IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018 231

TILA-S: Timing-Driven Incremental Layer
Assignment Avoiding Slew Violations

Derong Liu, Bei Yu, Member, IEEE, Salim Chowdhury, and David Z. Pan, Fellow, IEEE

Abstract—As very large scale integration technology scales to
deep submicrometer and beyond, interconnect delay greatly lim-
its the circuit performance. The traditional 2-D global routing
and subsequent net by net assignment of available empty tracks
on various layers lacks a global view for timing optimization.
To overcome the limitation, this paper presents a timing driven
incremental layer assignment tool, to reassign layers among rout-
ing segments of critical nets and noncritical nets. Lagrangian
relaxation techniques are proposed to iteratively provide consis-
tent layer/via assignments. Modeling via min-cost flow for layer
shuffling avoids using integer programming and yet guarantees
integer solutions via uni-modular property of the inherent model.
In addition, multiprocessing of K x K partitions of the whole
chip provides runtime speed up. Furthermore, a slew targeted
optimization is presented to reduce the number of violations
incrementally through iteration-based Lagrangian relaxation, fol-
lowed by a post greedy algorithm to fix local violations. Certain
parameters introduced in the models provide tradeoff between
timing optimization and via count. Experimental results in both
ISPD 2008 and industry benchmark suites demonstrate the
effectiveness of the proposed incremental algorithms.

Index Terms—Global routing, layer assignment, min-cost net-
work flow, timing.

I. INTRODUCTION

S VERY large scale integration technology scales to deep

submicrometer and beyond, interconnect delay plays a
determining role in timing [1]. Therefore, interconnect synthe-
sis, including buffer insertion/sizing and timing-driven routing,
becomes a critical problem for achieving timing closure [2].
Global routing is an integral part of a timing convergence flow
to determine the topologies and layers of nets, which greatly
affect the circuit performance [3]-[9]. In emerging technol-
ogy nodes, back-end-of-line metal stack offers heterogeneous
routing resources, i.e., dense metal at the lower layers and
wider pitches at the upper layers. Fig. 1 gives one example of
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MetaToLZyers M10 1.00
M9 1.00

M8 0.63

Intermediate M7 0.63
Metal Layers M6 0.63
Lower M5 0.63
Metal Layers M4 0.63
Metal 1 M3 0.33
M2 0.35

Ml 0.33

Fig. 1. Cross section of IC interconnection stack in advanced technology
nodes [10], where wires and vias on top metal layers are much wider and
much less resistive than those on lower metals. The normalized pitch lengths
of different metal layers are listed in the table (source: [11]).

cross section of IC interconnection stack in advanced technol-
ogy nodes [10], where wires and vias on top metal layers are
much wider and much less resistive than those on lower met-
als. Besides, the normalized pitches of different metal layers
from [11] are also listed. Advanced routing algorithms should
not only be able to achieve routability, but also intelligently
assign layers to overcome interconnect timing issues.

Layer assignment is an important step in global routing
to assign each net segment to a metal layer. It is commonly
generated during or after the wire synthesis to meet tight fre-
quency targets, and to reduce interconnect delay on timing
critical paths [12]. In layer assignment, wires on thick met-
als are much wider and thus, less resistive than those on thin
metals. If timing critical nets are assigned to lower layers, it
will make timing worse due to narrower wire width/spacing.
Although top metal layers are less resistive than those in lower
(thin) metals, it is impossible to assign all wires to top layers.
That is, layer assignment should satisfy the capacity con-
straints on metal layers. If an excessive number of wires are
assigned to a particular layer, it will aggravate congestion and
crosstalk. Meanwhile, the delay due to vias cannot be ignored
in emerging technology nodes [1]. In addition, during timing
closure slew violations could affect the utilization of buffering
resources [13]. Thus, to guarantee signal integrity and reduce
buffering resources, slew violations need to be avoided during
layer assignment.

Recently, layer assignment has been considered in two
design stages, i.e., buffered tree planning and 3-D global rout-
ing. Some studies consider layer assignment during buffer
routing trees design [12], [14], [15]. Li et al. [12] pro-
posed a set of heuristics for simultaneous buffer insertion
and layer assignment. Hu er al. [14], [15] proved that,
even if buffer positions are determined, the layer assignment
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Fig. 2. Net delay distribution for benchmark adaptec2. (a) Result by

layer assignment solver NVM [18]. (b) Result by our TILA-S, where 5%
most critical nets are reassigned layers.

with timing constraints is NP-complete. During 3-D global
routing, layer assignment is a popular technique for via
minimization. Cho and Pan [3] proposed an integer linear
programming (ILP)-based method to solve the layer assign-
ment problem. Since via minimization is the major objective,
all wires tend to be assigned onto the lower layers. Lee and
Wang [16] and Dai et al. [17] applied dynamic programming
to solve optimal layer assignment for a single net. To overcome
the impact of net ordering, different heuristics or negotiation
techniques were proposed in [18] and [19]. Ao et al. [19] con-
sidered the delay in layer assignment, but since via capacity
was not considered, more segments can be illegally pushed
onto higher routing layers. A min-cost flow-based refinement
was developed in [20] to further reduce the number of vias.
Furthermore, Lee et al. [21] proposed an enhanced global
router with layer assignment refinement to reduce possible
violations. Recently, Liu et al. [22], [23] solved the layer
assignment problem through semidefinite model with a more
accurate calculation of via costs; and Livramento et al. [24]
targeted at optimizing timing paths through a network model.
For slew optimization, repeaters/buffers insertions are widely
adopted to fix the potential slew violations [12], [13], [25].
Zhang et al. [26] utilized an ILP approach to reconstruct the
over-the-block steiner tree structure to improve slew.

Existing layer assignment studies suffer from one or more

of the following limitations.

1) Most works only target at via number minimization, but
no timing issues are considered. Since timing require-
ments within a single net are usually different for
different sinks, assigning all segments of a set of nets
on higher metal layers is not the best use of critical
metal layer resources. That is, intelligent layer assign-
ment should not blindly assign all segments of a net
to a set (a pair, for example) of higher metal layers.
It should be aware of capacitive loading of individual
segments within a net to achieve better timing with the
limited available higher metal layer resources.

2) In emerging technology nodes, the via delays contribute
a non-negligible part of total interconnect delay. But the
delay impact derived from vias is usually ignored in
previous layer assignment works.

3) During post routing stage, slew violations may cause
buffering resources. There are limited works to avoid
slew violations globally during layer assignment.

4) The net-by-net strategy may lead to local optimality,
i.e., for some nets the timings are over-optimized, while
some other nets may have no enough resources in high
layers. Meanwhile, considering one edge at each time
may lose potential optimality because the edge ordering
could also affect the subsequent solutions.

To close on timing for critical nets that need to go long

distances, layer assignment needs to be controlled by multinet
global optimization. For example, Fig. 2 compares the delay
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Fig. 3.  Sink slew distribution for benchmark adaptec2. (a) Result by
layer assignment solver NVM [18]. (b) Result by our TILA-S, where 1%
most critical nets are reassigned layers.
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distributions of benchmark “adaptec2” by conventional
layer assignment solver [18] and our incremental timing-driven
solution, while Fig. 3 compares the slew distribution results.
We can see that, since conventional layer assignment only
targets at via minimization, the maximum delay and the max-
imum slew can be very large. Since our timing-driven planner
is with global view, the maximum delay can be much bet-
ter, i.e., the normalized maximum delay can be reduced from
144 % 10° to 23 x 10°. Meanwhile, the slew violations can also
be reduced significantly. The maximum slew decreases from
12.74 x 10° to 2.16 x 10°.

For very large high-performance circuits, either long com-
putation times have to be accepted or routing quality must be
compromised. Therefore, an incremental layer assignment to
iteratively improve routing quality is a must. In this paper,
we propose an incremental layer assignment framework tar-
geting at timing optimization. Incremental optimizations or
designs are very important in physical design and CAD field to
achieve good timing closure [27]. Fast incremental improve-
ments are developed in different timing optimization stages,
such as incremental clock scheduling [28], [29], incremental
buffer insertion [30], and incremental clock tree synthesis [31].
To further improve timing, incremental placement is also a
very typical solution [32], [33]. Besides, there are several
incremental routing studies (e.g., [34]) to introduce cheap and
incremental topological reconstruction.

To the best of our knowledge, this paper is the first
incremental layer assignment work integrating via delay and
solving all the nets simultaneously. A multilayer global router
can either route all nets directly on multilayer solution
space [4], [S] or 2-D routing followed by post-stage layer
assignment [6]-[9]. Note that as an incremental layer assign-
ment solution, our tool can smoothly work with either type of
global router. Our contributions are highlighted as follows.

1) A mathematical formulation gives the layer assignment
solutions with optimal total wire delays and via delays.

2) A Lagrangian relaxation-based optimization iteratively
improves the layer assignment solution.

3) Lagrangian relaxation subproblem (LRS) is solved via
min-cost flow model that guarantees integer solutions
due to inherent uni-modular property, thus, avoiding
runtime extensive methods, such as ILP.

4) An iterative Lagrangian relaxation-based slew opti-
mization strategy is proposed to reduce the violations
globally.

5) A post slew optimization algorithm searches potential
usable layers for fixing local violations.

6) Multiprocessing of K x K partitions of the whole chip
provides runtime speed up.

The remainder of this paper is organized as follows.

Section II provides some preliminaries and the problem for-
mulation. Section III gives mathematical formulation, and
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Fig. 4. Layer design and grid models. (a) Design with four routing layers
{M6, M7, M8, M9}. (b) Grid model with preferred routing directions.

also proposes sequence of multithreaded min-cost flow algo-
rithm to achieve further speed-up. In addition, mitigating slew
violations is discussed in this section. Section IV reports
experimental results, followed by the conclusion in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we introduce the graph model and the
timing model applied in this paper. Then the problem formu-
lation of timing-driven incremental layer assignment (TILA)
is provided.

A. Graph Model

Similar to the 3-D global routing problem, layer assignment
problem can be modeled on a 3-D grid graph, where each
vertex represents a rectangular region of the chip, so called
a global routing cell (G-Cell), while each edge represents the
boundary between two vertices. In the presence of multiple
layers, the edges in the z-direction represent vias connecting
different layers. Fig. 4(a) shows a grid graph for routing a
circuit in multimetal layer manufacturing process. Each metal
layer is dedicated to either horizontal or vertical wires. The
corresponding 3-D grid graph is shown in Fig. 4(b).

To model the capacity constraint, for each x/y-direction
edge, we denote its maximum routing capacity as c.. Besides,
the via capacity of each vertex, denoted by c,, is computed
as in [35]. In brief, via capacity refers to the available space
for vias passing through the cell, and is determined by the
available routing capacity of those two x/y-direction edges
connected with the vertex. Thus, this via capacity model helps
to keep adequate routing space for vias through layers, and
places the limits of wires on higher metal layers, which may
result in wire delay degradation.

B. Delay Model

We are given a global routing of nets, where each net is a
tree topology with one source and multiple sinks. Based on
the topology, for each net we have a set of segments S. Here,
we give an example of net model in Fig. 5, where each net
contains two segments. To evaluate the timing of each net, we
adopt Elmore delay model, which is widely used during inter-
connect synthesis in physical design. The delay of a segment
s; on a layer [, denoted by d,(i, [), is computed as follows:

de(i, 1) = Re(D) - (C(D)/2 + Caown(si)) (D

where R.(I) and C(I) refer to the edge resistance on layer [,
and edge capacitance on layer [, respectively. Cyown(s;) refers
to the downstream capacitance of s;. Note that the downstream
capacitance of s; is determined by the assigned layers of its
all downstream segments. To calculate the downstream capac-
itance for each s;, we should traverse the net tree from sinks
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< Buffer
[] Driver

Fig. 5. Example of net model.

to source in a bottom-up manner. Therefore, the downstream
capacitance of the source segment, i.e., the segment connected
with the driver pin, should be calculated after all the other
segments have obtained their downstream capacitances.

For a via v, connecting segments between layers [ and /+1,
its delay can be calculated as follows:

dy(im, 1) = Ry(1) - Caown(Vin)- )

Here, R, () is the resistance of via between layers [ and [+ 1,
and Cgown (V) is the downstream capacitance of the upstream
segment connected to via v,,. If the downstream capacitance
of a via is equal to zero, then we assume the via delay is
negligible.

In addition, buffering can be considered in our delay model.
As shown in Fig. 5, Cgown(s2) is equal to the input capaci-
tance of the buffer. Because buffers are fabricated in silicon
and have pins connected with a specified metal layer, integra-
tion with buffers would affect the downstream capacitance for
the corresponding pin. Meanwhile, buffering would also intro-
duce buffer intrinsic delay and driving delay for each driving
net. The intrinsic delay is dependent on the driving buffer,
while the driving delay is in proportion to the downstream
capacitance. Because capacitances of different layers vary less
than resistances, we do not include the buffer driving delay
in this paper. Therefore, through updating the downstream
capacitances and including buffer intrinsic delay, our frame-
work can handle timing optimization for both prebuffered and
post-buffered designs.

C. Slew Model

Besides delay, our framework also considers slew computa-
tion to reduce the potential slew violations. Since each routing
net is a tree topology in essence, we traverse the tree in a
breadth-first manner from the driver to each sink and calcu-
late the slew for each pin. For each segment, the input slew
is represented by its upstream pin slew, and the output slew
by its downstream pin slew. To calculate the output slew, we
adopt PERI model, which has been shown to provide less
than 1% error [36]. The calculation is given in (3), where
Slw(p,(si)), SIw(pa(s;)) are the input and output slew of s;,
respectively, while Slwgep(s;) is the step slew

SIw(pa(si)) = /SW(pu(50))? + Stwaep(s)2. (3)

Based on PERI model, the segment output slew depends
on both its input slew and step slew. The input slew is also
the output slew of the upstream segment, so it can be obtained
iteratively through (3). Regarding the step slew, we calculate it
through the combination of PERI model and Bakoglu’s metric.
It is proved to have error within 4% [36]. The calculation is
shown in (4), where I(s;) is the layer on which s; is assigned,
and d, (i, [) is Elmore delay of segment s; on layer /

Sletep(Si) = Slwstep(i» I(s))) = 1n9 - d. (i, I(s;)). 4)
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Non-Critical Nets: n1l n2M; Critical Net:

Fig. 6. Example of timing driven layer assignment. In initial layer assignment
net n3 is timing critical net. Through resource releasing from nets ny and ny,
the total timing gets improvement.

With the calculated step slew, we can obtain the output slew
for each segment. To see the impact of layer assignment, the
output slew can be represented as a function of its input slew
and the layer to be assigned

Slwe (i, 1(51)) = y/SIW(pa(s))? + (9 - d, (i, 1) (5)

Besides, via slew should also be considered during slew
calculation and computed in a similar way as segment slew.
Equation (6) gives the slew for via v, from layer / to layer
[+1

SIwy (v, [+ 1) = \/Slw(pvm)z + (9 - dy (v, D)%, (6)

In contrary to downstream capacitance calculation in a bottom-
up manner, here we start from the segment connected with
the net driver. Then each segment and its connected via are
traversed in a breadth-first manner until every sink is reached.
With this approach, we obtain the output slew for each net
sink sequentially. If the sink slew exceeds a specified slew
constraint, we assume there is a slew violation.

D. Problem Formulation

Based on the grid model and timing model discussed
in the preceding section, we define the TILA problem as
follows.

Problem 1 (TILA): Given a global routing grid, a set of
critical net segments and layer/via capacity information, TILA
assigns each segment passing through an edge to a layer,
so that layer assignment costs (weighted sum of segment
delays, via delays, and slew violations) can be minimized,
while the capacity constraints of each edge on each layer are
satisfied.

One instance of TILA problem with three nets is demon-
strated in Fig. 6, where nets n; and n are noncritical nets,
while net n3 is timing critical. Initially, net n3 is assigned to
lower layers. Since the routing resources are utilized by nets
n1 and ny, n3 cannot be shuffled into higher layers to improve
timing. Through a global layer reassignment, we are able to
achieve a better timing assignment solution, where both n;
and n, release high layer resources to n3.

Naclerio et al. [37] proved that even if no timing is con-
sidered, the decision version of layer assignment for via
minimization is NP-complete. Thus, the decision version of
TILA problem is A'P-complete as well.

TABLE I
NOTATIONS USED IN THIS PAPER

L number of layers
S set of all segments considered
E set of all edges
G set of all g-cells on 2-D plane
Ey set of all pairs of crossing segments
P(s;) nodes of segment s;, i.e. upstream pin and downstream pin
N(vm) set of neighboring segments of via vy,
Se(t) set of segments assigned to the same edge as s;
Ex(g) set of crossing segment pairs passing through g-cell g
aij binary variable; if i-th segment is assigned to layer j then
a;; = 1, otherwise a;; = 0
de(,7) timing cost if s; is assigned to layer j
dy(i,p, k) | timing cost of via v from layer k to k+1, where v € P(s;)N
P(sp)
1(sq) layer where segment s; is assigned
ce(i,5) routing capacity of edge e through which s; passes on layer
J
cg(k) available via capacity of g-cell g on layer k

III. TILA ALGORITHMS

In this section, we introduce our framework to solve
the TILA problem. First a mathematical formulation target-
ing delay optimization will be given. Then a Lagrangian
relaxation-based optimization methodology is proposed to
solve this problem. After the delay optimization, a Lagrangian
relaxation-based slew optimization is presented, followed by a
post optimization stage. For convenience, some notations used
in this section are listed in Table 1.

A. Mathematical Formulation

The starting mathematical formulation of TILA problem is
shown in (7). In the objective function, the first term is to
calculate the cost from segments, while the second term is
to calculate the cost from vias. Here, d.(i,j) is calculated
through (1), and d,(i, p, k) is derived from (2)

L
min Z Zde(i,j) - ajj

ies j=1
L L max(,g)—I1
D> Y dlipkaiay ()
(i.p)€Ey j=1 g=1 k=min(j,q)
st. Y ay=1,Yie[l,5] (7b)
J
> aj < celij). Ve e EVj e [1,L] (7¢)
5:€8, (i)
Z Z ajj - apg < cg(k)
(i.p)€Ex(g) min(j,q) <k<max(j,q)
Vge G, Vke(1,L) (7d)
a;j is binary. (7e)

Constraint (7b) is to ensure that each segment of nets would
be assigned to one and only one layer. Each edge e € E is
associated with one capacity ¢, (i, j), and constraint (7c) is for
the edge capacity of each layer. Constraint (7d) is for the via
capacity in each layer, which restricts the available via capacity
for each layer at certain grid position.
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First, we show that if each Cqown(s;) is constant, the TILA
can be formulated as an ILP, then a mature ILP solver is pos-
sible to be applied. Here, Cyown(s;) is downstream capacitance
of segment s;. We can use a Boolean variable y;; 4 to replace
each nonlinear term aj; - ap,. Then, (7) can be transferred into
ILP through introducing the following artificial constraints:

{au+apq<)’iqu+l (8)
ij Z Vij.pg> g = Vij.pq-

Due to the computational complexity, ILP formulation
suffers from serious runtime overhead, especially for those
practical routing test cases. A popular speedup technique is to
relax the ILP into linear programming (LP) by removing the
constraint (7e). It is obvious that the LP solution provides a
lower bound to the original ILP formulation. We observe that
the LP solution would be like this: each a;; is assigned to 0.5
and each yjj 4 is 0. By this way, all the constraints are sat-
isfied, and the objective function is minimized. However, all
these 0.5 values to a;; provide no useful information in guiding
the layer assignment, as we prefer each a;; closes to either 0
or 1. In other words, the LP relaxation is hard to provide rea-
sonable good solution. Instead of expensive ILP formulation
or its LP relaxation, our framework proposes a Lagrangian
relaxation-based algorithm to solve the original (7).

B. Lagrangian Relaxation-Based Optimization

Lagrangian relaxation [38] is a technique solving optimiza-
tion problems with difficult constraints, where some or all hard
constraints are moved into objective function. In the updated
objective function, each new term is multiplied with a constant
known as Lagrange multiplier (LM). Our idea is to relax the
via capacity constraint (7d) and incorporate it into the objec-
tive function. We specify each a;; - ap; a non-negative LM
Aijpg» and move the constraint into objective function. The
modified formula is called LRS, as shown in (9). Through
this relaxation methodology, via capacity overflow is handled
with timing optimization simultaneously

L
min Z Zde(i,j) - ajj
ieS j=1
L max(j,q)—1

+ Z ZZ Z dv(i,p, k) - ajj - apq

(i,p)eEx j=1 g=1 k=min(j,q)

+ Z Aijpq(@ij - apg — cg(k))
(i,p)EEX
s.t. (7b), (7c), (Te). 9)

It is known that for any fixed set of LM 4 4, the optimal
result to the LRS problem is smaller or equal to the optimal
solution of the original (7) [38]. That is, the original formula-
tion is the primal problem and the LM optimization is the dual
problem. Therefore, the Lagrangian dual problem (LDP) is to
maximize the minimum value obtained for the LRS problem
by updating LMs accordingly.

Algorithm 1 gives a high level description of our Lagrangian
relaxation-based framework to the TILA problem. The inputs
are an initial layer assignment solution and a critical net ratio
value «. Based on the o value we select some critical nets and
noncritical nets (line 1). All the segments belonging to these
(selected critical and noncritical) nets are reassigned layers
by our incremental framework. Please refer to Section III-D
for more details of our critical and noncritical net selection.
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Algorithm 1 TILA

Require: Initial layer assignment solution;
Requu'e Critical net ratio «o;

: Select all segments based on «;

: Initialize Cgy,,y,(s;) for each segment s;;
. Initialize LMs;

: while not converged do

Solve LRS;

Update Cg,,p(s;) for all s;;

Update LMs;

: end while

> Section III-D

> Section III-C

Based on the initial layer assignment solution, we initialize
all the Cgown(s;) for each selected segment s; (line 2). The
LMs are also initialized in line 3. In our implementation, the
initial values of all LMs are set to 2000. Our framework iter-
atively solves a set of LRS, with fixed LM values (lines 4-8).
In solving LRS, we minimize the objective function in (9)
based on the current set of LMs. The details of solving LRS
are discussed in Section III-C. After solving each LRS, we
recalculate the downstream capacitances of all the segments
Caown(si) based on (1) (line 6). We use a subgradient-based
algorithm [39] to update the LMs to maximize LDP (line 7).
In more details, the LM in the current iteration is dependent
on the LM from the last iteration 1 ; , . the step length 6;jq,
and the available resources

Mijpg = Pjpq T Oivg - (@ij - apg — cg)- (10)
The available via resources can be obtained directly by updat-
ing the current via capacity as in [35]. To decide the step
length, we adopt the classic calculation as follows:

- [UB ~ L(iiz0)]

” (aj - apg — co) ||

Based on (11), UB refers to the upper bound of the total costs
of via v and segments connecting to v, while L(A; p ) refers
to the current total costs. ¢ is the scaling factor traditionally
from 2 to 0, and here we choose it as 1 for convenience.
Through this updating procedure, LMs help to fix the potential
via violations. In our implementation, the iteration in line 4
will end if one of the following two conditions is satisfied:
either the iteration number is larger than 20; or both the wire
delay improvement and the via delay improvement are less
than a prespecified fraction.

(11)

iipqg =

C. Solving Lagrangian Subproblem

Through removing the constant items and reorganizing
objective function of (9), we rewrite LRS into

S L L L
min YN e ai+ Y YD clip.a) - ay - apg

i=1 j=I (i,p)€Ey j=1 g=1
s.t. (7b), (7c), (7e) (12)
where
c(i, ) =de(i, ]) 1
C(i,j. P, @) = Yt o) Ay D 1) + M pg.

Theorem 1: For a set of fixed Ajj pg, LRS is N'P-hard.

Due to space limit, the detailed proof is omitted. Because
of nonlinear term a;j - a,q, the proof can be through a reduc-
tion from quadratic assignment problem [40]. In addition,
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Fig. 7. Example of min-cost flow model.

unless P = NP, the quadratic assignment problem cannot be
approximated in polynomial time within some finite approxi-
mation ratio [41]. Inspired by McCormick envelops, we prefer
to linearize the term a;j - apq

G @) -y apg =~ oo p. @) (g - @+ - apg)  (13)

where a),, is the value of a,, in previous iteration, and a;j is
the value of g;; in previous iteration. This linearization is based
on the segment assignment of the last iteration. Since LRS is
solved iteratively through updating LMs, this approximation is
acceptable. Taking a;g - a9 as an instance, where a’]s, a’29 are
1, we can obtain that segments s1 and s, are assigned on layers
8 and 9 in the previous iteration, respectively. This means that
segments s1 and s> should belong to critical nets because they
have been assigned on high metal layers by our framework.
Thus, in later iterations, when considering the assignment of
segment s1, we assume that segment sy is assigned on layer
9, and vice versa, according to (13). In this manner, segments
s1 and sy are probable to be assigned on high metal layers
as before. Since each critical segment has a tendency to be
assigned on high metal layers, the problem converges after
several iterations.

Through the linearization technique in (13), the objective
function in (12) is a weighted sum of all the a;. We will
show that the linearized LRS can be solved through a min-
cost network flow model. The basic idea is that the weighted
sum of all the a;; can be viewed as several assignments from
segments to layers, while the weight of each a;; is the cost to
assign segment i to layer j. Constraints (7b) and (7c) can be
integrated into the flow model through specified edge capacity.
Constraint (7e) is satisfied due to the inherent uni-modular
property of min-cost network flow [39].

An example of such min-cost flow model is illustrated in
Fig. 7. Given four different segments s1, 52, 53, 54 and several
edges, we build up a directed graph G = (V, E) to represent
the layer assignment relationships. The vertex set V includes
four parts: 1) start vertex s; 2) segment vertices Vg; 3) layer
vertices Vz; and 4) end vertex t. Here, both start and end
vertices are pseudo vertices. Segment vertices Vs represent a
collection of segments to be assigned, where the collection size
is equal to the number of segments. Similarly, a layer vertex in
VL represents a layer on which a segment can be reassigned.
The edge set E is composed of three sets of edges: 1) {s —
Vs}; 2) {Vs — Vi}; and 3) {V;, — t}. Notably, here the edge
set E represents the edges in the network flow, while the layer
vertices represent the layers of edges in the global routing grid
model. We define all the edge costs as follows: the cost of one
edge from Vg to V is the cost of assigning the segment to
corresponding layer; the costs of all other edges are set to 0.
We define all the edge capacities as follows: the capacity of
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Fig. 8. Our parallel scheme to support multithreading computing on K x K
partitions. (Here K = 4). (a) Parallel pattern 1. (b) Parallel pattern 2.

one edge from V7, to node ¢ is the capacity of the corresponding
edge in the routing grid model; while the capacities of all
other edges are set to 1. Then edge capacity constraint can be
satisfied by the capacity of edge from V}, to node ¢, and the
capacity from node s to Vg guarantees that one segment can
just be assigned on one layer. As shown in Fig. 7, segment s
can be assigned on either layer 6 or 8 of edge 1. The numbers
shown in Vg, vertices indicate the specified layer of this edge
and the edge index, respectively. The corresponding nets are
given in Fig. 5, where we can see that segment s shares one
edge with s3 for resource competition. Meanwhile, segment
s4 has a different routing direction with the other segments
so it has to be assigned on other layers. In this example, we
assume that each segment passes through one edge with its
length equal to the grid size, as shown in Fig. 5. For a segment
passing through multiple edges, we prefer to split it into a set
of subsegments, and each subsegment has the same length
as the grid size. We construct the flow graph, where each
subsegment has its own assigning cost, and the number of
subsegments to be assigned on one layer is also constrained
by the layer node.

D. Critical and Noncritical Net Selection

Given an input ratio value «, our framework would automat-
ically identify a% of the total nets as critical nets, while other
a% of the total nets as noncritical nets. Both the selected crit-
ical nets and the selected noncritical nets would be reassigned
layers. The motivation of critical net selection is to reassign
their layers to improve timing, while the motivation of non-
critical net selection is to release some high layer resources
to the critical nets. By this way, our flow is able to overcome
the limitation of any net order.

To identify all the critical nets can be trivial: first all the net
timing costs in original layer assignment are calculated, and
then the o% of worst delays are selected. Yet, noncritical net
selection is not so straightforward, as randomly selecting «%
of best timing nets may not be beneficial to critical net timing.
In our implementation, we check the 2 - « best timing nets to
associate each net with a score to indicate their overlapping
resources with critical nets. Meanwhile, if there is an overlap
with critical nets, the assigned layer of this short net should be
higher than the lowest layer of these critical nets. Otherwise,
it is not regarded as an effective overlap. Then we select half
of them with the best scores as noncritical nets.

E. Parallel Scheme

Our framework supports parallel scheme by dividing the
global routing graph into K x K parts. An example of such
division is illustrated in Fig. 8(a), where each division is solved
separately and K = 4. To ensure each segment to be solved in
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Fig. 9. Overall timing optimization flow.

only one partition, for those crossing boundaries of partitions,
they are assigned in the same partition as its geometric center.
The reason of such division is twofold. First, our Lagrangian
relaxation-based optimization is to solve a set of min-cost flow
models, as discussed in Sections III-B and III-C. The runtime
complexity to solve a single flow model is O(|V| - |E]), where
|V| and |E| are the vertex number and the edge number of the
graph. Dividing the whole problem into a set of subproblems
can achieve significant speed-up. In addition, multithreading
is applied to provide further speed-up. Second, inspired by
the Gauss—Seidel method [42], when one thread is solving
flow model in one partition, the most recently updated results
by peer threads are taken into account, even if the updating
occurs in the current iteration. Besides, we propose a more
general type of parallel pattern suitable for any K x K par-
tition, as in Fig. 8(b). In this example, neighboring threads
start in inverse directions and avoid operating on neighboring
partitions simultaneously as much as possible. After solving
different partitions, we synchronize the newly updated layer
assignment results to eliminate the potential conflicts.

FE. Iterative Slew Optimization

During timing closure, slew violations are important per-
formance metrics that may cause a huge demand for
buffering resources. Thus, we should also focus on reduc-
ing slew violations besides delay optimization. Fig. 9 depicts
the overall algorithm flow, which mainly consists of two
stages: 1) delay optimization and 2) slew optimization. The
details of delay optimization are already introduced from
Sections III-B to III-E. As discussed in Section II-C, seg-
ment step slew is in proportion to its delay. With the constant
input slew, the higher layer this segment is assigned, the fewer
output slew can be obtained. Therefore, delay optimization
is deemed to mitigate slew violations. Nevertheless, segment
delay optimization mainly considers the layer assignments of
its downstream segments due to the existence of downstream
capacitance, but neglects its upstream segments. Since layer
assignments of the upstream segments affect the segment input
slew, the upstream segments should also be taken into accounts.

An example is given in Fig. 10. Here, we assume that both
net n; and net ny are critical while there is only one available
routing capacity for each edge, so segments s; and s should
compete for the layer resources. Regarding delay optimization,
segment s; is likely to be assigned on a higher layer because
it owes a larger downstream capacitance; while in fact, seg-
ment 51 should be placed on a higher layer because a longer
path may introduce slew violations. Thus, after our slew opti-
mization flow, segment s; will be assigned a higher priority
on a higher layer. The main reason is that slew optimization
considers both upstream segments and downstream segments.
In this manner, slew optimization has a different impact on
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Fig. 10. Example of difference between delay and slew optimization.

TABLE II
NOTATIONS USED FOR SLEW MODEL
Ngiw set of nets with slew violations
Peritical path with slew violations
pa(si) downstream node of segment s;
Pu(Si) upstream node of segment s;
Slwgink (Periticar) | sink slew of critical path Pep;tical
Slw(pa(s:)) output slew of segment s;
Slw(pu(s;)) input slew of segment s;
Slwstep (3, 7) step slew of segment s; on layer j
Slwe (i, 7) output slew of segment s; assigned on layer j
Slwe given slew constraint
Slwimgp most slew improvement
0Slw(i, 1) slew improvement by assigning s; on layer [
6Slw;p slew improvement by switching s; and sy

assignment of critical nets in comparison to delay optimiza-
tion. The detailed reasons are twofold: first, critical nets can be
selected in a different way during delay and slew optimization.
In the stage of slew improvement, these nets exceeding slew
constraints are to be selected; however, in the first stage we
mark these nets with higher total delays as critical nets. This
may induce potential discrepancies for nets to be optimized.
Second, delay improvement targets at total delay reduction,
while slew improvement targets at slew violations reduction.
Due to different optimal objectives, assigning costs for both
delay and slew optimization may lead to a tradeoff based on
their weights. Considering the assigning differences of s; and
s> in Fig. 10, possible oscillation may be introduced by setting
different weights to delay and slew optimization. Therefore,
due to the differences of selected nets and optimal objectives,
we prefer to target delay and slew separately, and reduce slew
violations globally as a second stage.

Fig. 9 also outlines the slew optimization flow, whose input
is the assignment result after delay optimization. The slew
optimization consists of two steps: 1) iterative slew optimiza-
tion and 2) post greedy optimization. This section focuses on
the first step to reduce slew violations based on flow model,
while Section III-G provides the details of post slew optimiza-
tion. Some notations used in slew optimization are listed in
Table II. In the iterative flow, a part of critical and noncritical
nets are selected for optimization. To calculate the net criti-
cality, we divide the net into a set of paths, and calculate the
sink slew of each path. If the sink slew exceeds the slew con-
straint, this path is defined as a critical path, i.e., Pcritical, and
the exceptional slew is counted as critical value. Meanwhile,
segment input slews are initialized based on the input result
and then we reassign these nets through the iteration-based
optimization. When the number of slew violations converges
to a certain ratio, the iteration-based optimization stops.

Now, we go over the details about how to solve the problem
through min-cost flow model. First all the segments on critical
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paths are considered because their layer assignments affect
the path sink slew. During slew optimization, we lower the
slew constraint by 5% in order to leave enough slew slacks.
Equation (14) gives the slew constraint

Slw(pa(si)) < 0.95 - Slwe, (14)

where Slw(p,(s;)) is the segment output slew, and Slw, is the
slew constraint. To solve this problem, we relax (14) through
Lagrangian relaxation by moving the slew calculation into the
objective function, and eliminate all the 0.95 - Slw, because
they are constants. Equation (15) provides the slew optimiza-
tion formulation, where each segment slew is multiplied with
a Lagrangian multiplier (LM), i.e., B;;, which is set to 1 as the
initial value

i € Peitical

L
min " "B Swe(ii ) - a

i€Pcritical j=1

s.t. (Tb)—(Te). (15)
During each iteration, LMs are updated as
SIwgink (Peritical)
/ sin
Bi =By | (16)

where ,3[1. is the LM in previous iteration, and SIwgink (Pecritical)
is the sink slew of critical path Prgicar. With the considera-
tion of sink slew, we impose more weights on longer paths.
Therefore, in the example of Fig. 10, segment s; has a higher
priority than s;.

Similar with (7), (15) is solvable through ILP because we
can obtain SIw, (i, j) based on the last iteration. Still, we incor-
porate the via capacity constraints into the objective function
with the same linearization method as in (13). Ultimately, the
problem can be formulated as a weighted sum of a;s and
solved through min-cost max-flow model. After solving the
problem in each iteration, we update the input slews and check
if there is a convergence of slew violations. If the improve-
ment is below a certain ratio, then this flow terminates. In
summary, this algorithm provides a slew targeted optimization
because it considers both upstream and downstream segments.
Meanwhile, more emphasis is placed on critical paths by
taking sink slews into accounts.

Based on the slew model, segment input slew affects output
slew directly, but during each iteration, we obtain the input
slew based on the last iteration, which may introduce slew
discrepancies. Therefore, we implement a post slew optimiza-
tion algorithm, which focuses on fixing local violations while
considering current layer assignments of the whole path. The
details of this algorithm are given in Section II-G.

G. Post Slew Optimization

In this section, we propose a post slew optimization algo-
rithm to further reduce slew violations. The pseudo code is
shown in Algorithm 2. Based on the current results, we tra-
verse each net to check if there exist slew violations. For those
nets with violations, they are saved in a net set, i.e., Ngy, and
sorted in the descending order of slew violations (line 2). The
net with the highest priority is the one with the most segments
causing slew violations. To cope with slew violations, we start
from the first segment on the critical path (line 4), and adjust
the layer assignment of each segment s; through two steps
(lines 5-31).

First, if there is any available routing capacity for s; on
higher layers (line 7) and its segment slew can be improved

Algorithm 2 Post Slew Optimization Algorithm

Require: Current layer assignment solution;
1: Save all slew critical nets in Nglw;
2: Sort nets in the descending order of slew violations;
3: for each net n € Nslw do
4 for each s; € P yiticql do
5: Initialize Slwjyp = 0;
6: for cach [ € e(s;) do
7: if Routing capacity exists for layer / then
8 if 8Siw(i, ) > Slwimp and OV < Ra then

9: Update liemp and Slwim[,;
10: end if
11: end if
12: end for
13: Assign s; on liemp;
14: if No ltemp is found then
15: for each noncritical s, on e(s;) do
16: if §Shw(i, I(sp)) < O then
17: Continue;
18: end if
19: 8Slwip = 8SIw(i, I(sp)) + 8SIw(p, I(s;));
20: if 8Slwip > Swiyp and OV < Ra then
21: if Slwn(sp) < o - Slwe then
22: Update stemp and Slwipy;
23: end if
24: end if
25: end for
26: Switch layers between s; and Siemp;
27: Update Siw for n(s;) and n(stemp);
28: end if
29: if SIwink (Peritical) < Slwe or Slw(i, I') > Siw. then
30: break;
31: end if
32: end for
33: end for

(line 8), we record the improvement and mark this layer as a
candidate (line 9). Meanwhile, the induced via capacity vio-
lations cannot exceed a given ratio, Ra. After traversing each
possible layer, the layer with the most improvement is selected
for s; to assign (line 13). In this way, the sink slews of other
nets are not affected while the current segment output slew is
improved. However, if no available layer is found, a second
step is required (lines 14-28).

In the second step, we search for a noncritical segment on
the same edge with s;. When exchanging its layer with seg-
ment s;, we would not degrade its slew much while improving
the output slew of s;. In order to find this segment, we tra-
verse each noncritical segment s, that is assigned on a layer
higher than I(s;) and able to bring slew improvements for s;
(lines 16-18). Then the slew improvement is calculated by
switching the layers of segment s; and segment s, (line 19).
If the improvement outperforms the current improvement, we
signify this segment as Siemp, and record its layer (lines 20-24).
Here, we also take into accounts the net which segment s,
belongs to. When its sink slew is close to the given slew con-
straint, then segment s, will not be considered as an exchange
candidate. After traversing each segment on higher layers, we
switch the assigned layers of segments s; and Siemp and update
the slews of their nets (lines 26 and 27). When the slew viola-
tion of Pgtcal has been fixed, then we continue to fix the next
net in Ng,. Besides, if a segment has already exceeded the
slew constraint, we will skip the remaining segments in this net
because there is no further optimization space for sink slews
of this net. By this way we can save the runtime overhead
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TABLE III
NORMALIZED CAPACITANCE AND RESISTANCE

Wire [11] Via

Layer [ C [ R Layer R

Ml 1.14 | 23.26 v1,2 259
M2 1.05 | 19.30 v2,3 16.7
M3 1.05 | 23.26 V3,4 16.7
M4 0.95 5.58 V4,5 16.7
M5 1.05 3.26 V5,6 5.9
M6 1.05 3.26 ve,7 59
M7 1.05 3.26 v7,8 59
M8 1.00 | 3.26 v8,9 1.0
M9 1.05 1.00 9,10 1.0
M10 1.00 1.00 - -

(lines 29-31). The algorithm ends until all nets in Ny, are
traversed. In comparison to slew optimization in Section III-F,
this algorithm adjusts the layer assignment of segments based
on their real input slew, thus providing a more accurate slew
optimization. Meanwhile, if there are only a few slew critical
nets, it is efficient to fix the violations through this algorithm.

IV. EXPERIMENTAL RESULTS

We implemented the proposed framework in C++, and
tested it on a Linux machine with 2.9 GHz Intel Core and
192 GB memory. We selected open source graph library
LEMON [43] as our min-cost network flow solver, and utilized
OpenMP [44] for parallel computing. In our implementation,
the default K is set to 6, and the default thread number is set
to 6.

A. Evaluation on ISPD 2008 Benchmarks

In the first experiment, we evaluate our framework on ISPD
2008 benchmarks [45]. The NCTU-GR 2.0 [9] is utilized
to generate the initial global routing solutions. The initial
layer assignment results are from negotiation-based via min-
imization (NVM) [18], which is targeting at via number and
overflow minimization. Our framework is tested the effective-
ness to incrementally optimize the timing. To calculate the
wire delay in (1) and via delay in (2), all the metal wire
resistances, metal wire capacitances, and via resistances are
listed in Table III. Column “C” lists the capacitance. Columns
“R” list the resistances for wire layers and via layers, respec-
tively. The resistances and capacitances of wires are directly
from [11], while the via resistance values are normalized from
industry settings in advanced technology nodes. Since ISPD
2008 benchmarks do not provide the input capacitance and
output resistance values of sinks, here we assume they are
Zero.

Performance impact on different ratio values. Impact of ratio on (a) maximum delay, (b) average delay, and (c) runtime.

Table IV compares NVM [18] with our incremental layer
assignment tools TILA-1% and TILA-5%. NVM provides a
minimum number of vias during layer assignment with very
low runtime overhead. In “TILA-1%" and “TILA-5% the
ratio value o are set to 1% and 5%, respectively. That is,
in TILA-1%, 1% of timing critical nets and 1% of noncrit-
ical nets are reassigned layers. In TILA-5%, 5% of timing
critical nets and 5% of noncritical nets are reassigned lay-
ers. For each methodology, columns “OE#,” “OV#,” “Dyy,,”
“Dmax, and “via#” list the resulting edge overflow, via over-
flow number, average delay, maximum delay, and total via
number, separately. Here, the calculation of via overflow is
described in [35]. Besides, “CPU(s)” reports the runtime in
seconds for both NVM and TILA. We do not test our tools
on test case newblue3 as NCTU-GR [9] cannot generate a
legal global routing solution, where the number of segments
passing one edge in 2-D exceeds the total edge capacities. We
also cannot report the results from another recent work [19],
as for this benchmark suite their binary gets assertion fault
before dumping out results.

From Table IV we can see that in TILA-1%, when 1% of the
most critical nets are shuffled layers, maximum delay can be
reduced by 53% on the ISPD 2008 benchmarks. Meanwhile,
the overflow number and the average delay are reduced by 3%
and 10%, respectively. The penalty of such timing improve-
ment is that the via number is increased by only 3%. On
the average, TILA-1% requires around 409 s for each test
case. Compared with fast net-by-net solver NVM, although
our planner solves a global optimization problem, its runtimes
are reasonable. In TILA-5%, when 5% of the most critical nets
are reassigned layers, the maximum delay is reduced by 53%.
Meanwhile, the overflow number and the average delay are
reduced by 3% and 19%, respectively. The penalty of TILA-
5% 1is that the via number increases by 11%. From Table IV we
can see that even small amount of critical nets (e.g., 1%) are
considered, the maximum delay can be effectively optimized.
When more nets are inputted, better average delay and less
overflow number are expected. We pay a penalty of increasing
via counts to achieve better timing results with more released
nets. Meanwhile, runtime shows a slight increase with more
reassigned nets because of the larger problem size. In addition,
our framework is with good scalability, i.e., with problem size
increases fivefold, the runtime of TILA-5% is just around one
and half times of TILA-1%.

Critical net ratio « is a user-defined parameter to control
how many nets are released to incremental layer assignment.
In Table 1V, ratio « is set to 1% and 5%. Fig. 11 analyzes the
impact of ratio value to the performance of incremental layer
assignment framework. Fig. 11(a) shows the impact on the
maximum delay, where we can see that the maximum delays
are kept the same. This means for these test cases, releasing
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TABLE IV
PERFORMANCE COMPARISONS ON ISPD 2008 BENCHMARKS
NVM [18] TILA-1% TILA-5%
Bench OE# | OV# | Davg | Dmax via# CPU |[ OE# [ OV# [ Davg | Dmax via# CPU OV# | Davg | Dmax via# CPU
‘ ‘ (10%) ‘ (10%) ‘ (105) ‘ (s) ‘ ‘ (10%) ‘ (10%) ‘ (10%) ‘ (s) ‘ (10%) ‘ (10%) ‘ (10%) ‘ (5)
adaptecl 0 48588 7.26 8776.6 | 19.03 | 36.2 0 50716 | 6.84 | 7126.0 | 1926 | 124.6 53472 | 637 7107.2 | 20.18 146.6
adaptec?2 0 39468 | 435 | 144249 | 19.01 315 0 36824 | 3.61 2365.8 1938 | 1156 32266 | 3.19 | 23658 | 20.63 145.3
adaptec3 0 91996 | 9.70 | 24998.9 | 3629 | 89.3 0 89800 | 8.67 | 7861.3 | 36.77 | 396.5 89598 | 7.89 | 7860.0 | 38.83 | 796.3
adaptec4 0 77542 | 696 | 38646.7 | 31.56 | 55.1 0 67946 | 5.89 | 97452 | 32.55 | 330.7 56037 5.25 9746.0 | 3480 | 562.5
adaptec5 0 79101 | 10.95 | 9958.0 | 5430 | 98.5 0 81956 | 9.98 8740.2 | 5543 | 4934 85590 | 9.11 8693.1 | 58.54 | 5872
bigbluel 0 43029 | 13.50 | 36754 | 2125 | 484 0 46151 | 12.93 | 34347 | 21.68 | 2357 52779 | 12.10 | 33904 | 22.67 | 246.9
bigblue2 | 12 | 117989 | 3.02 | 58259.1 | 4270 | 48.8 12 | 114215 | 2.63 | 182949 | 4344 | 2084 114220 | 2.44 | 18279.0 | 4535 | 2393
bigblue3 0 66790 | 498 | 31222 | 5129 | 814 0 65437 | 415 | 27089 | 5322 | 3784 66639 | 3.49 | 2710.1 60.04 | 675.6
bigblued | 447 | 97355 822 | 53401.4 | 107.65 | 169.4 || 447 | 114215 | 7.08 | 353107 | 111.01 | 743.6 113744 | 6.08 | 35320.1 | 122.08 | 984.4
newbluel | 179 | 58656 1.21 670.7 2203 | 21.6 179 | 56602 1.00 566.2 22.39 99.1 51721 0.93 565.4 23.67 122.8
newblue2 0 40959 | 431 | 122652 | 2836 | 353 0 33941 397 | 105692 | 29.02 | 159.2 19997 3.57 | 10567.1 | 31.04 | 2533
newblued | 108 | 88220 | 4.17 | 154783 | 46.85 | 832 108 | 84273 3.88 8976.9 | 47.65 | 302.7 77931 3.55 8963.8 | 50.41 429.5
newblue5 0 160141 | 6.19 | 119103 | 84.61 | 136.6 0 151300 | 5.64 | 45517 | 86.88 | 644.2 141974 | 5.12 | 45529 | 93.86 | 991.8
newblue6 0 94425 7.28 | 18987.0 | 7743 | 103.4 0 96740 | 6.57 3963.7 | 78.67 | 686.8 105034 | 599 | 3964.6 | 8239 | 842.6
newblue?7 | 369 | 146737 | 7.01 | 13416.0 | 160.57 | 236.7 || 369 | 141936 | 591 | 120282 | 166.58 | 1213.3 || 158329 | 5.06 | 12033.0 | 183.94 | 1427.9
average 74 83400 | 6.61 | 19199.4 | 535 85.0 74 81121 592 | 90829 | 54.93 | 408.8 81289 | 534 | 9074.6 | 5923 | 563.5
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Fig. 12. Evaluation thread number impact on three test cases in ISPD 2008 benchmark suite. Impact on (a) maximum delay, (b) average delay, and (c) runtime.

1% of critical nets is enough for maximum delay optimization.
Fig. 11(b) shows the impact on the average delay, where we
can see increasing the ratio value can slightly improve the
average delay. Fig. 11(c) is the impact on the runtime, where
we can see that the runtime increases along with the increase
of ratio value. From these figures we can see that the ratio
value can provide a tradeoff between average delay and the
speed of our tool.

Our incremental layer assignment utilizes OpenMP [44] to
implement multithreading. Fig. 12 analyzes the performance
of our framework under different partition and thread numbers.
Thread 1 corresponds to 1 x 1 partition, thread 2 corresponds
to 2 x 2 partitions, and so on. With more partitions, the size
of network flow model is reduced quadratically thus benefit-
ing the runtime significantly together with multithreads. From
Fig. 12(a) and (b) we can see that the impact of thread number
on both maximum delay and average delay is insignificant.
From Fig. 12(c) we can observe that more thread number
can achieve more speed-ups. However, when thread number
is larger or equal to 6, the benefit to runtime is not clear.
Therefore, in our implementation the thread number is set to 6.

To demonstrate the benefit of solving the problem in a
global manner, we implement a greedy strategy to assign seg-
ments in a net-by-net manner. All the reassigned nets are
sorted based on their timing priorities so that a more critical
net has a higher priority for resources. For each net, segments
are traversed sequentially and layers are selected based on the
same costs as that in min-cost max-flow network. Here, we
release 1% critical nets and 1% noncritical nets. The results are
shown in Fig. 13. Observe that for both average and maximum
delay TILA can achieve slightly better results compared with
the greedy method. The main reason is that the greedy method
assigns higher priorities to those critical nets so that they are

able to utilize higher layer resources. Thus, significant timing
optimization can also be achieved through this greedy method-
ology. Nevertheless, they sacrifice the via capacity violations
due to their preferences to high layers. Regarding runtime, as
shown in Fig. 13(d), due to the net-by-net scheme, the greedy
method is faster than TILA. Therefore, to control timing opti-
mization and capacity constraints in a reasonable manner, a
global optimization engine is more promising.

B. Evaluation on 20 nm Industry Benchmarks

In the second experiment, we test our incremental layer
assignment framework on eight 20 nm industry test cases
(Industryl-Industry8). We called an industry tool to
generate initial global routing and layer assignment solutions.
Different from the preceding experiment, here we use indus-
try resistance and capacitance values to calculate the wire
delays and the via delays. Table V lists the details of per-
formance evaluation, where for each method columns OV#,
Dayvg, Dmax, and via# provide the overflow number, average
delay, maximum delay, and total via number. Since the critical
nets are provided in the benchmarks, the critical and noncrit-
ical selection phases are skipped in this benchmark suite. We
can see that compared with industry layer assignment solu-
tion, our framework can achieve 60% maximum delay and
34% average delay improvement. The total via number is
very similar to the initial solution, and the factors are as fol-
lows: first, critical segments are assigned on high metal layers
while noncritical segments are assigned on low layers with
their neighboring segments. Few vias will be induced for those
connecting segments are on close layers. Second, via delays
are also included in our mathematical formulation, which also
helps to control the via counts. Finally, industrial benchmarks
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TABLE V
PERFORMANCE COMPARISONS ON 20 nm INDUSTRY BENCHMARKS

Bench Industry Layer Assignment TILA
OV# | Dguyg Dmaz via# OV# | Dauyg Dmaz via# [ CPU(s)

Industryl 0 6204.0 | 684444 | 51805.0 0 3696.6 | 28667.2 | 49302.0 6.6
Industry2 0 6049.6 | 68713.0 | 52996.0 0 3796.4 | 274163 | 50331.0 7.0
Industry3 0 6025.4 | 810303 | 53905.0 0 3906.2 | 38230.8 | 51726.0 8.0
Industry4 0 5702.8 | 58478.5 | 56393.0 0 3669.2 | 25858.9 | 54188.0 9.3
Industry5 0 5531.4 | 78391.4 | 58944.0 0 3799.3 | 34347.0 | 56623.0 11.5
Industry6 0 5443.5 | 77803.0 | 60083.0 0 3692.9 | 33096.3 | 57456.0 12.7
Industry? 0 5066.0 | 114597.7 | 70658.0 0 3693.7 | 29348.7 | 70106.0 385
Industry8 0 4096.4 | 46893.7 | 75790.0 0 3040.2 | 20137.7 | 78823.0 127.8

average 0 55149 | 74294.0 | 60071.6 0 3661.8 | 29637.9 | 58569.4 127.8

ratio 0 1.00 1.00 1.00 0 0.66 0.40 0.97 -

provide an even assignment of segments through all the layers.
This provides us potential spaces for via counts optimiza-
tion. Besides, the initial solution is with zero overflow, and
our framework can also maintain such zero overflow perfor-
mance. In summary, from Table V we can see our incremental
layer assignment framework can achieve significant timing
improvement.

C. Slew Comparisons on ISPD and 20 nm
Industry Benchmarks

In this section, we compare TILA with slew optimization
(TILA-S) against TILA. Still, the effectiveness is verified by
both ISPD and industry benchmarks with slew constraints. For
ISPD benchmarks, the problem sizes are so different that one
single constraint is not applicable to all benchmarks. Thus,
we set the slew constraint of each benchmark as five times its
initial average delay as shown in Table IV. In this way, the
initial number of slew violations is in proportion to the size
of each benchmark. However, the slew constraints for industry
benchmarks are given based on industrial settings.

Table VI lists the results for ISPD benchmarks by compar-
ing TILA-S-1% with TILA-1% while releasing 1%. Besides
the performance metrics shown in Table IV, we introduce an
additional column “SV#” which gives the number of slew
violations, and the second column lists the initial number of

violations. TILA-1% provides the intermediate results after
delay optimization, while TILA-S-1% shows the final results.
We can see that TILA-1% is able to reduce the slew viola-
tions significantly from 6.89 x 10* to 3.57 x 10*, because
delay optimization also benefits slew violations considering
the downstream segments. However, with the slew targeted
optimization, this number can further be reduced by 48%.
Meanwhile, average delay also decreases by 2%, which shows
that slew optimization can also benefit delay slightly. The
maximum delay keeps similar with TILA, because its opti-
mization space is limited after delay optimization. For vias
and violations, there is no obvious difference between TILA-
S and TILA. The main penalty of TILA-S is the 69% increase
of runtime due to additional two-stage slew optimization.
Based on the results, we observe that TILA-S can handle
slew violations efficiently while keeping similar delay and via
performance.

Fig. 14 shows the effect of adopting post slew optimization
for some small cases of ISPD 2008 benchmarks. It is shown
that the post slew optimization stage improves the number of
slew violations slightly without affecting average delay and
maximum delay. The main reason is that during selection of
switching candidate segments, we take its current slew into
consideration. Once the candidate is selected with the smallest
slew degradation, its impact on delay is also negligible because
slew is closely related with delay.
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TABLE VI
COMPARISONS ON ISPD 2008 BENCHMARKS FOR SLEW OPTIMIZATION

NVM [18] TILA-1% TILA-S-1%
Bench SVi# SVi# VO# Davg Dmazx via# CPU SVi# VO# Davg Dmaz via# CPU
(10%) (10%) (10%) (10%) (10%) (s) (10%) (10%) (10%) (10%) (s)
adaptecl 8.57 4.59 50716 6.84 7126.0 19.26 110.8 3.76 50873 6.80 7128.8 19.30 185.5
adaptec?2 24.75 10.38 36824 3.61 2365.8 19.38 98.6 6.22 36518 3.55 2365.9 19.53 158.7
adaptec3 19.77 8.22 89800 8.67 7861.3 36.77 361.2 7.09 89963 8.63 7861.4 36.88 614.9
adaptec4 54.23 16.05 67946 5.89 9745.2 32.55 330.7 12.28 67611 5.84 9744.9 32.66 510.6
adaptec5 54.65 21.35 81956 9.98 8740.2 55.43 493.4 14.32 83207 9.88 8724.2 55.70 869.3
bigbluel 16.68 8.12 46151 12.93 3434.7 21.68 158.8 6.21 46724 12.85 3438.8 21.75 407.0
bigblue2 81.77 59.00 | 114215 2.63 18294.9 43.44 184.7 43.59 | 113332 2.58 18299.9 43.77 437.1
bigblue3 67.42 38.06 65437 4.15 2708.9 53.22 378.4 19.86 63974 4.00 2710.2 54.33 732.4
bigblue4d 118.28 67.48 98987 7.08 35310.7 | 111.01 743.6 28.50 98307 6.87 354149 | 113.11 | 1484.1
newbluel 46.67 36.60 56602 1.00 566.2 22.39 82.7 21.26 55417 0.98 566.1 22.78 132.6
newblue?2 62.98 29.76 33941 3.97 10569.2 29.02 144.2 9.73 30043 3.85 10269.3 29.76 265.1
newblued 52.56 25.43 84273 3.88 8976.9 47.65 302.7 12.42 83412 3.82 8973.8 48.14 396.4
newblue5 155.50 70.99 | 151300 5.64 4551.7 86.88 644.2 39.12 | 150477 5.53 4553.8 88.08 1169.0
newblue6 88.69 49.83 96740 6.57 3963.7 78.67 686.8 22.22 | 100305 6.39 3963.5 79.61 993.0
newblue?7 181.17 89.48 | 141936 591 12028.2 | 166.58 | 1213.3 34.23 | 141209 5.71 12030.2 | 169.80 | 1695.7
average 68.91 35.69 81122 5.92 9082.9 54.93 408.8 18.68 80758 5.82 9069.7 55.68 670.1
ratio 1.00 1.00 1.00 1.00 1.00 1.00 0.52 1.00 0.98 1.00 1.01 1.69
w/0. post === Ww. post mm—
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Fig. 14. Comparison between with and without post slew optimization stage on some small test cases. (a) On average delay. (b) On maximum delay.

(c) On slew violations.
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Fig. 15. Convergence with iteration number of TILA-S on some small test

cases. (a) On average delay. (b) On slew violations.

To illustrate the timing convergence of our iterative frame-
work, we relax the convergence criteria for delay and slew
optimization, and record the average delay and slew viola-
tions for each iteration till the fifth iteration in Fig. 15. The
Oth iteration corresponds to the initial solution, where we can
see a clear convergence after first two iterations.

As stated in Sections III-F and III-G, our slew optimization
reduces slew violations and benefits buffering overheads. To
show this effect, we measure the number of buffers we may
adopt for ISPD benchmarks in Fig. 16. Here, we utilize a top-
down algorithm to insert buffers in a net-by-net manner. For
each net with slew violations, we traverse from its driver and
insert a buffer when there is a slew violation; meanwhile, we

No Slew Opt —= With Slew Opt ===

30000 T T T T T T T T T T T
25000
4 20000
L 15000
® 10000
5000
0 D D, D, D, G G 6 B D D D Dy 0 0,
o0 R0 056 s e s 5 )
NN NNNNNS
7R Gy 7 RO T T, 0, 550

Fig. 16. Buffering overhead saving with slew optimization.

assume the input slew of each net and the output slew from
the buffer are both equal to 0. After traversing one net, we
can obtain the number of buffers used in this net to fix the
violations. It is shown that the average buffering cost can be
reduced from 9258 to 7586 in Fig. 16. Therefore, our post
slew-targeted optimization helps to reduce the buffering over-
head, and is also able to provide an estimate of buffering costs
at prebuffering stage.

For the 20 nm industry benchmarks, besides delay and via
metrics, we also take slew violations into account. Table VII
shows that the violations are reduced by 36%. This proves the
efficiency of our slew optimization flow to fix some local vio-
lations. Meanwhile, since we target at improving the current
segment slew without affecting others considerably, the aver-
age delay keeps the same as before. In addition, the maximum
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TABLE VII
COMPARISONS ON 20 nm INDUSTRY BENCHMARKS FOR SLEW OPTIMIZATION
TILA TILA-S
Bench - -
SV# | Davg | Dmaz | via# | CPU(s) || SV# | Davg | Dmax | via# | CPU(s)
Industryl 24 3606.6 | 28667.2 | 49302 6.6 19 3686.2 | 27202.3 | 49308 7.1
Industry?2 18 3796.4 | 27416.3 | 50331 7.0 14 3779.7 | 25934.5 | 50333 7.2
Industry3 10 3906.2 | 38230.8 | 51726 8.0 3 3898.8 | 34092.1 | 51742 8.5
Industry4 7 3669.2 | 25858.9 | 54188 9.3 2 3665.2 | 24159.9 | 54188 9.3
Industry5 0 3799.3 | 34347.0 | 56623 11.5 0 3799.3 | 34347.0 | 56623 11.5
Industry6é 0 3692.9 | 33096.3 | 57456 12.7 0 3692.9 | 33096.3 | 57456 12.7
Industry’7 0 3693.7 | 29348.7 | 70106 38.5 0 3693.7 | 29348.7 | 70106 385
Industry8 0 3040.2 | 20137.7 | 78823 127.8 0 3040.2 | 20137.7 | 78823 127.8
average 74 3650.6 | 29637.9 | 58569 27.7 4.8 3657.0 | 28539.8 | 58572 27.8
ratio 1.0 1.00 1.00 1.00 1.00 0.64 1.00 0.96 1.00 1.01
delay is reduced by 4%, because slew optimization considers [2] J. Cong, “An interconnect-centric design flow for nanometer technolo-
the layer assignments of both upstream segments and down- gies,” Proc. IEEE, vol. 89, no. 4, pp. 505-528, Apr. 2001.
stream segments. We can also see that there is almost no  [3] M. Cho and D. Z. Pan, “BoxRouter: A new global router based on
difference for vias between TILA-S and TILA. Because of the box expansion and progressive ILP,” IEEE Trans. Comput.-Aided Design
. . L. R Integr. Circuits Syst., vol. 26, no. 12, pp. 2130-2143, Dec. 2007.
very few number of slew violations in industrial benchmarks, i )
. . [4] J. A. Roy and I. L. Markov, “High-performance routing at the nanometer
we prefer to skip the first gl_obal optimal Sta_ge‘. The results scale,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27,
from Table VII show the ability of post optimization stage no. 6, pp. 1066-1077, Jun. 2008.
to reduce violations with little runtime overhead. Therefore, [5] T-H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: Global routing
with the additional slew optimization flow, TILA-S contributes via integer programming,” IEEE Trans. Comput.-Aided Design Integr.
lots of efforts to fixing slew violations while keeping similar Circuits Syst., Vf?l' 30, no. 1, pp. 72-84, Jan. 2011. .
delay performance a5 TILA, both for ISPD benchmarks and (0] 0 i, Mo bserng n el s
industrial benchmarks. op. 20172026 I\’IJOV: 2008, & 8" Jik VOL 2 1o 25
[7] C.-H. Hsu, H.-Y. Chen, and Y.-W. Chang, “Multilayer global routing
V. CONCLUSION with via and wire capacity considerations,” IEEE Trans. Comput.-Aided
. . Design Integr. Circuits Syst., vol. 29, no. 5, pp. 685-696, May 2010.
hIIl. thls ga.per We have plr(l)posed a set of algglrlthmsh.io [8] Y.-J. Chang, Y.-T. Lee, J.-R. Gao, P-C. Wu, and T.-C. Wang,
t .e.tlmmg— nven .lncr?mema ayer assignment pl.‘O em while “NTHU-route 2.0: A robust global router for modern designs,” /[EEE
mitigating slew violations. At first the mathematical formula- Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 12,
tion is given to search for optimal total wire delays and via pp. 1931-1944, Dec. 2010.
delays. Then Lagrangian relaxation-based method is proposed ~ [9]1 W.-H. Liu, W-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR 2.0:
to iteratively improve the timing of all the nets. The LRS Mul_mhf,ea;igggoglSlon'agare gloza_ii rZ“tg‘g _"V“hlboundegjlength gnaze
is modeled through min-cost flow model to provide effective i((’)llmgg’ w0, 5. pp r%;'_nozmﬁ/ﬁ; o1y e ntegr: Cireutts: Syst.,
mt'egral solutions. In ad(,htlon’ mulnprocg:ssmg of K x K par- [10] (Nov. 2014). ITRS. [Online]. Available: http://www.itrs.net
UUO.HS of the whole Chlp prov1de§ mntlme speed up. Then [11] M.-K. Hsu et al., “Design and manufacturing process co-optimization
we integrate the slew violation optimization method into our in nano-technology.” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
framework to mitigate the violations. Our incremental layer Design (ICCAD), San Jose, CA, USA, 2014, pp. 574-581.
assignment tool with/without slew optimization, TILA-S, is [12] Z. Li et al., “Fast interconnect synthesis with layer assignment,” in
verified in both ISPD 2008 and industry benchmark suites, Proc. ACM Int. Symp. Phys. Design (ISPD), Portland, OR, USA, 2008,
and has demonstrated its effectiveness. In our current imple- pp. 71=77. ) . .
. . . . [13] S. Hu et al., “Fast algorithms for slew-constrained minimum cost buffer-
mentation, slew improvement is achieved through a separate e . X N
N L. N ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26,
stage with delay optimization. A§ a future work, we plan to no. 11, pp. 2009-2022, Nov. 2007.
anSI‘;ler layer aSSIgnmenF targethg at delay and slew opti- [14] S. Hu, Z. Li, and C. J. Alpert, “A polynomial time approximation
mization concurrently while reducing buffering overhead. As scheme for timing constrained minimum cost layer assignment,” in Proc.
in emerging technology nodes, the routing algorithm should IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
be able to adapt the heterogeneous layer structures, we believe USA, 2008, pp. 112-115. . o o
this paper will stimulate more research for timing improvement ~ [131 S Hu, Z. Li, and C. J. Alpert, "A faster approximation scheme for timing
. d d . d shed lich diti | EDA driven minimum cost layer assignment,” in Proc. ACM Int. Symp. Phys.
In advance routing, and shed more light on traditiona Design (ISPD), San Diego, CA, USA, 2009, pp. 167-174.
topics. [16] T.-H. Lee and T.-C. Wang, “Congestion-constrained layer assignment for
via minimization in global routing,” IEEE Trans. Comput.-Aided Design
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[17] K.-R. Dai, W.-H. Liu, and Y.-L. Li, “NCTU-GR: Efficient simulated
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2009, the UT Austin RAISE Faculty Excellence Award in 2014, and many
international CAD contest awards.
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