
2822 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

GAN-OPC: Mask Optimization With
Lithography-Guided Generative Adversarial Nets

Haoyu Yang , Shuhe Li, Zihao Deng, Yuzhe Ma , Bei Yu , Member, IEEE, and Evangeline F. Y. Young

Abstract—Mask optimization has been a critical problem in
the VLSI design flow due to the mismatch between the lithog-
raphy system and the continuously shrinking feature sizes.
Optical proximity correction (OPC) is one of the prevailing res-
olution enhancement techniques (RETs) that can significantly
improve mask printability. However, in advanced technology
nodes, the mask optimization process consumes more and more
computational resources. In this article, we develop a genera-
tive adversarial network (GAN) model to achieve better mask
optimization performance. We first develop an OPC-oriented
GAN flow that can learn target-mask mapping from the improved
architecture and objectives, which leads to satisfactory mask
optimization results. To facilitate the training process and ensure
better convergence, we propose a pretraining scheme that jointly
trains the neural network with inverse lithography technique
(ILT). We also propose an enhanced generator design with a
U-Net architecture and a subpixel super-resolution structure
that promise a better convergence and a better mask quality,
respectively. At convergence, the generative network is able to
create quasi-optimal masks for given target circuit patterns and
fewer normal OPC steps are required to generate high quality
masks. The experimental results show that our flow can facil-
itate the mask optimization process as well as ensure a better
printability.

Index Terms—Convolutional neural networks, generative
model, inverse lithography, optical proximity correction.

I. INTRODUCTION

W ITH the VLSI technology node continuously shrink-
ing down, the mask optimization process becomes

a great challenge for designers [1]–[4]. Conventional mask
optimization process is illustrated in Fig. 1, where optical
proximity correction (OPC) aims at compensating lithography
proximity effects through correcting mask pattern shapes and
inserting assist features. OPC methodologies include model-
based techniques [5]–[7], [7]–[11] and inverse lithography-
based technique (ILT) [12]–[15].

In model-based OPC flows, pattern edges are fractured
into segments which are then shifted/corrected according to
the mathematical models. A high printability mask can then

Manuscript received January 4, 2019; revised April 20, 2019 and July 4,
2019; accepted August 24, 2019. Date of publication September 4, 2019; date
of current version September 18, 2020. This work was supported in part by the
Research Grants Council of Hong Kong under Project CUHK24209017. The
preliminary version has been presented at the Design Automation Conference
(DAC) in 2018. This article was recommended by Associate Editor S. Held.
(Corresponding author: Haoyu Yang.)

The authors are with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Digital Object Identifier 10.1109/TCAD.2019.2939329

Fig. 1. Conventional OPC flow and lithography process, where OPC is very
time consuming.

be obtained with subresolution assist features (SRAF) [16].
Awad et al. [5] proposed a pattern fidelity aware mask
optimization algorithm that optimizes core polygons by simul-
taneously shifting adjacent segmentations. Su et al. [7] signif-
icantly accelerated the OPC flow by extracting representative
process corners while maintaining a good wafer image qual-
ity. However, the model-based OPC flows are highly restricted
by their solution space, and hence, lacking in reliability for
complicated designs. On the other hand, ILTs minimize the
error between the wafer image and the target with lithography
constraints. Because ILTs conduct pixel-based optimization on
layout masks, they are expected to offer better lithography con-
tour quality, which although comes with additional challenges
on mask manufacturability problems, including manufacturing
cost and mask design rules. Recently, Ma et al. [14] adopted
ILT to simultaneously perform mask optimization and layout
decomposition that brings a better solution of multiple pat-
terning mask design. Although the model-based method and
the ILT-based method behave well on a variety of designs,
they take the wafer image as a mask update criterion in each
iteration of the OPC process. In other works, multiple rounds
of lithography simulation are indispensable in the optimization
flow which is drastically time consuming.

The explosion of machine-learning techniques has dramat-
ically changed the way to solve design for manufacturability
problems. Recently, both shallow and deep learning models
have been successfully utilized to estimate mask printabil-
ity, accurately, and efficiently (e.g., [17]–[21]). There are also
several attempts on mask optimization problems that con-
tain more complex regression or classification procedures.
Matsunawa et al. [22] conducted segment-based pattern cor-
rection with hierarchical Bayes model. Gu and Zakhor [23]
introduced discrete cosine transform (DCT) features and lin-
ear regression to predict fragment movement. Luo [24] and
Choi et al. [25] incorporated artificial neural networks to
estimate mask patterns. However, existing machine-learning
models can only perform pixel-wise or segment-wise mask
calibration that is not computationally efficient.

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4709-0061
https://orcid.org/0000-0002-3612-4182
https://orcid.org/0000-0001-6406-4810

YANG et al.: GAN-OPC: MASK OPTIMIZATION WITH LITHOGRAPHY-GUIDED GENERATIVE ADVERSARIAL NETS 2823

Generative adversarial networks (GANs) have shown pow-
erful generality when learning the distribution of a given
dataset [26]–[28]. The basic optimization flow of GAN con-
tains two networks interacting with each other. The first
one is called generator that takes random vectors as input
and generates samples which are as much closer to the true
dataset distribution as possible. The second one is called dis-
criminator that tries to distinguish the true dataset from the
generated samples. At convergence, ideally, the generator is
expected to generate samples that have the same distribution
as true dataset. Inspired by the generative architecture and
the adversarial training strategy, in this article, we propose a
lithography-guided generative framework that can synthesize
quasi-optimal mask with single round forwarding calculation.
The quasi-optimal mask can be further refined by few steps
of normal OPC engine. It should be noted conventional GAN
cannot be directly applied here, due to the following two
reasons.

1) Traditional DCGANs [28] are trained to mimic a dataset
distribution which is not enough for the target-mask
mapping procedure.

2) Compensation patterns or segment movements in the
mask are derived-based upon a large area of local pat-
terns (e.g., 1000 × 1000 nm2) that brings much training
pressure on the generator.

In accordance with these problems, we develop customized
GAN training strategies for the purpose of mask optimization.
Besides, since layout topology types are limited within spe-
cific area, we automatically synthesize local topology patterns
based on size and spacing rules. The benefits of the arti-
ficial patterns are twofold: 1) we avoid to train the neural
network with large images and facilitate the training procedure
significantly and 2) automatically designed patterns are dis-
tributed uniformly and to some extent alleviate the over-fitting
problem. Observing that most ILTs update the mask through
steepest descent that resembles the training procedure in neu-
ral networks, we connect an ILT structure with the generative
networks and pretrain the generator through backpropagat-
ing the lithography error to neuron weights. With the above
pretraining phase, the generative model converges faster than
training from random initialized neuron weights. Observe that
GANs are typically much deeper than regular neural networks
which bring inevitable training challenges. We further enhance
the framework with an advanced generator design that inte-
grates the U-Net [29] and the subpixel super-resolution (SPSR)
structure [30] which are more computationally efficient,
promise faster convergence, and provide better mask image
quality. The main contributions of this article are listed as
follows.

1) We synthesize training patterns to enhance the compu-
tational efficiency and alleviate the over-fitting problem.

2) We propose an ILT-guided pretraining flow to initialize
the generator which can effectively facilitate the training
procedure.

3) We design new objectives of the discriminator to make
sure the model is trained toward a target-mask mapping
instead of a distribution.

TABLE I
SYMBOLS AND NOTATIONS USED THROUGHOUT THIS ARTICLE

4) We enhance the GAN-OPC flow by integrating a U-Net
and an SPSR structure into the generator that promise
better model convergence and generated mask quality.

5) The experimental results show that our framework can
significantly facilitate the mask optimization procedure
as well as generating mask that has better printability
under nominal condition.

The rest of this article is organized as follows. Section II
lists basic concepts and problem formulation. Section III
discusses the details of GAN-OPC framework, ILT-guided
training strategies, and enhanced GAN-OPC (EGAN-OPC)
framework with the U-Net and SPSR techniques. Section IV
presents the experimental results, followed by the conclusion
in Section V.

II. PRELIMINARIES

In this section, we will discuss some preliminaries of the
mask optimization and the generative adversarial nets. Major
math symbols with their descriptions are listed in Table I. In
order to avoid confusion, all the norms || · || are calculated
with respect to flattened vectors.

The Hopkins theory of the partial coherence imaging system
has been widely applied to mathematically analyze the mask
behavior of lithography [31]. Because the Hopkins diffraction
model is complex and not computational friendly, [32] adopts
the singular value decomposition (SVD) to approximate the
original model with a weighted summation of the coherent
systems

I =
N2∑

k=1

wk|M ⊗ hk|2 (1)

where hk and wk are the kth kernel and its weight. As sug-
gested in [13], we pick the Nth

h order approximation to the
system. Equation (1) becomes

I =
Nh∑

k=1

wk|M ⊗ hk|2. (2)

The lithography intensity corresponds to the exposure level
on the photoresist that controls the final wafer image. In real

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

2824 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 2. Different types of defects. Same lithography images result in different
EPE violation counts due to different choices of measurement points. Some
defects are not detectable through merely checking EPE.

design and sign-off flow, it is far from enough to use con-
stant threshold model to analyze resist images, especially for
advanced technology node. For the methodology verification
purpose only and for simplicity, we still adopt the simple con-
stant threshold resist model throughout the experiments, which
is consistent with the ICCAD 2013 CAD contest settings [33].
In the constant threshold resist model [34], only area with
intensity greater than a certain threshold will contribute to the
final wafer image, as

Z(x, y) =
{

1, if I(x, y) ≥ Ith
0, if I(x, y) < Ith.

(3)

Mask quality is evaluated through the fidelity of its wafer
image with respect to the target image. Edge placement error
(EPE), bridge, and neck are three main types of defect detec-
tors that are adopted in a layout printability estimation flow.
As shown in Fig. 2, EPE measures horizontal or vertical dis-
tances from the given points (i.e., EPE measurement sites) on
target edges to lithography contours. Neck detector checks the
error of critical dimensions of lithography contours compared
to the target patterns, while bridge detector aims to find unex-
pected short of wires. Note that unlike EPE violations, bridge,
and neck defects can appear in any directions. Because EPE
violations could happen with good critical dimension and neck
or bridge occurs with small EPE, none of these defect types
individually can be an ideal representation of mask printabil-
ity. Considering the objective of mask optimization is to make
sure the remaining patterns after lithography process are as
close as target patterns, we pick the squared L2 error as the
metric of lithography quality since a smaller L2 indicates a
better wafer image quality.

Definition 1 (Squared L2 Error): Let Zt and Z as target
image and wafer image, respectively, the squared L2 error of
Z is given by ||Zt − Z||22.

In real manufacturing scenario, lithography conditions
(e.g., focus, dose) are usually not fixed as we expected, which
results in variations of wafer images. To measure the robust-
ness of the designed mask, process variation (PV) bands are
proposed [35]. The mathematical definition can be found as
follows.

Definition 2 (PV Bands): Given the lithography simulation
contours under a set of process conditions, the PV bands is
the area among all the contours under these conditions.

In this article, for simplicity, we use the XOR between the
innermost and the outermost images as an approximation of

Fig. 3. Conventional GAN architecture.

the PV bands. Following above terminologies, we define the
mask optimization problem as follows.

Problem 1 (Mask Optimization): Given a target image Zt,
the objective of the problem is generating the corresponding
mask M such that remaining patterns Z after lithography pro-
cess is as close as Zt or, in other word, minimizing the squared
L2 error of lithography images.

III. FRAMEWORKS

A. GAN-OPC

A classical GAN architecture comprises a generator and a
discriminator. The generator accepts random vectors z ∼ pz as
the input and generates samples G(z;Wg) that follows some
distribution pg, where G is a convolutional neural networks
parameterized by Wg. The discriminator acts as a classifier that
distinguishes G(z;Wg) and the instance drawn from a data dis-
tribution pd. The output D(x;Wd) represents the probabilities
of x drawn from pd and pg. It should be noted that the origi-
nal settings are not well suitable for the mask optimization
problem. In this section, we will introduce the details of
our framework, including OPC-oriented GAN architecture and
advanced training strategies.

1) Generator Design: From the previous discussion, we
can notice that the generator learns a distribution of a given
dataset, which is originally designed as a mapping function
G : pz → pg, where pz is a distribution that input vectors are
drawn and pg denotes the distribution of the training set. The
objective of the generator is to generate samples that deceive
the discriminator as much as

maxEz∼pz [log(D(G(z)))] (4)

which maximizes the log-likelihood of the discriminator giving
predictions that generated samples are real. Correspondingly,
the generator comprises a deconvolutional architecture that
casts 1-D vectors back to 2-D images through stacked decon-
volution operations, as shown in Fig. 3.

Our framework, however, is expected to perform mask
optimization on given target circuit patterns and obviously vio-
lates the deconvolutional architecture. To resolve this problem,
we design a generator based on autoencoder [36] which con-
sists of an encoder and a decoder subnets. As depicted in

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: GAN-OPC: MASK OPTIMIZATION WITH LITHOGRAPHY-GUIDED GENERATIVE ADVERSARIAL NETS 2825

Fig. 4, the encoder is a stacked convolutional architecture
that performs hierarchical layout feature abstractions and the
decoder operates in an opposite way that predicts the pixel-
based mask correction with respect to the target based on key
features obtained from the encoder.

2) Discriminator Design: The discriminator is usually an
ordinary convolutional neural networks that perform classifica-
tion to distinguish the generated samples from the given data
samples as

maxEx∼pd [log(D(x))]+ Ez∼pz [log(1− D(G(z)))]. (5)

In this article, the discriminator predicts whether an input
instance is the generated mask M or the reference mask M∗
which is the ground truth OPC’ed mask generated by a state-
of-the-art academic OPC tool [13]. However, the discriminator
in (5) is necessary but not sufficient to ensure generator to
obtain a high quality mask (Fig. 3). Consider a set of target
patterns Z = {Zt,i, i = 1, 2, . . . , N} and a corresponding ref-
erence mask set M = {M∗i , i = 1, 2, . . . , N}. Without loss of
generality, we use Zt,1 in the following analysis. Suppose the
above GAN structure has enough capacity to be well trained,
the generator outputs a mask G(Zt,1) that optimizes the objec-
tive function as in (4). Observe that log(D(G(Zt,1))) reaches
its maximum value as long as

G(Zt,1) = M∗i ,∀i = 1, 2, . . . , N. (6)

Therefore, a one-to-one mapping between the target and the
reference mask cannot be guaranteed with current objectives.
To address above concerns, we adopt a classification scheme
that predicts positive or negative labels on target-mask pairs
that inputs of the discriminator will be either (Zt, G(Zt))

or (Zt, M∗), as illustrated in Fig. 4. Claim that G(Zt) ≈
M∗ at convergence with new discriminator. We still assume
enough model capacity and training time for convergence. The
discriminator now performs prediction on target-mask pairs
instead of masks. Because only pairs {Zt,i, M∗i } are labeled as
data, the generator can deceive the discriminator if and only if
G(Zt,i) ≈ M∗i ,∀i = 1, 2, . . . , N, where N is the total number
of training instances.

3) GAN-OPC Training: Based on the OPC-oriented GAN
architecture in our framework, we tweak the objectives of G
as follows:

max
G

EZt∼Z[log(D(Zt, G(Zt)))] (7)

and for the discriminator D, we have

max
D

EZt∼Z[log(D(Zt, M∗))]

+ EZt∼Z[1− log(D(Zt, G(Zt)))]. (8)

In addition to facilitate the training procedure, we minimize
the differences between generated masks and reference masks
when updating the generator as

min
G

EZt∼Z ||M∗ − G(Zt)||n (9)

where || · ||n denotes the ln norm. Combining (7)–(9), the
objective of our GAN model becomes

min
G

max
D

EZt∼Z[1− log(D(Zt, G(Zt)))+ ||M∗ − G(Zt)||nn]

+ EZt∼Z[log(D(Zt, M∗))]. (10)

Algorithm 1 GAN-OPC Training
1: for number of training iterations do
2: Sample m target clips Z ← {Zt,1, Zt,2, . . . , Zt,m};
3: �Wg ← 0,�Wd ← 0;
4: for each Zt ∈ Z do
5: M← G(Zt;Wg);
6: M∗ ← Groundtruth mask of Zt;
7: lg ←− log(D(Zt, M))+ α||M∗ −M||22;
8: ld ← log(D(Zt, M))− log(D(Zt, M∗));
9: �Wg ← �Wg + ∂lg

∂Wg
; �Wd ← �Wd + ∂ld

∂Wg
;

10: end for
11: Wg ← Wg − λ

m
�Wg; Wd ← Wd − λ

m
�Wd;

12: end for

Fig. 4. Proposed GAN-OPC architecture.

The previous analysis shows that the generator and the
discriminator have different objectives, therefore, the two sub-
networks are trained alternatively, as shown in Fig. 5(a) and
Algorithm 1. In each training iteration, we sample a mini-batch
of target images (line 2); gradients of both the generator and
the discriminator are initialized to zero (line 3); a feed forward
calculation is performed on each sampled instances (lines 4
and 5); the ground truth mask of each sampled target image is
obtained from OPC tools (line 6); we calculate the loss of the
generator and the discriminator on each instance in the mini-
batch (lines 7 and 8); we obtain the accumulated gradient of
losses with respect to neuron parameters (lines 9 and 10);
finally, the generator and the discriminator are updated by
descending their mini-batch gradients (lines 11 and 12). Note
that in Algorithm 1, we convert the min–max problem in (10)
into two minimization problems such that gradient ascending
operations are no longer required to update neuron weights.

Algorithm 1 differs from traditional GAN optimization flow
on the following aspects.

1) The generator plays as a mapping function from target
to mask instead of merely a distribution, therefore, the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

2826 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

gradient of L2 loss is backpropagated along with the
information from the discriminator.

2) The discriminator functions as an alternative of ILT
engine that determines only the quality of generated
masks without any calibration operations. Besides, our
combined input ensures that the discriminator will make
positive prediction if and only if the generated mask is
much close to the ground truth, which also helps train
the generator better.

B. ILT-Guided Pretraining

Although with the OPC-oriented techniques, GAN is able
to obtain a fairly good performance and training behavior,
it is still a great challenge to train the complicated GAN
model with satisfactory convergence. Observing that ILT and
neural network training stage share similar gradient descent
techniques, we develop an ILT-guided pretraining method to
initialize the generator, after which the alternative mini-batch
gradient descent is discussed as a training strategy of GAN
optimization. The main objective in ILT is minimizing the
lithography error through gradient descent

E = ||Zt − Z||22 (11)

where Zt is the target and Z is the wafer image of a given mask.
Because mask and wafer images are regarded as continuously
valued matrices in the ILT-based optimization flow, we apply
translated sigmoid functions to make the pixel values close to
either 0 or 1

Z = 1

1+ exp [−α × (I − Ith)]
(12)

Mb = 1

1+ exp(−β ×M)
(13)

where Ith is the threshold matrix in the constant resist model
with all the entries being Ith, Mb is the incompletely binarized
mask, while α and β control the steepness of relaxed images.

Combining (1)–(3), (11)–(13), and the analysis in [12], we
can derive the gradient representation as follows:

∂E

∂M
= 2αβ ×Mb � (1−Mb)

�(((Z− Zt)� Z� (1− Z)� (Mb ⊗H∗))⊗H

+ ((Z− Zt)� Z� (1− Z)� (Mb ⊗H))⊗H∗) (14)

where H∗ is the conjugate matrix of the original lithography
kernel H. In traditional ILT flow, the mask can be optimized
through iteratively descending the gradient until E is below a
threshold.

The objective of mask optimization problem indicates the
generator is the most critical component in GAN. Observing
that both ILT and neural network optimization share simi-
lar gradient descent procedure, we propose a jointed training
algorithm that takes advantages of ILT engine, as depicted in
Fig. 5(b). We initialize the generator with lithography-guided
pretraining to make it converge well in the GAN optimization
flow thereafter. The key step of neural network training is
backpropagating the training error from the output layer to

Algorithm 2 ILT-Guided Pretraining
1: for number of pre-training iterations do
2: Sample m target clips Z ← {Zt,1, Zt,2, . . . , Zt,m};
3: �Wg ← 0;
4: for each Zt ∈ Z do
5: M← G(Zt;Wg);
6: Z← LithoSim(M)
 Equations (2)–(3)
7: E← ||Z− Zt||22;

8: �Wg ← �Wg + ∂E

∂M
∂M
∂Wg

;
 Equation (14)

9: end for
10: Wg ← Wg − λ

m
�Wg;
 Equation (15)

11: end for

(a)

(b)

Fig. 5. (a) GAN-OPC training and (b) ILT-guided pretraining.

the input layer while neural weights are updated as follows:

Wg = Wg − λ

m
�Wg (15)

where �Wg is accumulated gradient of a mini-batch of
instances and m is the mini-batch instance count. Because (15)
is naturally compatible with ILT, if we create a link between
the generator and the ILT engine, the wafer image error can
be backpropagated directly to the generator as presented in
Fig. 5.

The generator pretraining phase is detailed in Algorithm 2.
In each pretraining iteration, we sample a mini-batch of target
layouts (line 2) and initialize the gradients of the generator
�Wg to zero (line 3); the mini-batch is fed into the generator
to obtain generated masks (line 5). Each generated mask is
loaded into the lithography engine to obtain a wafer image
(line 6); the quality of wafer image is estimated by (11)
(line 7); we calculate the gradient of lithography error E with
respect to the neural networks parameter Wg through the chain
rule, i.e., (∂E/∂M)(∂M/∂Wg) (line 8); finally, Wg is updated
following the gradient descent procedure (line 10).

Compared to the training toward ground truth (i.e., directly
backpropagating the mask error to neuron weights), ILT-
guided pretraining provides step-by-step guidance when
searching for a solution with high quality, which reduces
the possibility of the generator being stuck at local mini-
mum region in an early training stage. Because ILT contains
complicated convolutions and matrix multiplications that are
computational expensive, we approximate the pretraining stage
through backpropagating errors of intermediate masks, which

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: GAN-OPC: MASK OPTIMIZATION WITH LITHOGRAPHY-GUIDED GENERATIVE ADVERSARIAL NETS 2827

Fig. 6. New generator architecture with concatenation of intermediate feature
maps and an SPSR structure.

“guides” the generator toward optimality. We only adopt the
ILT engine in the pretraining stages and replace it with the
discriminator in the main training stage, where the generator
is optimized in an adversarial style.

C. Enhanced GAN-OPC Framework

In this section, we will introduce the EGAN-OPC frame-
work, which significantly improves the training efficiency
in a more elegant way compared to pretraining with ILT
engine. The EGAN-OPC framework includes a U-Net struc-
ture that allows gradients to be easily backpropagated to early
layers and an SPSR architecture for better generated mask
quality.

1) U-Net: We have noticed the GANs are typically deeper
than traditional neural networks, which brings more challenges
due to a longer gradient backpropagation path. A common
solution is creating shortcut links that allow addition or stack-
ing of feature maps in different layers [29], [37], [38], such
that gradients can be more efficiently backpropagated from
output layer to early layers. Here, we enhance our genera-
tive design with a U-Net-like structure where intermediate
feature maps in the encoder are stacked at corresponding
layers in the decoder, as shown in Fig. 6. Such architec-
ture has two good properties: 1) the inevitable information
loss in strided convolution layer can be drastically reduced
and 2) the gradient vanishing problem can be alleviated
with multiple shortcut links bypassing intermediate feature
maps.

2) Subpixel Super-Resolution: In the previous designs, low
level features in intermediate generator layers are cast back to
mask images by standard strided deconvolution operation that
can be visualized as in Fig. 7(a). In detail, zeros are inserted
among existing pixels such that the output dimension after
a convolution operation reaches the desired value. However,
such mechanism requires multiple convolution operations on
high resolution space which is not computational efficient and
might induce additional noises.

SPSR [30] is another upsampling solution that has been
widely used in super-resolution tasks. It conducts convolution
operations in lower resolution space and generates additional
feature maps such that the number of feature map entries
matches the desired size of target image, as shown in Fig. 7(b).
The major step of SPSR is called periodic shuffling that casts

a tensor with shape H×W× r2C into shape rH× rW×C as

thr
i,j,k = tlri′,j′,k′ (16a)

i′ = � i

r
� (16b)

j′ = � j

r
� (16c)

k′ = C · r ·mod(j, r)+ C ·mod(i, r)+ k (16d)

where �·� is the math floor operator, mod(x, y) finds the
remainder of x divided by y, thr

i,j,k, and tlri′,j′,k′ denotes the (i, j, k)
and (i′, j′, k′) entry of high resolution images (or feature maps)
and low resolution images (or feature maps), respectively. It
should be noted that (16) represents only a reshape operation
which is still differentiable as other convolution layers. SPSR
has several advantages compared to Fig. 7(a).

1) SPSR is ideally r2 times faster than the strided deconvo-
lution operation. As shown in Fig. 7, same convolution
kernels have to scan over a r2 larger feature maps in
traditional deconvolution layers to achieve same output
tensor size as SPSR layers.

2) SPSR layers reduce noises in generated masks by a sig-
nificant amount, as can be seen in Fig. 8. Such results
can be explained by the fact that explicit interpolations
are removed in SPSR structure, where the upscaling and
rendering are automatically learned during the network
training.

Traditional deconvolution layers, on the other hand, have to
apply padding or zero insertion to increase the feature map
size before feeding them into next level convolution layer for
rendering, which in turn results in noises (as empty dots) in
the generated masks because it is hard for limited number
of convolution layers to smooth such noise. On the contrary,
SPSR directly organizes the low resolution feature maps into
the high resolution space, where every pixels are informative,
compared to manually inserted zeros in deconvolution layers.

3) Enhanced GAN-OPC Architecture: We follow the basic
convolutional autoencoder architecture for the generator
design with additional shortcut links for U-Net feature map
sharing and SPSR layers for upscaling. The detailed architec-
ture can be found in Table II, where column “Layer” includes
layer types and layer ID, columns “Filter” and “Stride” list
configurations for convolution layers, “Output” lists the output
tensor shape of corresponding layers, and “Parameter” rep-
resents the total number of trainable parameters of a given
layer. The proposed generator architecture contains five reg-
ular convolution layers for feature extraction and five SPSR
layers for mask image construction. It should be noted that the
input tensor of the ith SPSR layer has 2× channel numbers
as the output tensor of the (i − 1)th SPSR layer, because of
the existence of U-Net concatenation.

The discriminator design is detailed in Table III. The neural
network architecture resembles VGG [39] with more layers
and smaller kernels. “repeat2” and “repeat3” indicate two
and three consecutive convolution layers with the same con-
figurations. We replace all the pooling layers with strided
convolution layers to attain information as much as possi-
ble. Three densely connected layers are connected following

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

2828 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

(a) (b)

Fig. 7. Visualization of (a) standard deconvolution operation and (b) SPSR.

(a) (b)

Fig. 8. Patterns generated from (a) deconvolution layers and (b) SPSR layers.

TABLE II
GENERATOR CONFIGURATION

TABLE III
DISCRIMINATOR CONFIGURATION

the last convolution layer for final class prediction. The total
number of trainable parameters of the discriminator are inten-
tionally designed much larger than the generator (88M versus
39M) in case of model collapsing.

Fig. 9. Framework summary.

D. Framework Summary and Discussion

The proposed GAN-OPC family is summarized in Fig. 9.
With the given training data that includes target patterns and
mask patterns, we propose three alternative solutions to obtain
a trained generator that include direct GAN-OPC proposed in
Section III-A, GAN-OPC with ILT-guided pretraining as in
Section III-B, and the EGAN-OPC solution with U-Net and
SPSR techniques as in Section III-C.

Although ILT engines are, to some extent, suffering mask
manufacturability (e.g., violation of mask notch rule and mask
spacing rule [7], [11] which are not considered in this arti-
cle) and runtime issues compared to traditional model-based
OPC, our framework still takes advantage of such methodol-
ogy with the following reasons. Our framework is built upon
the structure of conditional GAN that learns a pixel-to-pixel
mapping from the target pattern to the OPC’ed pattern. The
optimization scheme is in a continuous form that compensa-
tion patterns can appear in any shapes and any places within
the clip. Thus, the patterns generated by GAN are inconsistent
with the model-based OPC results (e.g., [6] and [7]), where
compensations are made by moving polygon segments inward
or outward. However, we observe that the mask patterns are
naturally compatible with the process of ILT, which becomes
one reason that we choose ILT for our refinement tasks. As
can be seen in the previous works [13], [14], ILT is asso-
ciated with a highly nonconvex optimization problems that
means the mask initialization affects the final results. The ILT
refinement results outperform direct ILT optimization and also
experimentally demonstrate the effectiveness of the proposed
GAN-OPC framework. Another reason that we choose ILT is
that theoretically and intuitively ILT provides a larger solution

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: GAN-OPC: MASK OPTIMIZATION WITH LITHOGRAPHY-GUIDED GENERATIVE ADVERSARIAL NETS 2829

TABLE IV
DESIGN RULES USED

space in mask optimization problems and tends to offer better
mask quality. There are two major advantages of our proposed
framework.

1) Compared to ILT itself, the GAN-OPC family offers a
better starting point for ILT optimization that promises
faster convergence and better mask quality.

2) Compared to the model-based OPC, the proposed frame-
work attains good properties of ILT, i.e., a lager solution
space that has the potential to generate better pattern
compensation for better mask printability.

Although we did not consider the mask notch and spacing
rule in our framework, it is straightforward to conduct mask
manufacturability rule check on the generated masks, and fix
the violated region by making minor pixel changes in the gen-
erated masks. Actually, if the ground truth masks used for
training can meet the mask manufacturability requirements, the
GAN-OPC framework is supposed to capture these rules dur-
ing training, because the discriminator is specifically designed
to tell whether the generated masks are good or not. Here, a
“good” mask refers to the mask that has good printability and
good manufacturability.

IV. EXPERIMENTAL RESULTS

The GAN for mask optimization is implemented based
on Tensorflow [40] library and tested on single
Nvidia Titan X. The lithography engine is based on the
lithosim_v4 package from ICCAD 2013 CAD con-
test [33], which also provides ten industrial M1 designs on
32-nm design node. We pick Nh = 24, α = 50, and β = 4
for the lithography simulation procedure. The ILT refinement
will be stopped if the average gradient per pixel as calcu-
lated in 14 is smaller than 5 × 10−4. Related parameters are
chosen according to the experimental results on one test case.
The OPC framework applies 8-nm resolution during the initial
mask generation stage and 1-nm resolution for refinement.

A. Synthesizing Training Data

As a type of deep neural networks, GAN can be hardly
well trained with only ten instances. To verify our framework,
we synthesize a training layout library with 4000 instances
based on the design specifications from existing 32 nm M1
layout topologies. We adjust the wire sizes to make sure the
shapes in synthesized layouts are similar to those in the given
benchmark. To generate experimental cells, all the shapes are
randomly placed together based on simple design rules, as
detailed in Table IV. An example of such synthesized target-
reference mask pair can be found in Fig. 10. In addition, most
generative models have shown obvious weakness in image
details, which makes it extremely hard to optimize images

(a) (b)

Fig. 10. Example of (a) target and (b) reference mask pair.

Fig. 11. GAN-OPC flow: generator inference and ILT refinement.

with size 2048 × 2048. Therefore, we perform 8× 8 average
pooling on layout images before feeding them into the neu-
ral networks. In the generation stage we adopt simple linear
interpolation to convert the layout images back to their original
resolution.

B. Evaluation of GAN-OPC and PGAN-OPC

The proposed GAN-OPC flow is illustrated in Fig. 11,
where we first feed target patterns into the generator and obtain
the quasi-optimal masks, followed by refinement through an
ILT engine. In the first experiment, to verify the effective-
ness of ILT-guided pretraining algorithm, we record training
behaviors of two GANs which are denoted by GAN-OPC and
PGAN-OPC. Here, “GAN-OPC” and “PGAN-OPC” denote
GAN-OPC flow without generator pretraining and GAN-OPC
flow with ILT-guided pretraining, respectively. “ILT” corre-
sponds to MOSAIC_fast in [13]. The training procedure is
depicted in Fig. 12, where x-axis indicates training steps and
y-axis is L2 loss between generator outputs and ground truth
masks, as in (9).

The training time for both GAN and PGAN are around
10 h on our platform. Although L2 loss of GAN-OPC drops
slightly faster before 3000 iterations, the training curve shows
that PGAN-OPC is a more stable training procedure and
converges to a lower loss. Besides, it takes much more
efforts for GAN-OPC to search a direction to descending the
gradient fast, while the training loss of PGAN-OPC drops
smoothly and converges at a lower L2 loss than GAN-OPC,
which indicates ILT-guided pretraining indeed facilitates mask-
optimization-oriented GAN training flow. We will also show
that PGAN-OPC exhibits better mask optimization results in
the following section.

In the second experiment, we optimize the ten layout masks
in ICCAD 2013 contest benchmark [33] and compare the
results with the previous work, as listed in Table V. Here,
the wafer images are calculated from the simulation tool
(lithosim_v4) in the contest [33]. Note that all the GAN-
OPC and PGAN-OPC results are refined by an ILT engine
which generates final masks to obtain wafer images. Column
“L2” is the squared L2 error between the wafer image and the
target image under nominal condition. Column “PVB” denotes
the contour area variations under ±2% dose error and defo-
cus range of ±25 nm settings as in the contest. It is notable

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

2830 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

TABLE V
COMPARISON WITH STATE-OF-THE-ART

Fig. 12. Training curves of GAN-OPC and PGAN-OPC.

Fig. 13. Average runtime comparison of different methods.

that GAN-OPC significantly reduces squared L2 error of wafer
images under the nominal condition by 9% and with the
ILT-guided pretraining, squared L2 error is slightly improved
and PVB is further reduced by 1%. We also compared this
article with one academic state-of-the-art model-based OPC
engine [6], which exhibits larger L2 error (42 196.4) and worse
PVB (59 828.3 nm2) compared to GAN-OPCs.

Because we only focus on the optimization flow under the
nominal condition and no PVB factors are considered, our
method only achieves comparable PVB areas among ten test
cases. Additionally, feed-forward computation of GAN only

(a) (b)

Fig. 14. Some wafer image details of (a) ILT [13] and (b) PGAN-OPC.

Fig. 15. Training behavior of the EGAN-OPC framework with faster and
better convergence.

takes 0.2 s for each image which is ignorable, therefore, run-
time of our flow is almost determined by ILT refinements.
Runtime of different frameworks are illustrated in Fig. 13.
Items ILT, “Model-Based,” GAN-OPC, and PGAN-OPC list
the average mask optimization time of [6] and [13], GAN-
OPC, and PGAN-OPC, respectively. For most benchmark
cases, GAN-OPC and PGAN-OPC show a earlier stop at a
smaller L2 error and, on average, reduce the optimization run-
time by more than 50%. We also observe that model-based
OPC engine shows advantages on execution time at the cost of
wafer image quality as well as PVB area, as shown in Table V.
For most test cases, [13] exhibits a smaller PV band area pos-
sibly because the printed images are more likely to have large
wafer image CD and shorter wire length, which makes masks

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: GAN-OPC: MASK OPTIMIZATION WITH LITHOGRAPHY-GUIDED GENERATIVE ADVERSARIAL NETS 2831

Fig. 16. Result visualization of PGAN-OPC, EGAN-OPC, and ILT. Columns correspond to ten test cases from ICCAD 2013 CAD contest. Rows from top
to bottom are: (a) masks of [13]; (b) wafer images by masks of [13]; (c) masks of PGAN-OPC; (d) wafer images by masks of PGAN-OPC; (e) masks of
Enhanced GAN-OPC; (f) wafer images by masks of Enhanced GAN-OPC; and (g) target patterns.

suffer less proximity effects while inducing bridge or line-end
pull back defects, as shown in Fig. 14.

C. Evaluation of Enhanced GAN-OPC

Here, we show the effectiveness and the efficiency of the
EGAN-OPC framework. In the first experiment, we illustrate
the training behavior of PGAN-OPC and the EGAN-OPC
frameworks as shown in Fig. 15. Red curve stands for the
original PGAN-OPC model, which fluctuates fiercely around
a large value. Dark curve refers to the results with U-Net gen-
erator. Blue curve represents the complete version of enhanced
GAN model with both U-net structure and the embedded SPSR
structure. It is encouraging to see that U-net alone can already
ensure a good convergence in terms of L2 loss. As we have
pointed out in algorithm section, such structure attains the neu-
ral network capacity with significantly lower computational
cost, which is consistent with the trends of L2 error during
training.

In the second experiment, we compare the mask
optimization results of the EGAN-OPC with original GAN-
OPC and PGAN-OPC, as depicted in Fig. 16. The quantitative

results can also be found in column “EGAN-OPC” of Table V.
EGAN-OPC outperforms PGAN-OPC and GAN-OPC on most
test cases with better L2 error (39 500 versus 39 948) and
smaller PVB area (48 917 nm2 versus 49 957 nm2) with only
70% average runtime of PGAN-OPC (see Fig. 13), which
demonstrates the efficiency of EGAN-OPC framework. It
should be also noted that EGAN-OPC can be trained end-to-
end without any interaction with the lithography engine which
induces a large amount of computational cost in PGAN-OPC.

D. On the Scalability of GAN-OPC Family

In order to verify the scalability of our frameworks, we
conduct further experiments on ten additional testcases that
contain more patterns and larger total pattern areas. Similar
to [7], these ten testcases are created from the original IBM
benchmarks with additional geometries. The results of one
example can be found in Fig. 17. It can be seen that our frame-
work generalizes to more complex patterns. We also visualize
the ILT convergence in terms of different mask initialization
in Fig. 18. Here, we use testcase 18 as an example. It can be

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

2832 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

TABLE VI
EXPERIMENTS ON LARGER BENCHMARKS

(a) (b) (c)

Fig. 17. Larger-case example of (a) mask pattern, (b) its wafer image, and
the (c) corresponding target pattern.

(a) (b)

Fig. 18. Visualization of convergence during ILT refinement. (a) L2 and
(b) PV band.

seen that ILT converges much faster when using the mask ini-
tialized by EGAN-OPC as input, with only ignorable PV band
penalty. We did not compare the performance with the model-
based OPC as the binary release in [6] encounters unknown
failure on the new benchmarks.

We list the detailed optimization results in Table VI, where
columns are defined exactly the same as Table V. It can
be seen that GAN-OPC exhibits tradeoffs on nominal image
quality and PVB compared to pure ILT, while both PGAN-
OPC and EGAN-OPC show significant advantages on L2
error (86 105.7 versus 90 486.3) with similar or slightly better
PVB (108 690.7 nm2 versus 109 842.7 nm2). Besides, compet-
itive results of our framework are also achieved with shorter
optimization time thanks to the good initialization offered by
the generator, as shown in Fig. 19.

Fig. 19. Average runtime comparison on larger benchmarks.

V. CONCLUSION

In this article, we have proposed a GAN-based mask
optimization flow that takes target circuit patterns as input
and generates quasi-optimal masks for further ILT refinement.
We analyze the specialty of mask optimization problem and
design OPC-oriented training objectives of GAN. Inspired by
the observation that ILT procedure resembles gradient descent
in backpropagation, we develop an ILT-guided pretraining
algorithm that initializes the generator with intermediate ILT
results, which significantly facilitates the training procedure.
We also enhance the GAN-OPC flow by integrating U-Net and
SPSR layers in the generator that ensures better model conver-
gence and mask quality. The experimental results show that
our framework not only accelerates ILT but also has the poten-
tial to generate better masks through offering better starting
points in ILT flow.

REFERENCES

[1] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing
with emerging nanolithography,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 32, no. 10, pp. 1453–1472, Oct. 2013.

[2] B. Yu, X. Xu, S. Roy, Y. Lin, J. Ou, and D. Z. Pan, “Design for manufac-
turability and reliability in extreme-scaling VLSI,” Sci. China Inf. Sci.,
vol. 59, pp. 1–23, Jun. 2016.

[3] ITRS. Accessed: Nov. 7, 2018. [Online]. Available: http://www.itrs.net

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: GAN-OPC: MASK OPTIMIZATION WITH LITHOGRAPHY-GUIDED GENERATIVE ADVERSARIAL NETS 2833

[4] X. Xu, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, and D. Z. Pan,
“A machine learning based framework for sub-resolution assist fea-
ture generation,” in Proc. ACM Int. Symp. Phys. Design (ISPD), 2016,
pp. 161–168.

[5] A. Awad, A. Takahashi, S. Tanaka, and C. Kodama, “A fast process
variation and pattern fidelity aware mask optimization algorithm,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2014,
pp. 238–245.

[6] J. Kuang, W.-K. Chow, and E. F. Y. Young, “A robust approach for
process variation aware mask optimization,” in Proc. IEEE/ACM Design
Autom. Test Europe (DATE), 2015, pp. 1591–1594.

[7] Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee,
“Fast lithographic mask optimization considering process variation,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 8,
pp. 1345–1357, Aug. 2016.

[8] P. Yu, S. X. Shi, and D. Z. Pan, “Process variation aware OPC with vari-
ational lithography modeling,” in Proc. ACM/IEEE Design Autom. Conf.
(DAC), 2006, pp. 785–790.

[9] J.-S. Park et al., “An efficient rule-based OPC approach using a DRC tool
for 0.18 μm ASIC,” in Proc. IEEE Int. Symp. Qual. Electron. Design
(ISQED), 2000, pp. 81–85.

[10] P. Yu, S. X. Shi, and D. Z. Pan, “True process variation aware optical
proximity correction with variational lithography modeling and model
calibration,” J. Micro Nanolithography MEMS MOEMS, vol. 6, no. 3,
2007, Art. no. 031004.

[11] A. Awad, A. Takahashi, S. Tanaka, and C. Kodama, “A fast process-
variation-aware mask optimization algorithm with a novel intensity
modeling,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25,
no. 3, pp. 998–1011, Mar. 2017.

[12] A. Poonawala and P. Milanfar, “Mask design for optical
microlithography—An inverse imaging problem,” IEEE Trans. Image
Process., vol. 16, no. 3, pp. 774–788, Mar. 2007.

[13] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask opti-
mizing solution with process window aware inverse correction,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), 2014, pp. 1–6.

[14] Y. Ma, J.-R. Gao, J. Kuang, J. Miao, and B. Yu, “A unified frame-
work for simultaneous layout decomposition and mask optimization,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2017,
pp. 81–88.

[15] W. Xiong, J. Zhang, Y. Wang, Z. Yu, and M.-C. Tsai, “A gradient-
based inverse lithography technology for double-dipole lithography,”
in Proc. IEEE Int. Conf. Simulat. Semicond. Processes Devices, 2009,
pp. 1–4.

[16] R. Viswanathan, J. T. Azpiroz, and P. Selvam, “Process optimization
through model based SRAF printing prediction,” in Proc. SPIE
Adv. Lithography, vol. 8326, 2012, Art. no. 83261A.

[17] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new lithography
hotspot detection framework based on AdaBoost classifier and simplified
feature extraction,” in Proc. SPIE, vol. 9427, 2015, Art. no. 94270S.

[18] H. Zhang, B. Yu, and E. F. Y. Young, “Enabling online learning in lithog-
raphy hotspot detection with information-theoretic feature optimization,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2016,
pp. 1–8.

[19] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, “Imbalance aware lithography
hotspot detection: A deep learning approach,” J. Micro Nanolithography
MEMS MOEMS, vol. 16, no. 3, 2017, Art. no. 033504.

[20] H. Yang, J. Su, Y. Zou, B. Yu, and E. F. Y. Young, “Layout hotspot
detection with feature tensor generation and deep biased learning,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), 2017, pp. 1–6.

[21] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “Detecting multi-
layer layout hotspots with adaptive squish patterns,” in Proc. IEEE/ACM
Asia South Pac. Design Autom. Conf. (ASPDAC), 2019, pp. 299–304.

[22] T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correction with
hierarchical Bayes model,” J. Micro Nanolithography MEMS MOEMS,
vol. 15, no. 2, 2016, Art. no. 021009.

[23] A. Gu and A. Zakhor, “Optical proximity correction with linear regres-
sion,” IEEE Trans. Semicond. Manuf., vol. 21, no. 2, pp. 263–271,
May 2008.

[24] R. Luo, “Optical proximity correction using a multilayer perceptron
neural network,” J. Opt., vol. 15, no. 7, 2013, Art. no. 075708.

[25] S. Choi, S. Shim, and Y. Shin, “Machine learning (ML)-guided OPC
using basis functions of polar Fourier transform,” in Proc. SPIE,
vol. 9780, 2016, Art. no. 97800H.

[26] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Conf. Neural
Inf. Process. Syst. (NIPS), 2014, pp. 2672–2680.

[27] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. Int. Conf. Mach. Learn. (ICML), 2017,
pp. 214–223.

[28] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2016, pp. 1–16.

[29] O. Ronneberger, P. Fischer, and T. Brox, “U-Net:
Convolutional networks for biomedical image segmentation,” in
Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent.
(MICCAI), 2015, pp. 234–241.

[30] W. Shi et al., “Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 1874–1883.

[31] H. H. Hopkins, “The concept of partial coherence in optics,”
Proc. Roy. Soc. London A Math. Phys. Eng. Sci., vol. 208, no. 1093,
pp. 263–277, 1951.

[32] N. B. Cobb, “Fast optical and process proximity correction algo-
rithms for integrated circuit manufacturing,” Ph.D. dissertation,
Dept. Elect. Eng. Comput. Sci., Univ. California at Berkeley, Berkeley,
CA, USA, 1998.

[33] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest
in mask optimization and benchmark suite,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), 2013, pp. 271–274.

[34] W.-C. Huang et al., “Two threshold resist models for optical proxim-
ity correction,” in Proc. Opt. Microlithography XVII, vol. 5377, 2004,
pp. 1536–1544.

[35] J. Andres and T. Robles, “Integrated circuit layout design methodology
with process variation bands,” U.S. Patent 8 799 830, Aug. 5, 2014.

[36] J. Masci, U. Meier, D. C. Cireşan, and J. Schmidhuber, “Stacked
convolutional auto-encoders for hierarchical feature extraction,” in
Proc. Int. Conf. Artif. Neural Netw. (ICANN), 2011, pp. 52–59.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 770–778.

[38] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 4700–4708.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1–14.

[40] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. USENIX Symp. Oper. Syst. Design Implement. (OSDI),
2016, pp. 265–283.

Haoyu Yang received the B.E. degree from Qiushi
Honors College, Tianjin University, Tianjin, China,
in 2015. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Engineering, Chinese University of Hong Kong,
Hong Kong.

He has interned with ASML, San Jose, CA,
USA, and Cadence Design Systems, San Jose. He
received the 2019 Nick Cobb Scholarship by SPIE
and Mentor Graphics. His current research interests
include machine learning and very large-scale inte-

gration design and sign-off.

Shuhe Li received the B.Sc. degree from the
Chinese University of Hong Kong, Hong Kong, in
2019, where he is currently pursuing the M.Sc.
degree in computer science.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

2834 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Zihao Deng received the B.Sc. degree (First Class
Hons.) in computer science from the Chinese
University of Hong Kong, Hong Kong, in 2019.

His current research interests include machine
learning algorithms, deep neural networks, and
information theory.

Yuzhe Ma received the B.E. degree from
the Department of Microelectronics, Sun Yat-sen
University, Guangzhou, China, in 2016. He is
currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

He has interned with Cadence Design Systems,
San Jose, CA, USA, and NVIDIA Research, Austin,
TX, USA. His current research interests include very
large-scale integration design for manufacturing,
physical design, and machine learning on chips.

Bei Yu (S’11–M’14) received the Ph.D. degree from
the University of Texas at Austin, Austin, TX, USA,
in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu was a recipient of the five Best Paper
Awards from Integration, the VLSI Journal in 2018,
the International Symposium on Physical Design in
2017, the SPIE Advanced Lithography Conference
in 2016, the International Conference on Computer

Aided Design in 2013, and the Asia and South Pacific Design Automation
Conference in 2012, and five ICCAD/ISPD Contest Awards. He is the
Editor-in-Chief of the IEEE Technical Committee on Cyber-Physical Systems
Newsletter. He has served as the TPC Chair for ACM/IEEE Workshop on
Machine Learning for CAD, many journal editorial boards, and conference
committees.

Evangeline F. Y. Young received the B.Sc. degree
in computer science from the Chinese University
of Hong Kong (CUHK), Hong Kong, and the
Ph.D. degree from the University of Texas at Austin,
Austin, TX, USA, in 1999.

She is currently a Professor with the Department
of Computer Science and Engineering, CUHK. She
was actively on floorplanning, placement, routing,
DFM, and EDA on physical design in general. Her
current research interests include optimization, algo-
rithms, and very large-scale integration CAD.

Prof. Young’s research group has won several championships and prizes
in renown EDA contests, including the 2016, 2015, 2013, and 2012 CAD
Contests at ICCAD, DAC 2012, and ISPD 2011 Routability-driven Placement
Contests and ISPD 2010 High-Performance Clock Network Synthesis Contest.
She also served on the Editorial Boards for the IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,
ACM Transactions on Design Automation of Electronic Systems and
Integration, and Very Large Scale Integration Journal. She has served on
the organization committees for ISPD, ARC, and FPT and on the program
committees of conferences, including DAC, ICCAD, ISPD, ASP-DAC, SLIP,
DATE, and GLSVLSI.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 24,2020 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

