefined marker layer covering
a fraction of the layouts. To conduct full-chip detection, we

(a) (b)

Fig. 6. Dispatching layouts based on estimated D. Because there is no spacing
and overlapping between adjacent core regions of adjacent clips, each layout is
fully scanned in the sampling and detection flow. Particularly, exact matching
has a detection rate of 98.9% with the clip size in the original contest setting.
(a) Influence of clip size. (b) Clip-based scan.

manually replaced the original marker layer with a new layer
that contains uniformly distributed markers that cover whole
layouts.

According to the estimated D of 7-nm EUV lithography
system, we adopt an overlapped dispatching method that cov-
ers the whole layout with reasonably small clip size that
contains enough information to determine whether the center
core region is hotspot or not. Fig. 6(b) illustrates the details of
the dispatching procedure. We use a 690 nm×690 nm sliding
window to scan the whole layout with scanning stride being
(1/3) of the clip size, which ensures that center 230×230 core
regions of each clips are exactly covering the whole chip. Note
that to ensure that clips contain more than 96% information
to estimate the printability of their core region, the smallest
distance from the core boundary to the clip boundary is inten-
tionally selected as 230 nm. Furthermore, each clip will be
marked as hotspot clip if defects occur at its core region as
shown in Fig. 6(b). Statistics of ICCAD16 benchmarks are
also listed in columns “HS #” and “NHS #.” We can notice
that the smallest layout ICCAD16-1 is defect-free, therefore
the case ICCAD16-1 is ignored in the following experiments.
For the rest of ICCAD16 cases, ICCAD16-2 has 56 hotspots
out of 1023 clips, ICCAD16-3 has 1100 hotspots out of 5016
clips, and ICCAD16-4 has 157 hotspots out of 1835 clips. It
should be noted that although layout ICCAD16-4 is much
larger than other cases. However, it is much more regular
and a large fraction of the patterns violate EUV direct print
metal layer design. We therefore only extract clips from DRC-
clean regions and that is why the total clip count is less than
ICCAD16-3. We can also see the out of expected behaviors
on ICCAD16-4 in the experiments in the following sections.

To accommodate the shallow neural networks and the
computational requirements, we conduct feature tensor extrac-
tion [5] on each clips in all benchmark cases that convert
layout images into reduced frequency domain.

B. Effectiveness of Batch Active Sampling

In the first experiment, we will compare the batch active
sampling method with fuzzy matching under different area
constraints. The procedures of Algorithm 1 on four bench-
mark sets are depicted in Fig. 7, where the x-axis represents
the total number of patterns sampled into training set and the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:44 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: BRIDGING GAP BETWEEN LAYOUT PSHD VIA BATCH ACTIVE LEARNING 1471

(a) (b) (c) (d)

Fig. 7. Learning model performance versus sampling count. The blue curve is the reference performance obtained from fuzzy matching with different
area constrains reflected as different sampling count. The red curve shows the sampling results based on Algorithm 1. (a) ICCAD12-28. (b) ICCAD16-2.
(c) ICCAD16-3. (d) ICCAD16-4.

TABLE II
FULL-CHIP PSHD ON ICCAD12 BENCHMARKS

TABLE III
FULL-CHIP PSHD ON ICCAD16 BENCHMARKS

y-axis denotes the detection accuracy. According to the anal-
ysis, we avoid choosing the (k/n) that results in big rounding
error (i.e., 0.5). Considering that sample count also affects the
training performance and the lithography simulation overhead,
we pick k = 30, n = 90 in all benchmarks. On the other hand,
because ICCAD12/19 are much larger benchmark sets that
contain more than 150 000 clips, early stopping is applied in
the batch active sampling procedure, where we pick the max-
imum sampling number to be 5% of total instance number in
each dataset.

The discrete dots in Fig. 7 correspond to fuzzy matching
results with area constraints 90%, 95%, and 100%, respec-
tively. It can be seen that our batch sampling converges at a

reasonably high detection accuracy on both DUV and EUV
specific layers while requiring much less training instances
than exact pattern matching. In other words, our proposed
method can significantly reduce lithography simulation over-
head. Particularly, for the case ICCAD12, exact matching
samples more than 105 clips among the whole dataset, while
our method achieves similar results with only 6200 clips.
Because our framework adopts CNN as the learning engine,
uncertainty behavior will be introduced by weight initializa-
tion and batching sampling. However, with the help of good
weight initialization, reasonable sampling ratio in diversity-
aware sampling (see Section III-E), and dynamic learning rate,
we are able to attain a ±5 hits variation cross multiple runs.
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TABLE IV
RESULT COMPARISON WITH CONVENTIONAL ACTIVE LEARNING

SOLUTIONS ON ICCAD12 BENCHMARKS

We compare the sampling results on ICCAD12/16/19
with exact/fuzzy matching methods and two recent sampling
methods, as listed in Tables II and III. Columns “PM-exact,”
“PM-a95,” “PM-a90,” and “PM-e2” correspond to the results
derived from pattern matching using a state-of-the-art pattern
analysis tool [15], where PM-exact denotes only exactly same
patterns can be clustered together, PM-a95 and PM-a90 refer
to any clips that satisfy 95% and 90% area constraints are clus-
tered together and PM-e2 groups clips with less than 2-nm
edge displacements. Here the area and edge constraints are
defined following [33]. Column “FT” lists the result of clus-
tering on frequency domain of layout patterns that is similar to
the flow proposed in [35]. Columns “Litho” cover the number
(#) and the ratio (%) of clips being labeled out of total pattern
numbers, including the clips sampled into training sets and all
the detection extras.

PM-exact, as the reference method, shows 100% accuracy
on all test cases except for ICCAD16-4. According to the
lithography simulation results of the layout in ICCAD16-4,
we notice all defects appear at the patterns belong to a dif-
ferent design space, which possibly makes the lithography
model and optical proximity analysis inaccurate. Therefore, we
observe minor prediction error and extra on ICCAD16-4. The
result also shows exact pattern matching can achieve extremely
high verification accuracy, however, at the cost of simulat-
ing and labeling a large fraction clip patterns in the whole
dataset. On the contrary, the proposed batch sampling method
achieves similar detection accuracy querying only 7% of total
layout clips for ICCAD-12 and 300 less clips on average
for ICCAD-16 compared to the best baseline PM-exact. In
particular, our method shows even higher detection accuracy
on ICCAD16-4 than exact pattern matching because of the
effective Gaussian initial sampling, which also demonstrates
our assumption holds in Algorithm 2. It should be noted that it
is normal that the instances in a training set is not completely
separable, which explains why our method behaves even bet-
ter than exact pattern matching. We can also observe that our
algorithm behaves much better on ICCAD12 than ICCAD16,
which can be explained by the fact that ICCAD12 contains
more than 10× sample candidates that fits our algorithm better.

TABLE V
RESULT COMPARISON WITH CONVENTIONAL ACTIVE LEARNING

SOLUTIONS ON ICCAD16 BENCHMARKS

For three fuzzy matching options, various area or edge con-
straints offer different level of tradeoffs between verification
performance and lithography overhead. PM-a95 and PM-e2
can still maintain good prediction accuracy on ICCAD16-2
and ICCAD16-3 with slightly less litho count, but the total
number of labeled instances is still much larger than our
method. Moreover, fuzzy matching fails to extract problem-
atic instances on a more difficult testcase ICCAD16-4 with
looser constraints that they all reach less than 50% prediction
accuracy. Experiments on ICCAD19 also manifest the scala-
bility issue of fuzzy matching solutions. As can be seen, area
or edge displacement constrained fuzzy matching cannot be
done within days when the design pool is extremely large and
with complicated patterns. It should be noted that we did not
further narrow down the matching window because matching
on regions much smaller than the estimated optical diameter
does not make sense for hotspot detection purpose.

Shim et al. [35] proposed to use frequency-domain repre-
sentation to sample layout patterns with similar property and
detect hotspots. Here, we conduct additional experiments by
clustering layout clips based on their Fourier transform results.
Clips closest to a cluster center will be selected as the repre-
sentative clip that indicates the property of the whole cluster.
By the results in the column “FT,” we can observe that with
similar sampling number, batch active sampling exhibits much
better than frequency-domain clustering. We also conduct an
experiment using the greedy sampling method [17] where
each instance being predicted as hotspot will be incremen-
tally added into the training set. Although the greedy sampling
method can successfully select partial hotspot clips in some
test cases, the performance is highly affected by the initial
learning model, where prediction error will be gradually ampli-
fied in the greedy sampling procedure. As listed in “Greedy,”
the greedy method [17] only achieves ∼60% average detection
accuracy on ICCAD16, ∼74% average detection accuracy on
ICCAD12, and ∼80% on ICCAD19.

To show that the proposed sampling solution is efficiently
and carefully designed for layout printabilility estimation
purpose, we also compare the PSHD results with two pop-
ular active learning solutions US [22] and EMC [24]. Both
algorithms are implemented and integrated into our deep
learning framework. As shown in Tables IV and V, our
method exhibits obvious advantage on detection accuracy on
ICCAD12, ICCAD16, and ICCAD19 cases over US and
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(a) (b)

Fig. 8. Influence of initial sampling size. (a) Accuracy(%). (b) Litho #.

EMC, and the weak accuracy behavior makes the lithogra-
phy overhead advantage of US and EMC trivial. We can
also observe that the performance gap is narrowed on the
ICCAD12. It can be explained by that the ICCAD12 bench-
mark is not a full-chip design and are delivered with clips
that are diverse in hotspot and nonhotspot patterns. Thus, most
sampling methods will work and the deep learning model dom-
inates the performance. Different tradeoffs of US and EMC
on ICCAD12 is a reflection of sampling mechanisms in two
methods. Although US and EMC behave reasonably good on
ICCAD12-28, their drawbacks can be easily seen when pat-
terns are becoming complicated, which is consistent with the
results on ICCAD19 (72.4% of US and 69.14% of EMC com-
pared to 96.3% of our approach). We also conduct conservative
runs of US and EMC on ICCAD19 with results listed in
ICCAD19-C of Table IV. We can observe that at conservative
condition, US and EMC still exhibit weaker detection accu-
racy than ours even with larger lithography overhead. We did
not implement QBC [23] in this work, because QBC requires
ensemble learning engines which is not directly compatible
with our deep learning-based framework.

C. Some Discussions

Intuitively, the final prediction results are also sensitive to
the number of instances sampled in the initial sampling stage.
In this experiment, we study the influence of different initial
sampling sizes. Here, we use ICCAD16-3 as an example and
conduct our PSHD flow with different initial sampling size,
as shown in Fig. 8. It can be seen that initial sampling size
does not cause much variations in prediction accuracy due
to our diversity-aware sampling strategy. The only difference
comes from lithography overhead that a reasonably large initial
sampling size will efficiently reduce the lithography overhead.

In real backend layout verification flow, almost all the
computation and runtime overhead come from lithography
simulation. Here, we assume a 10-s penalty on each litho-
clip in our framework as in [17]. The overall runtime is then
evaluated by the summation of simulation penalty and PSHD
overhead. As shown in Fig. 9, the proposed framework is much
more efficient than existing solutions without any performance
degradation.

It can be observed from the result table that for some test
cases especially for these EUV-specific designs in ICCAD16,
the active sampling approach comes with much larger lithogra-
phy overhead compared to the results in ICCAD12 series. One

Fig. 9. Runtime comparison among different solutions. “PM-xx”s are con-
ducted on 10-core Intel E7-4830v2 with 512-GB memory. “FT,” “Greedy,”
“US,” “EMC,” and “Ours” are deep learning-based flows that are tested on
a GPU platform with one GeForce GTX 1080Ti, one Intel i9-7900X, and
64-GB memory.

explanation is that behavior prediction of EUV lithography
(i.e., main objective of general lithography hotspot detec-
tion) is more complicated than the legacy DUV technology
node. Because there are much more aspects to be consid-
ered in EUV design-to-hotspot mapping, such as mask 3-D
effects, new resist models, stochastic lithography, etc. [36],
which are clearly more challenging for learning models to
capture. Such challenges also affect other hotspot detection
methodologies that include pattern matching and clustering,
which can be seen in the result table that most solutions
(ours and others) are exhibiting larger lithography overhead
on ICCAD16 than ICCAD12 when similar detection accura-
cies are achieved. As for legacy designs, pattern complexity
will be responsible for weak behaviors of hotspot detectors.
Evidence comes with experimental results on the dataset of
ICCAD12-1, ICCAD12-3, and ICCAD19, which include
large fraction of complicated hotspot patterns and hence draw
challenges on learning-based hotspot detectors. As a result,
all learning-based solutions (Greedy, US, EMC, and Ours)
present higher lithography overhead on these three test cases.
In Summary, these challenging designs pose threats of model
reliability, which we believe is one of the key considerations
in efficient hotspot detector design in the future.

V. CONCLUSION

A layout PSHD flow was proposed to adaptively sam-
ple layout patterns into a pattern library that is used to
train a machine learning model for layout hotspot detec-
tion. The diversity-aware batch sampling and the interactive
optimization of learning model can efficiently select interesting
patterns and ensure a better model generality. Experiments
show that the proposed framework is able to achieve sim-
ilar detection accuracy requiring much smaller number of
labeled patterns, which reduces lithography simulation over-
head by a significant amount. Continuing study on model
robustness, feature extraction, and training set initialization
are also interesting to fit the proposed framework better on
modern chip/circuit design requirements.
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