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Abstract—Optical proximity correction (OPC) is a widely
used technique to enhance the printability of designs in various
foundaries. Recently, there has been a growing interest in
using rigorous numerical optimization and machine learning to
improve the robustness and efficiency of OPC. Our research
focuses on developing a self-adaptive OPC framework that
leverages the properties of pattern distribution and repetition in
design layouts to optimize the correction process. We observe
that different subregions in a design layer have varying pattern
complexities, and many patterns repeat themselves throughout
the layout. By exploiting these properties, we propose a frame-
work that adaptively selects the most suitable OPC solvers
from an extensible pool to optimize the correction process for
each pattern based on its complexity. This approach allows
for a co-optimization of speed and accuracy. Additionally, we
introduce a graph-based dynamic pattern library that reuses
optimized masks for repeated patterns, further accelerating the
OPC flow. Our experimental results demonstrate a significant
improvement in both performance and efficiency using our
proposed framework.

Index Terms—Allocation, design for manufacturability, design
reuse, layout, mask optimization, optical proximity correction
(OPC).

I. INTRODUCTION

THE CONTINUOUS shrinking of VLSI technology nodes
has led to a significant impact on the manufacturability

of integrated circuits. This is due to the non-negligible lithog-
raphy proximity effect [1], which can cause issues during the
printing process. Resolution enhancement techniques (RETs)
are employed to address this challenge and improve the
printability of the lithography process. One of the most widely
used RETs is optical proximity correction (OPC), which
optimizes mask printability by compensating for the diffraction
effect that occurs during the lithography process.

OPC approaches can be categorized into: 1) rule-based
OPC [2]; 2) model-based OPC [3], [4], [5]; 3) inverse lithog-
raphy technique (ILT)-based OPC [6], [7], [8]; and 4) machine
learning (ML)-based OPC [9], [10], [11], [12]. Rule-based
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methods provide a heuristic solution to the problem, offering
a simple and fast approach, but they are only appropriate for
less aggressive designs. On the other hand, model-based OPCs
employ mathematical modeling of the lithography process to
adjust the edge fractures of the mask accurately, ensuring high
fidelity. However, these methods are limited by the solution
space when dealing with advanced technology nodes. ILT-
based methods, on the other hand, address the OPC problem
by solving the inverse problem of the imaging system using
an optimized objective function. This approach represents
the most effective analytical method for tackling the OPC
problem. With the rapid advancement of ML algorithms and
hardware in recent years, ML-based OPCs have demonstrated
impressive acceleration in OPC workflows and have gained
prominence in the academic field of design for manufacturing
(DFM) [13], [14], [15]. Studies, such as [9], have employed
deep learning models for initial mask generation to reduce
the number of iterations required for ILT. Additionally, Jiang
et al. [16] utilized a deep learning model to simulate the
conventional ILT correction process. However, it is important
to note that a significant drawback of ML models is their
opaque nature, as they are driven by data and lack inter-
pretability. Such methods do not guarantee effectiveness for
critical patterns. In conclusion, no approach is flawless or uni-
versally superior to others. Patterns with varying complexities
necessitate different approaches.

To achieve efficient and desired OPC results on real designs,
it is necessary to conduct a systematic analysis of pattern
distribution and complexity. Through careful examination of
a real design, we have identified several properties that
can be utilized to aid in this analysis. One such property
is the presence of varying pattern densities, indicating that
certain regions exhibit high density while others are more
sparse. This diversity, as depicted in Fig. 1, suggests the
need for different types of OPC solutions in different regions.
Furthermore, upon conducting a more detailed examination of
each subregion, we have observed a certain degree of sim-
ilarity in the pattern distribution across different subregions.
Numerous patterns are recurrently positioned throughout the
entire design layer, featuring comparable geometric shapes
but varying locations. This pattern repetition allows us to
exploit their shared geometric characteristics, leading to the
idea that the OPC solution for one pattern can be applied
to similar patterns, thereby enhancing efficiency. Inspired by
these findings, we introduce a self-adaptive framework called
AdaOPC, specifically designed for performing OPC on real
designs.
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Fig. 1. Visualization of a real design layer. Two key observations served
as the motivation for our OPC framework design. First, patterns were found
to be distributed unevenly throughout the design layout, exhibiting varying
levels of complexity. We classified intricate patterns as critical, while simple
patterns were labeled as noncritical. Second, a significant proportion of the
patterns displayed a high degree of repetition across the entire layout.

First, AdaOPC incorporates pattern analysis capabilities,
enabling the classification of subregions as either critical
or noncritical. This classification allows for the appropriate
selection of the OPC solver. In particular, densely scattered
subregions exhibit not only the diffraction effect but also the
optical interference caused by neighboring components, both
of which collectively impact the final printed image. These
intricate patterns, requiring robust and rigorous numerical
optimization methods, are considered critical and are better
suited for achieving higher manufacturability. On the other
hand, subregions with sparsely scattered patterns are simpler,
making them more amenable to mask optimization processes
utilizing ML models, which offer superior inference speed
through learned representations.

Second, considering the presence of numerous recurring
patterns on the design layer, all sharing the same geomet-
ric shape as depicted in Fig. 1, we explore the possibility
of reusing optimized masks for these repetitive patterns to
eliminate redundant OPC iterations. However, our idea faces
three significant obstacles.

1) Slicing the large design layout into smaller patterns, as
illustrated in Fig. 2, unavoidably introduces a shift in the
location of patterns with identical geometric shapes. The
question arises: Can an optimized mask with a location
shift be effectively reused? And if so, how?

2) How can we accurately and efficiently match a given
query pattern with the corresponding pattern from a vast
repository of stored patterns?

3) How to measure the geometric similarity of patterns with
location shift?

To address the aforementioned questions, we have developed
a dynamic pattern library with online updating capabilities,
enabling us to store and reuse both repeating patterns and
optimized masks. This is achieved through the construc-
tion of a dynamic hierarchical graph. Furthermore, we have
mathematically demonstrated the shift equivariance prop-
erty of the lithography process, affirming the feasibility

Fig. 2. Slicing repeating full layout inevitably causes some location shift on
repeating patterns.

of mask reuse. By accurately calculating the shift of the
design pattern and calibrating the mask accordingly, we
ensure the effective reuse of masks despite pattern location
shifts. We have implemented a graph-based approxima-
tion method for efficient pattern matching, enabling us to
quickly identify the nearest neighbors within a short query
time. We summarize the contributions of this article as
follows.

1) We propose a self-adaptive workflow that allows for
flexible selection of OPC solvers.

2) We prove the feasibility of mask reuse to speed up
the OPC process for real design patterns and pro-
vide an efficient mask shift calibration method in
practice.

3) We generate design patterns embedding by supervised
contrastive learning for similarity measurement and pat-
tern matching.

4) We construct a dynamic pattern library using a hier-
archical graph with online update along with a greedy
graph-based nearest neighbor search (NNS) for fast
matching.

5) We bring a new weighting strategy during last modifi-
cation stage to handle the sizing problem.

6) With experiments on different pattern cases from a real
design layout, we proved our framework can reduce over
90% runtime while still preserving the optimal OPC
performance.

II. PRELIMINARIES

A. Lithography Simulation Model

In the lithography process, an input mask M ∈ R
h×w is

projected onto a wafer plane using layers of optical lenses.
The resulting aerial image, denoted by I ∈ R

h×w, is then
used to create a coating on the wafer using photoresist, which
ultimately forms the final pattern Z ∈ R

h×w. The conventional
approach to simulating the lithography process involves two
sequential components: the optical projection model and the
photoresist model.

The Hopkins diffraction model [17] has been extensively
utilized for the mathematical analysis of coherent imaging
systems during the projection process. However, an alterna-
tive approach based on singular value decomposition (SVD)
has gained popularity due to its computational complexity.
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Fig. 3. OPC evaluation criteria. (a) Visualization of EPE measurement.
(b) Visualization of PVBand.

This SVD-based approximation, initially proposed by [18],
decomposes the Hopkins diffraction model into a summation
of coherent systems through eigenvalue decomposition

I(x, y) =
N2∑

k=1

wk|M(x, y)⊗ hk(x, y)|2, x, y = 1, 2, . . . , N (1)

where k denotes the kernel number in the coherent system.
hk is the kernel parameters itself. wk is the corresponding
weight assigned to the kth kernel. A Kth-order approximation
is illustrated in [19] as

I(x, y) ≈
K∑

k=1

wk|M(x, y)⊗ hk(x, y)|2. (2)

In our experiment, we selected K = 24 for the approx-
imation. Following the optical simulation, the resulting
lithography intensity I is fed into the photoresist model, which
generates the final binary pattern Z using an exposure resist
threshold Ith

Z(x, y) =
{

1, if I(x, y) ≥ Ith
0, if I(x, y) < Ith.

(3)

Various ML-based approaches have been proposed for
lithography simulation. For instance, Watanabe et al. [20]
employed a CNN to determine the function model for resist
model simulation. In another study, Ye et al. [21] introduced
LithoGAN, a GAN-based framework designed to map input
masks to output resist patterns. Additionally, Shao et al. [22]
proposed a two-stage DNN-based framework that addresses
the mask-to-SEM prediction as a domain transfer problem,
utilizing CycleGAN [23] to learn the transfer process.

While DNN models often offer a speed advantage, we
have utilized the Hopkins model due to its analyzability.
By employing a white-box model, we gain the ability to
mathematically analyze the pattern shift equivariance property
during the lithography process.

B. OPC Evaluation Criteria

Edge Placement Error (EPE): Following the lithography
process, the printed image on the wafer may exhibit geomet-
ric distortion compared to the intended design target. This
distortion is commonly assessed using the EPE metric. The
measurement of EPE is illustrated in Fig. 3(a), where a set of
measuring points is sampled along the boundary of the target

design pattern, encompassing both horizontal and vertical
edges. For each location (x, y), if the distance D(·) between
the printed image and the target exceeds a predefined threshold
thEPE at a specific measuring point, it is identified as an EPE
violation

EPE_violation(x, y) =
{

1, D(x, y) ≥ thEPE
0, D(x, y) < thEPE.

(4)

Process Variation Band (PV Band): In practical lithography
applications, process variation can introduce deviations in the
final printed images, potentially resulting in printing failures.
Printed images may exhibit diverse contour outcomes depend-
ing on different lithography conditions, such as focus/defocus
depth and incident light intensity. To assess the printing
robustness, the PV Band is defined as the discrepant (XOR)
region between the innermost and outermost contours, as
depicted in Fig. 3(b). The PV Band serves as a measure to
evaluate the impact of process variation on printing quality

PVBand =
N2∑

x,y

|Zout − Zin| (5)

where the size of the pattern is denoted by N. The printed
pattern of the outer contour is represented by Zout, while the
inner contour is represented by Zin.

III. ADAPTIVE FRAMEWORK

A. Workflow Overview

Our proposed workflow is visualized in Fig. 4. First, we
introduce the OPC solver selection module in Section III-B,
which chooses the appropriate OPC solver for different pat-
terns. In Section IV-B, we use supervised contrastive learning
to discuss how patterns are embedded into high-dimensional
vectors for pattern matching in the library. Finally, Section V
discusses mask reusability and requirements, proving shift
equivariance during lithography to claim the practicality of
the approach. Additionally, a solution using shift calibration
is provided.

B. OPC Solver Selection

To accommodate the varying complexity of different pat-
terns, our framework incorporates a flexible solver pool that
selects appropriate OPC solutions. We categorize the sliced
design patterns into two types: critical and noncritical patterns.
A solver selector module is employed to determine the OPC
solver to be used. This solver selector can be viewed as
a 2-class classifier constructed using a simple deep-learning
classification model. As the backbone network, we utilize
ResNet-18 [24] and train it with the objective of minimizing
the cross-entropy loss L

L = − 1

N

N∑

i

yi log(pi)+ (1− yi) log(1− pi). (6)

In the training process, each sample i is associated with a
binary label yi, indicating whether it belongs to the critical
pattern class (1) or not (0). The classifier model predicts the
probability pi for each sample. The objective of training is to
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Fig. 4. Overall workflow of AdaOPC is depicted using colored blocks to represent functional modules. The red dashed lines indicate the flow of library
updates within the workflow.

minimize the discrepancy between the predicted probabilities
pi and the corresponding labels yi. Despite its simplicity, this
straightforward combination of a simple network architecture
and the associated loss function yields fast and accurate
predictions for pattern classification without any additional
complexities or embellishments.

For the ML-Solver handling noncritical patterns, we adopt
a generative neural network model inspired by DAMO-
DMG [12], which is the previous state-of-the-art (SOTA) OPC
solver for via layer. Specifically, we utilize U-Net++ with
residual connection as the underlying model structure. We fol-
low a similar strategy to train this generative model as outlined
in [12]. However, there is a distinction in our training data.
Instead of relying on a DNN simulator as in [12], we curate
our own training dataset comprising patterns sourced from a
real full-scale design. Additionally, the masks in our dataset
are generated using a robust OPC engine that employs an
authentic lithography model. This data preparation approach
aligns more closely with the real-world OPC scenario, where
the lithography model serves as the sole source of ground truth
information.

When handling critical patterns, we employ a rigor-
ous optimization method described in [19], utilizing GPU
acceleration through CUDA and fully optimized memory
control. This choice is made even though deep learning
approaches have achieved impressive performance in holistic
evaluations on certain pattern test sets. While data-driven
black-box deep learning models excel at mimicking and
reversing diffraction effects, they may encounter challenges
when confronted with optical interference resulting from
complex neighboring components. In such scenarios, the
rigorous numerical solver offers an analytical solution that
remains unaffected by the geometric complexity of patterns.
Furthermore, in an actual OPC situation involving a new
design and potentially a new lithography engine, patterns, and
optimized masks generated using robust methods can serve as
a dataset for training the ML model to adapt to these new
settings.

It is important to note that the solver pool is designed
to be extensible. This means that any OPC solution with
specific strengths for particular patterns has the potential to
be incorporated as a replacement or complementary candidate
within the pool. If there are more than two solvers in the pool,

the classifier loss can be easily modified as follows:

L = − 1

N

N∑

i

C∑

c=1

yic log(pic) (7)

where C represents the number of pattern classes, which is
equal to the number of corresponding OPC solvers. The label
yic denotes whether a pattern belongs to category c (1) or not
(0). By employing this approach, we can effectively convert
the problem into a multiclassification scenario, allowing for
the inclusion of multiple OPC solvers in the solver pool.

C. Empirical Risk Minimization for Selector

As mentioned previously, patterns from the same design
may lead to insufficient training set to train the selection
model with robustness, given that the original training is
purely supervised and the label is binary (one-hot encoded for
multiple solvers). The simple labeling may lead to overfitting
on the training patterns, which even have similar patterns to
the evaluation set. This seems inevitable because these patterns
are repetitive. However, we cannot expand with more designs,
so some augmentation techniques are needed.

For all the pattern and corresponding critical label distri-
bution (x, y) ∼ P. We have the objective to minimize the
expected empirical risk of the trained model f

R(f ) = 1

n

n∑

1

l(f (xi), yi). (8)

Note that here the sample (x1, y1), . . . , (xn, yn) is an approx-
imation to the real distribution. A Gaussian noise on the
distribution can help to reduce this risk term with additive
Gaussian noise on both input pattern x and critical label y

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj (9)

where λ is chosen from a Beta distribution with value range
λ ∈ [0, 1]. Overall, such augmentation can enhance the dataset
distribution.

This method provides valuable assistance to the pattern
selector in accurately discerning patterns with densities that
are close to either critical or noncritical ones. This capability
allows the selector to make well-informed decisions based on
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the specific pattern density. This is an critical motivation in
the workflow of AdaOPC. Not only is our motivation focus
on time efficiency, the robustness is enhanced at this very
first stage. By accurately detecting ambiguous areas, the risk
of erroneous identification of critical patterns is mitigated,
resulting in further optimization of overall robustness.

IV. DYNAMIC PATTERN LIBRARY

Once we have filtered out simpler cases, employing a
rigorous solver for critical patterns becomes necessary. To
further enhance efficiency, we establish a dynamic pattern
library to store pairs of patterns: the sliced pattern P ∈ R

h×w

and its post-OPC mask MP ∈ R
h×w. This allows us to reuse

masks from repeating patterns, thereby avoiding the redundant,
time-consuming process of OPC iterations from scratch. The
fundamental concept is to identify stored repeating patterns
before performing OPC. An online update mechanism ensures
that new patterns and their corresponding masks can be
inserted into the library.

We utilize a graph structure inspired by [25] to construct
the pattern library. In this structure, each node within the
graph represents a stored pattern, and the connections between
nodes indicate a high level of similarity between the corre-
sponding patterns. Given the substantial number of patterns
in a full design layout, the graph can reach a significant size.
Conducting a naive search for the shortest distance between
nodes through pairwise distance comparisons would prove
impractical. To address this, we implement the following
enhancements to improve matching efficiency.

1) Sparse Neighborhood Graph Structure: Nodes that are
distant from each other exhibit sparse connections,
reducing the overall number of edges in the graph.

2) Graph Hierarchy: We divide the graph into hierarchical
layers, and each layer restricts the degree of nodes.
Lower layers contain more edges, enabling a greedy
search for nearest neighbors at each layer.

Please refer to Fig. 5 for visually representing of the hierar-
chical sparse graph structure.

A. Pattern Matching and Online Update

The objective of identifying the pattern with the closest
geometric shape can be seen as an NNS problem. Drawing
inspiration from [25], we employ the Hierarchical Navigate
Small World (HNSW) algorithm to ensure efficient matching.
The matching process, as depicted in Fig. 5, follows a greedy
approach, traversing the graph from higher layers to the bottom
layer. During this top-down traversal, a list of potential pattern
nodes representing the nearest candidates is maintained. The
list is updated whenever a closer pattern is encountered during
the search, surpassing the distance of one of the existing
candidates. This matching strategy is based on the concept
of proximity graph NNS. For a detailed understanding of the
pattern-matching search strategy at each hierarchical layer,
refer to Algorithm 1.

Once we reach the bottom layer, patterns in the candidate
list C that have a distance smaller than the threshold σ are
considered matches. If the smallest distance in C is still

Fig. 5. Graph-based pattern matching flow is visually represented, illustrating
the traversal of the query design pattern P greedily traversing the hierarchical
graph. The nearest node reached at layer 0 corresponds to a match pattern P′,
which has the most similar geometric shape with P.

Algorithm 1 Graph-Based Pattern Matching Greedy Search
Input: Query pattern P, starting nodes qs, number of nearest

neighbor to return k,layer number l, distance measurement d(·).
Output: Nearest pattern candidates C.
1: V ← qs; 
 Visited nodes
2: W ← qs; 
 Waiting list of nodes to visit
3: C← qs;
4: while |W| > 0 do
5: q∗ ← nearest pattern from W to P;
6: qf ← furthest pattern from C to P;
7: if d(P, q∗) > d(P, qf ) then
8: break;
9: end if

10: for e ∈ neighbor(q∗) in layer l do
11: if e �∈ V then
12: V ← V ∪ {e};
13: qf ← furtherest pattern from C to P;
14: if d(P, e) < d(P, qf ) or |C| < k then
15: W ← W ∪ {e};
16: C← C ∪ {e};
17: if |C| > k then
18: Remove furthest pattern from C to P;
19: end if
20: end if
21: end if
22: end for
23: end while

larger than σ , we classify it as a new pattern. This approach
maintains its speed and accuracy even as the graph expands
with continuous insertions of new patterns into the library.

The pattern library follows an online update method.
When encountering a new pattern that has no matches, the
mask undergoes OPC iterations starting from scratch for
optimization. Subsequently, the library inserts the pattern and
its optimized mask as a new node, updating the edge hierarchy
of the graph to accommodate the new pattern. The detailed
steps of the online update process are outlined in Algorithm 2.

According to Algorithm 2, the new pattern is inserted into
one of the hierarchical layers with a decaying probability.
At the same layer, edges are added between this pattern and
the top k nearest patterns. As the neighboring nodes’ degrees
increase, an edge reconnection is performed when the degree
exceeds the upper bound k. Consequently, the degree of each
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Algorithm 2 New Pattern Insertion and Graph Update
Input: hierarchical graph G, new pattern P, total layer number L,

G’s starting nodes qs, max degree M.
Output: updated hierarchical graph G.
1: l← random(0, L); 
 exponentially decaying probability
2: for lc ← L, ..l do
3: C← search(P, qs, k, lc); 
 Algorithm 1
4: qs ← nearest pattern of q in C;
5: end for
6: for lc ← l, ..0 do
7: Insert P to layer lc of G; 
 add P into graph
8: C ← search(P, qs, k, lc); 
 Algorithm 1
9: neighbors((P))← top M nearest patterns in C;

10: for e← neighbors(P) do
11: Add edge (P, e);
12: if Degree of e > M then
13: neighbors(e)← top k nearest patterns to e;
14: Remove all edges connecting e;
15: Create edges e with each one in neighbors(e);
16: end if
17: end for
18: end for

node in the graph is limited to k. It is worth noting that
the number of edges directly affects the complexity of the
matching process. The utilization of a sparse hierarchical graph
facilitates efficient searching as the graph size increases.

To assess the similarity of vectors, we have proposed several
distance metrics. One such metric involves using the inner
product of two vectors to evaluate the difference in direction
between them

Inner
(
VP1 , VP2

) = VP1 · VP2 =
k∑

i=0

VP1,iVP2,i. (10)

In the equation, VP1 and VP2 represent the embedded vectors
of patterns P1 and P2, respectively. VP1,i denotes the ith
element of vector VP1 . The dimension of the embedded vector
is set to k = 256. It is important to note that the inner product
used in the equation violates the positivity property, where an
element can be closer to some other element than to itself.

Unlike inner product, cosine similarity does not violate the
positivity property and can therefore be used to measure the
similarity between two vectors in an inner product space

dCosine
(
VP1 , VP2

) = 1.0− VP1 · VP2∥∥VP1

∥∥∥∥VP2

∥∥

= 1.0−
∑k

i=0 VP1,iVP2,i√∑k
i=0 VP1,i

2
√∑k

i=0 VP2,i
2
. (11)

An alternative approach is to use Euclidean distance, where
the embedding metric space is treated as a Euclidean space.
Each vector represents a position in Cartesian coordinates,
and the similarity between two vectors can be determined by
calculating the squared -2 norm of the difference between the
coordinates

dEuclid
(
VP1 , VP2

) = ∥∥VP1 − VP2

∥∥2
2 =

√√√√
k∑

i=0

(
VP1,i − VP2,i

)2
.

(12)

Any metric that follows the principles of NNS can be used
as a feasible similarity measurement metric, allowing for the
exploration of different metrics based on various embedding
spaces. For our implementation, the embedding space learned
with the pattern feature loss mentioned in (7), the optimal
pattern matching accuracy is achieved by Euclidean distance
measurement. Here, we emphasize the motivation difference
between the selection and library stages, although they both
involve a pattern embedding process. Therefore, these two
stages shall use different metrics for their embedding objec-
tives. The cross-entropy loss in (7) helps the classification of
all patterns into groups based on explicit pattern density. On
the other hand, the library stage does not put any explicit
label on each pattern but requires a hidden embedding space
where the similarity of all pattern pairs can be quantified
and compared. We have compared several metrics for pattern-
matching in our implementation and found that Euclidean
distance measurement (12) performs best matching accuracy.

B. Embedding Space Construction

In order to utilize a stored mask from the library, it is
necessary to match a pattern with the same geometric shape.
However, directly comparing the geometric similarity of two
patterns is a complex task. To address this challenge, we
have developed an embedding metric space that captures
the geometric properties through a high-dimensional vector
representation, denoted as VP. Instead of storing the original
〈P, MP〉 pair in the library, it is replaced with the 〈VP, MP〉
pair. This enables the determination of whether two patterns
are the same by employing a similarity metric to compare the
embedded vectors.

The construction of the embedding space is achieved by
converting it into a feature extraction process using a deep
learning model. The metric space is then established through
deep metric learning, with the embedded vector being the
output of an embedding neural network. The deep learning
model for the embedding process consists of two modules.

1) The Encoder, denoted as Enc(·), is responsible for
encoding each input pattern P into a feature map FP ∈
R

h×w×c. The feature map has spatial dimensions of h
and w, and c represents the number of channels.

2) The Projector, denoted as Proj(·), takes the feature map
FP as input and embeds it into a representation vector
VP ∈ R

k. During the training stage, the output Proj(FP)

is normalized to lie on the unit hypersphere in R
k for

loss calculation.
Therefore, the embedding process is formulated as

VP = Proj(Enc(P)) ∈ R
k. (13)

In previous deep-learning-based OPC approaches [9], [12],
[21], UNet or its variant UNet++ was commonly chosen as
the backbone structure. However, the OPC problem imposes
a strict requirement where the output mask must maintain
the exact resolution as the input design. This limitation
significantly narrows down the options for selecting network
backbone structures.

We gain flexibility in choosing various network structure
candidates by adopting an embedding process without such
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limitations. Our approach intentionally selects one of the most
widely used structures, ResNet-18 [24], as the encoder. The
input pattern P is a 2-D image with dimensions of 2048 ×
2048. To mitigate heavy computational load and reduce time
delay, we employ a greedy downsampling strategy to reduce
the pattern size to 256×256 before feeding it into the neural
network. This downsampling does not noticeably degrade
performance.

Following the original ResNet-18 structure, we add a
depthwise convolution layer to reduce the feature channel size
from 512 to 256. At the end of the neural network, a linear
layer is applied to transform the resulting 3-D feature into the
final 1-D embedded vector VP. The size of VP is a tradeoff,
where a larger size indicates higher matching accuracy but
slower similarity computation and matching speed. Through
experimentation, we have determined that a size of 256 strikes
a balance between good performance and negligible matching
time with experiments.

The embedding space S is specially designed with certain
objectives.

1) Patterns with the same shape exhibit similar embedded
vectors with the shortest distance between them.

2) Patterns with different shapes are sparsely clustered in
the embedding space and located far apart.

To train such an embedding space, a sufficient amount
of data is required, consisting of both different patterns and
instances of the same pattern. During training, data from the
same pattern is treated as positive samples, and the embedded
vectors are encouraged to be as close as possible, indicating
higher similarity. On the other hand, embedded vectors of
different patterns are treated as negative samples and are
pushed as far away from each other as possible. To create the
training dataset, we extract numerous patches of patterns from
a real full-scale design. This dataset provides diverse pattern
samples for training the embedding space.

Data Preparation: The cropping process consists of two
steps to generate the necessary positive and negative samples
for training. In the first step, we randomly select anchor
points along the design layer. In the second step, we apply
random shifts around each anchor point to obtain a certain
number of patches. These patches have the same pattern within
a square patch but varying relative positions. Labeling the
patterns based on their anchor point ensures that each batch
of training data adheres to the requirement of positive and
negative samples.

Supervised Contrastive Loss: When training the neural
network to learn how to embed patterns into representative
vectors, the traditional cross-entropy loss may not adequately
capture interclass distances or handle noisy labels. In the
domain of self-supervised learning, there exists a family of
losses based on metric distance learning [26], [27], [28], [29],
among which contrastive loss [30] is particularly powerful
for learning representative embeddings. Inspired by the work
of [31], we extend the contrastive loss to a supervised
contrastive loss. This is achieved by genuinely generating and
labeling all positive and negative samples during the data
preparation stage. It ensures that the labels accurately reflect
the nature of the samples. As mentioned, the representation

vector z is obtained by normalizing the embedded vector VP

z = normalize(Proj(Enc(P))) ∈ R
k. (14)

Then, the loss function is formulated as

LsupCon = −
∑

i∈I

1

|J(i)|
∑

j∈J(i)

log
exp

(
zi · zj/τ

)
∑

a∈A(i) exp(zi · za/τ)
. (15)

In the context of the training batch, let i be the anchor index
and j be the anchor index of the positive samples. The set
A(i) = I\i represents all the anchor indices in this batch
except for i. Consequently, A(i)\J(i) represents the anchor
indices of the negative samples. Here, τ is a scalar temperature
parameter. The term exp(zi · zj/τ) in the numerator represents
the similarity between the positive sample pairs zi and zj. On
the other hand, the term exp(zi · za/τ) in the denominator
represents the similarity between all sample pairs, including
the negative ones. By minimizing the loss, the training process
aims to increase the similarity of positive samples and decrease
the similarity of negative samples.

V. MASK REUSE WITH SHIFT CALIBRATION

A. Mask Reusability

We operate under the assumption that if the query design
pattern P matches a stored design pattern P′ in the library
with the same shape, repeating patterns can efficiently share
masks for improved efficiency. However, as illustrated in
Fig. 2, when the entire design is divided into smaller patterns,
it becomes inevitable to encounter pattern location shifts
(�x,�y) between P and P′. In real lithography and OPC
flow, if no external factors influence the lithography process,
the printed wafer image patch should not suffer from any
geometric distortion. Instead, it will only exhibit an identical
shift compared to the design pattern, as depicted in Fig. 6.
Therefore, to reuse the mask, the first requirement is to ensure
that the location shift during lithography does not result in any
geometric distortions.

We mathematically prove the location shift remains
unchanged before and after the lithography in order to show
the feasibility of the mask shift calibration approach; we
denote the Hopkins diffraction model through lithography in
Section II-A as Litho(·) and the location shift as δ�x,�y(·), we
show the following.

To demonstrate the feasibility of the mask shift calibration
approach, we provide mathematical proof that the location
shift remains unchanged before and after the lithography
process. We represent the Hopkins diffraction model during
lithography, as shown in Section II-A, as Litho(·). We denote
the location shift as δ�x,�y(·). Through our mathematical
analysis, we establish the following result.

Theorem 1 (Shift Equivariance): Given pattern P and mask
MP where

P = Litho(MP). (16)

The following statement always holds:

δ�x,�y(P) = Litho
(
δ�x,�y(MP)

)
. (17)
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Fig. 6. Printed wafer image must exhibit an identical location shift to the
design pattern without any geometric shape distortion.

Proof: For any position (x,y) on pattern P

δ�x,�y(P(x, y)) = P(x+�x, y+�y)

=
N2∑

k=1

wk|hk(x+�x, y+�y) ⊗MP(x+�x, y+�y) |2

=
N2∑

k=1

wk

∣∣∣∣∣∣

N∑

i=1

N∑

j=1

hk(i, j)MP

(
x+�x+ i− N

2
, y+�y+ j− N

2

)∣∣∣∣∣∣

2

=
N2∑

k=1

wk

∣∣∣∣∣∣

N∑

i=1

N∑

j=1

hk(i, j)MP

(
x+ i− N

2
+�x, y+ j− N

2
+�y

)∣∣∣∣∣∣

2

=
N2∑

k=1

wk

∣∣∣∣∣∣

N∑

i=1

N∑

j=1

hk(i, j)δ�x,�y

(
MP(x+ i− N

2
, y+ j− N

2
)

)∣∣∣∣∣∣

2

=
N2∑

k=1

wk
∣∣hk(x, y)⊗ δ�x,�y(MP(x, y))

∣∣2

= Litho
(
δ�x,�y(MP(x, y))

)
. (18)

Therefore, (17) is proved.
Given that mask shift during lithography only leads to a

printing shift, it is possible for repeating patterns in a design
to share OPC-optimized masks with a straightforward shift
correction. To achieve this, we select the matched mask MP′
from the pattern library and apply a correction of (−�x,−�y)
to obtain the initial mask MP for pattern P.

B. Pattern Shift Calibration

To calculate the shift between patterns P and P′, we utilize
pixel-level similarity analysis. Specifically, we compute the
pixel-wise cross-correlation between P and P′. This cross-
correlation measurement reflects of the similarity between
individual pixels, and the pixel with the highest response
value on the correlation map indicates the position shift of
the center point (xctr, yctr). However, it is important to note
that performing cross-correlation computation on two large
2-D patterns can be time consuming. The computation process
of cross-correlation is equivalent to convolving P with the
rotation of P′ by 180◦, denoted as Rotate(·)

CrossCorr
(
P, P′

) = Conv
(
P, Rotate(P′)

)
. (19)

To expedite the computation, we employ Convolution and
leverage the efficiency of fast Fourier transform (FFT) [32].

By utilizing FFT, we can calculate the pattern shift using the
following formula:

x∗, y∗ = argmax
x,y

Conv_FFT
(
P, Rotate(P′)

)

�x = x∗ − xctr, �y = y∗ − yctr. (20)

And the initial mask is corrected with

MP = δ−�x,−�y(MP′). (21)

In practical applications, we validate the calibrated mask by
inputting it into the lithography model. Additionally, we may
iterate one or two more times using the ILT solver, if necessary,
to account for any potential noise introduced during the shift
calibration process. To ensure consistency, we employ the
same pattern size as described in [9], which is 2048 × 2048.
With our implementation, the shift calculation time is less than
0.25 s when executed on a CPU.

VI. POST-CALIBRATION ENHANCEMENT

After matching and reusing the precollected mask, the orig-
inal workflow of AdaOPC [33] directly sends the calibrated
mask into the ILT flow for further optimization Fig. 4, which
is a safe approach to guarantee the quality of output mask.
On the other hand, the final result (EPE/PVBand) is upper-
bounded by the original ILT approach. We have dug into the
patterns after the original AdaOPC and proposed a post-stage
for mask correction to improve the mask quality further.

Given that AdaOPC [33] initially targets via layers, which
possess rather simple geometric shapes but complicated dis-
tribution. As we analyze printed aerial images as well as
evaluation metrics at each iteration, we realize that the
printed aerial images are usually “circle”-shaped with smooth
boundaries. In many cases, after the lithography stage, the
neighboring components strongly affect the printed circle
size for each target. Conventional ILT approaches, either
using pixel-based methods or levelset-based methods, mainly
targeting on healing the boundary to conquer the disconnection
or boundary merging problem, as visualized in Fig. 7. For
metal layers, irregular object patterns and geometric shapes
may occasionally encounter such problems during lithography.
However, this sizing problem is also critical and needs further
handling to fix. Our evaluation of different test cases demon-
strates that this is the main cause for most EPE numbers.

As a post-calibration stage, we propose a “Halo-weighting”
process after matching a precollected mask derived from the
pure ILT stage. In this stage, we strive to force the object sizes
to be balanced and close the original via a filtering step on the
loss matrix during the update. We added a weighting filter H ∈
R

h×w when the matched mask was sent to the rigorous solver.
The weighting filter follows the original design shape with the
highest weight on the boundary and gradually decreases as
distance far from the boundary, whose heatmap looks like a
“Halo” that fades off the boundary of via in the original design
pattern, as visualized in Fig. 8.

Such weight filter is derived with two consecutive steps:
the first step is boundary derivation. We apply a morpho-
logical operation on the binary design image, calculating the
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Fig. 7. Visualization of the sizing problem in Via layer mask optimization
problem, in comparison with conventional metal layer. Some printed com-
ponents are too small or too big, which may cause problem during
manufacturing.

Fig. 8. Visualized derivation of halo weight filter H. The square on the left
is a patch B from original design. The square in the middle is the derived
boundary B with morphological gradient from (22). The heapmap square on
the right is the halo weight filter with higher value on the brighter area and
lower value on the greener area (0 ∼ 1).

Morphological Gradient to retrieve the boundary B ∈ R
h×w

matrix of each pattern P

B = P⊕ b− P� b (22)

where the P⊕b and P�b denote the “dilation” and “erosion”
operations. b is a grayscale structuring element used in
computer graphics (here, the pattern is regarded as a 1-channel
picture)

b(x) =
{

0, if ‖x‖ ≤ 1
−∞, otherwise.

(23)

The second step is to blur the derived boundary B for a gradu-
ally decreasing weight. One off-the-shelf algorithm is distance
transformation. The weight along the “halo” is determined by
its distance from the boundary of each component derived
from (22), where the value at (x, y) is the distance to the
boundary

H(x, y) = 1− Norm(distance(x, y, B)). (24)

It is guaranteed that the weight filter shows a gradual decrease
as the position moves farther from the boundary. We normalize
the distance to control the value range into [0, 1]. We subtract 1
with this value such that the highest value on the boundary and
the value range of H is still [0,1]. The distance is calculated
using simple Euclidean distance for faster calculation not only

to attain a faster calculation but also to bring a smoother yet
effective weight distribution

distance(x, y, B) = max
(xb,yb)∈B

(‖x− xb‖, ‖y− yb‖). (25)

In our implementation, we can keep the dilation and erosion
size as 1, so the boundary length is 3 (+1/−1). The weight
distribution is visualized in Fig. 8, which shows smooth
weight distribution along the halo within and outside the
boundary of the via component. The result of adding this
filter on the loss matrix during ILT after calibration is that:
The boundary restoration will restrict the area closer to the
boundary. On the other hand, the loss accumulated far from
the boundary will be less counted, given that this is post-
matched mask. The huge errors are already handled before
being inserted in the library and no longer exist at this
stage.

VII. EXPERIMENTAL RESULTS

A. Implementation Settings

Our framework is mainly developed using Python. The
ML components of our framework are implemented using
the PyTorch library. On the other hand, the lithography
and ILT modules are built using C/C++ and utilize the
CUDA 11.3 toolkit for optimized performance. To evaluate
the performance and speed of our framework, we conducted
experiments on a CentOS-7 system equipped with an Intel i7-
5930K CPU running at 3.50 GHz, along with an Nvidia GTX
Titan X GPU. For our experiments, we employed the publicly
available lithography engine from the ICCAD 2013 CAD
Contest [34], which includes a set of 24 optical kernels. The
photoresist intensity threshold was set to 0.055. We adopted
a lithography wavelength of 193 nm, with a defocus range
spanning ±25 nm and a dose range of ±2%. To identify
EPE violations, we set the EPE violation threshold (thEPE)

to 15 nm.

B. GPU Reimplementation

Although the original AdaOPC already chose GPU to
implement the CUDA acceleration of the lithography process
at each iteration, we can tell in Fig. 9(b) that this bottle-
neck still hinders the optimization efficiency. Compared to
the original AdaOPC, we reimplement the ILT process to
bridge the memory bound when conducting inference and
gradient backpropagation. First, we keep all the intermediate
tensors/matrices and kernel weights on the high bandwidth
memory (HBM), namely, the GPU memory. Within each
iteration of the update, the calculation of the matrix is done on
GPU while the weight being used and matrices being updated
are stationary on GPU memory. The unnecessary CPU-GPU
data movement and synchronization are saved. Apart from
that, our CUDA kernel is optimized at the thread level to
decrease the cache miss rate for efficiency improvement.
Overall, the optimization speed-up can reach 2.2× acceleration
for the same amount of ILT calculation.
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Fig. 9. (a) EPE convergence comparison. (b) Runtime breakdown of AdaOPC
on critical patterns.

C. Data Preparation

To ensure the authenticity of our OPC experiments, all data
used in our study was derived from a real design extracted
from a GDS file generated by the open-source layout gen-
eration tool OpenROAD [35]. We specifically sliced patterns
of size 2048 × 2048, following the approach established
in previous research works [8], [9], [12]. This is also the
supported clip size of our Lithography engine. Therefore, we
can avoid additional resize operations (upscale + downscale)
that might not help pixel-based OPC task. These patterns were
obtained from a full-scale via layer containing over 1.9 ×
106 vias, where each pixel represents an area of 1 nm2.
Our proposed workflow is not exclusive to via layer pattern.
Metal layer patterns also holds repetition property, but have
continuity requirement: The mask of a metal component on
the stitching area shall be continuous and smooth. Adaptive
OPC flow can be extended to metal layer OPC if such corner
cases are handled.

For the training dataset of our ML-Solver, we randomly
sliced 4000 patterns from the design layer. These patterns were
accompanied by masks optimized using the ILT Solver. We
used the same set of patterns to train the pattern classifier.
Regarding the critical/noncritical labels, we directly applied
lithography to these patterns and assigned labels based on the
EPE values. This labeling approach is intuitive as it reflects the
level of mask optimization difficulty. Regarding the training
data for Metric Space embedding, we followed the steps
outlined in Section IV-B. We selected 400 random anchor
points and generated shifts around each anchor point within
a range of ±10% of the pattern width. We ensured that the
number of positive samples for each anchor point was equal to
or greater than the number of anchors, guaranteeing a positive-
to-negative ratio in each training batch. At the slicing stage,
we set padding on the mask: boundary area (10% width) of
pattern will be regarded as padding area such that it will go
through lithography engine but only inner area the mask clip
will be updated. In this way, we can avoid proximity effect
problem on the edge. At the stitching stage, we need to overlap
the mask clip on the padding area.

D. Performance Analysis

To validate the effectiveness of mask reuse, we initially
observed the descending trend of EPE. In this regard, we
conducted a demonstration experiment on a specific pattern,

TABLE I
PATTERN-MATCHING SPEED ANALYSIS ON DIFFERENT

EMBEDDING DIMENSION

where we recorded the EPE descending trend during the
iterations of ILT with a calibrated optimized mask serving
as the initial state. We also recorded the trend when starting
the ILT process from scratch without an initial mask for
comparison purposes. As depicted in Fig. 9(a), when an initial
mask is utilized, the EPE number starts at an almost optimal
value of 23, and the descending trend converges after the
first iteration. In contrast, when ILT is initiated from scratch
without an initial mask, the EPE number begins at 37 and
requires six iterations to reach the initial EPE number achieved
through mask reuse. Overall, it takes 12 iterations for the ILT
process to converge to an EPE of 22.

To assess the efficiency of our framework, we conducted
runtime analysis experiments. As our framework employs
highly efficient ML-based methods for handling noncritical
patterns, our focus primarily lies on critical patterns. Fig. 9(b)
provides a visual breakdown of the time taken by each step in
the critical pattern OPC process within AdaOPC. It is evident
that 91.7% of the runtime is dedicated to lithography and
ILT OPC iterations. In contrast, the combined time overhead
of pattern matching and shift calibration accounts for only
8.3% of the overall process time. This demonstrates that the
impact of these steps on the entire process is negligible.
Furthermore, this highlights the extensibility of our frame-
work, allowing for the integration of new and powerful OPC
tools or litho-models to further enhance speed. In addition,
we considered the scenario where the pattern library grows
larger. While generating a large number of “ground-truth”
masks is limited by time and computational resources, we
tested the speed of pattern matching with a substantial number
of synthesized pattern vectors. As indicated in Table I, even
with the pattern library expanded to store 10 000 patterns
with a dimension of 512, the query and matching process
can still be completed within 0.4 s. The time overhead is
negligible in the overall process. To evaluate the convergence
speed of mask updates with and without pattern matching, we
conducted ten cases after inserting 800 patterns into the pattern
library. The results in Fig. 10 demonstrate that the average
number of iterations required for mask convergence can be
significantly reduced by 93.6% when pattern matching is
employed.

The performance gain from the post-calibration stage is
listed in the last three columns on the right in Table II.
We set our SOTA baseline as AdaOPC [33] with match-
ing algorithm updated to the latest 2024 version of
Faiss [36].
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Fig. 10. Convergence speed of mask optimization with and without pattern matching. In order to clearly demonstrate the acceleration ratio, we normalized
the time of mask optimization without pattern matching to 1. During optimization without pattern matching, the initial state of the mask was not calibrated.
In the case of optimization with pattern matching, we utilized the calibrated mask as the initial state.

TABLE II
COMPARISONS OF BASELINE APPROACHES

TABLE III
ABLATIVE STUDY ON ERM AUGMENTATION

We can tell that the average EPE error is 23.9 with the help
of halo weight filtering on the loss during the final restoration
process, which is even further 4% reduced from the result
of conference from SOTA baseline. Table III is the ablative
study on the solver selection accuracy with or without the data
augmentation with ERM objective. The accuracy is improved
from 98.1% to 99.8%. The error rate is reduced by 89%. With
our newly implemented GPU-efficient lithography system and
ILT process, the overall runtime is reduced by 52% compared
to the conference version.

Finally, to evaluate the overall performance of our AdaOPC
framework, we compared it with two baseline methods used
for critical and noncritical patterns in different branches. After
inserting 800 patterns with optimized masks into the pattern
library, we randomly tested ten patterns. The results in Table II
demonstrate that AdaOPC achieves comparable performance
in terms of EPE and PV Band when compared to the ILT-
GPU approach, but with a remarkable 20× acceleration and
no loss in accuracy. Furthermore, compared to DAMO-DMG
with 1 round of lithography verification, AdaOPC exhibits
significantly superior performance while maintaining compa-
rable speed. It is important to note that, in our case, the

embedding vector dimension is 256. As indicated in Table I,
even with the pattern library expanded to include 10 000
patterns, the matching time remains around 0.2 s, which is
marginal compared to the overall OPC process time shown
in Table II. In summary, the AdaOPC framework achieves a
dual optimization of performance and speed, outperforming
the baseline methods in accuracy and efficiency.

VIII. CONCLUSION

In this research paper, we introduced a self-adaptive OPC
framework tailored for mask optimization in real designs.
The framework leverages a comprehensive analysis of the
design’s characteristics. We proposed an extensible OPC solver
selector that intelligently chooses an appropriate solver based
on pattern complexity. Furthermore, we developed a dynamic
pattern library that enables the reuse of optimized masks for
repeating patterns with identical geometric shapes. To facilitate
efficient pattern matching, we employed supervised contrastive
learning to embed patterns into vectors. Additionally, we
devised a graph-based search strategy to accelerate the pattern
matching process. Furthermore, we validated the reusability
of masks by demonstrating the pattern shift equivariance
property. We also introduced a practical shift calibration tool
to address any shifts that may occur. In addition to the
conference version, we also add a halo-weighting strategy to
conquer the sizing problem in via-layer. Through extensive
experiments, we demonstrated that our framework achieves a
co-optimization of OPC speed and robustness for real design
patterns.
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