L)

Check for
updates

A High-Performance Accelerator for Real-Time
Super-Resolution on Edge FPGAs

HONGDUO LIU, The Chinese University of Hong Kong, Hong Kong, China
YIJIAN QIAN, SmartMore, Shenzhen, China

YOUQIANG LIANG, SmartMore, Shenzhen, China

BIN ZHANG, SmartMore, Shenzhen, China

ZHAOHAN LIU, SmartMore, Shenzhen, China

TAO HE, SmartMore, Shenzhen, China

WENQIAN ZHAOQ, The Chinese University of Hong Kong, Hong Kong, China
JIANGBO LU, SmartMore, Shenzhen, China

BEI YU, The Chinese University of Hong Kong, Hong Kong, China

In the digital era, the prevalence of low-quality images contrasts with the widespread use of high-definition
displays, primarily due to low-resolution cameras and compression technologies. Image super-resolution (SR)
techniques, particularly those leveraging deep learning, aim to enhance these images for high-definition pre-
sentation. However, real-time execution of deep neural network (DNN)-based SR methods at the edge poses
challenges due to their high computational and storage requirements. To address this, field-programmable
gate arrays (FPGAs) have emerged as a promising platform, offering flexibility, programmability, and adapt-
ability to evolving models. Previous FPGA-based SR solutions have focused on reducing computational and
memory costs through aggressive simplification techniques, often sacrificing the quality of the reconstructed
images. This paper introduces a novel SR network specifically designed for edge applications, which main-
tains reconstruction performance while managing computation costs effectively. Additionally, we propose
an architectural design that enables the real-time and end-to-end inference of the proposed SR network on
embedded FPGAs. Our key contributions include a tailored SR algorithm optimized for embedded FPGAs, a
DSP-enhanced design that achieves a significant four-fold speedup, a novel scalable cache strategy for han-
dling large feature maps, optimization of DSP cascade consumption, and a constraint optimization approach
for resource allocation. Experimental results demonstrate that our FPGA-specific accelerator surpasses exist-
ing solutions, delivering superior throughput, energy efficiency, and image quality.

CCS Concepts: « Computer systems organization — Embedded hardware;

Additional Key Words and Phrases: FPGA, Super-Resolution, Real-time System

This work is supported in part by Shenzhen Science and Technology Program (No. KQTD20210811090149095).

Authors’ addresses: H. Liu and B. Yu (Corresponding author), Rm 905, Ho Sin Hang Engineering Building, The Chi-
nese University of Hong Kong, Shatin, Hong Kong SAR; e-mails: hdliu21@cse.cuhk.edu.hk, byu@cse.cuhk.edu.hk;
W. Zhao, Rm 122, Ho Sin Hang Engineering Building, The Chinese University of Hong Kong, Shatin, Hong Kong
SAR; e-mail: wqzhao@cse.cuhk.eduhk; Y. Qian, Y. Liang, B. Zhang, Z. Liu, T. He, and]J. Lu (Corresponding author),
Rm 2201, Tower 2, Qianhai Kerry Center, Nanshan District, Shenzhen, Guangdong Province, China; e-mails: yijian.qian@
smartmore.com, yougiangliang@smartmore.com, bin.zhang@smartmore.com, zhaohanliu@smartmore.com, tao.he@
smartmore.com, jlangbo@smartmore.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1084-4309/2024/05-ART53

https://doi.org/10.1145/3652855

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

https://orcid.org/0000-0001-7291-3712
https://orcid.org/0000-0002-3687-8590
https://orcid.org/0009-0002-2646-7808
https://orcid.org/0009-0008-4426-8347
https://orcid.org/0009-0000-8310-2616
https://orcid.org/0000-0002-2946-4541
https://orcid.org/0000-0001-9501-9254
https://orcid.org/0000-0002-0048-3140
https://orcid.org/0000-0001-6406-4810
mailto:permissions@acm.org
https://doi.org/10.1145/3652855
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652855&domain=pdf&date_stamp=2024-05-03

53:2 H. Liu et al.

ACM Reference Format:

Hongduo Liu, Yijian Qian, Youqiang Liang, Bin Zhang, Zhaohan Liu, Tao He, Wengian Zhao, Jiangbo Lu,
and Bei Yu. 2024. A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs. ACM
Trans. Des. Autom. Electron. Syst. 29, 3, Article 53 (May 2024), 25 pages. https://doi.org/10.1145/3652855

1 INTRODUCTION

Since the onset of the digital era, high-definition display panels have become increasingly preva-
lent in our daily lives, encompassing TV sets and PC monitors. Unfortunately, the usage of low-
resolution cameras and compression technologies still results in a large amount of poor-quality
images. To address this issue, image super-resolution (SR) techniques have been developed to
enhance low-resolution (LR) images and make them better suited for high-definition displays.
In recent years, the emergence of deep learning has further propelled the advancements in SR,
with Deep Neural Network (DNN)-based methods [1-5] achieving superior reconstruction per-
formance on various SR benchmarks. However, these methods often entail high computational
and storage complexity. While real-time SR can be readily achieved in data centers equipped with
high-performance cloud GPUs, performing SR at the edge presents significant challenges due to
constrained hardware resources and power limitations.

FPGA-based solutions have emerged as an appealing choice when considering the hardware
implementation of DNN-based SR algorithms at the edge. FPGAs provide enhanced flexibility
in terms of data flow and data types compared to GPUs. Additionally, FPGAs offer greater pro-
grammability and shorter development time than ASICs, making them well-suited for handling
rapidly evolving models. Previous FPGA-based SR accelerators have employed various techniques
to bypass the huge computational and memory costs of DNN-based SR algorithms. He et al. [6]
proposed a method that involved partitioning each input frame into blocks and dispatching them
to either a neural network or an interpolation module for scaling, depending on the block’s vari-
ation values. However, since some blocks were only processed using interpolation, the resulting
high-resolution (HR) images exhibited lower quality than those fully processed by the SR net-
work. Kim et al. [7] introduced a novel SR method that performs LR input frame processing line
by line using 1D convolution. While this approach significantly reduced the memory footprint,
the limited receptive field of 1D convolution also constrained the overall SR performance. Chang
et al. [8] implemented a more lightweight version of FSRCNN on FPGA by transforming the de-
convolutional layer into a convolutional layer. However, due to its compressed nature compared
to the original FSRCNN, the SR performance suffered a degradation.

In this paper, we have enhanced the reconstruction quality of FPGA-based SR accelerators from
two fundamental aspects. First, we introduce a novel SR network capable of generating higher-
quality HR images compared to previous lightweight SR networks, maintaining analogous compu-
tation costs. Second, rather than adopting aggressive simplification techniques that can severely
impact reconstruction quality, we propose a novel architectural design that efficiently handles the
immense computation and memory requirements of DNN-based SR algorithms. By tackling these
challenges head-on, our work enables high-quality SR without compromising the integrity of the
reconstructed images. The contributions of this work are listed as follows.

— We propose a new SR algorithm considering the constraints of embedded FPGAs. It can
achieve better reconstruction performance than previous lightweight SR models with similar
computation costs.

— We propose a DSP usage to enable 4x speedup compared with traditional design and a novel
cache strategy to tackle the extremely large feature maps in DNN-based SR models. The
cache strategy is scalable to different input sizes and can effectively handle stride 1 and

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

https://doi.org/10.1145/3652855

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:3

stride 2 convolution. Our cache strategy can consistently transfer data to the convolution
engine without stalling the computation.

— For the first time, we explore the cascade of DSPs to optimize the consumption of FFs and
LUTs. We construct a tree structure to capture the behavior of connected DSP blocks and
build an analytical model to inspect the resource utilization of the most basic computation
units based on the tree structure. We also propose an efficient search algorithm to discover
Pareto optimal designs in an exponentially increasing search space.

— Given the well-defined dataflow, various hardware components’ latency and resource re-
quirements can be clearly inferred using the design parameters. Then, we formulate the
resource allocation issue as a constraint optimization problem, considering DSP and band-
width constraints. By solving the optimization problem, we can obtain an optimized hard-
ware configuration to maximize throughput.

— Our accelerator, designed specifically for embedded FPGAs, outperforms commercial GPU,
FPGA, and Al chip solutions in terms of both throughput and energy efficiency. Additionally,
it surpasses existing SR accelerators on FPGAs by delivering higher-quality HR images.

The remainder of this paper is organized as follows. Section 2 provides some preliminaries re-
garding SR and the design motivations of our accelerator. Section 3 details the architecture of
our SR accelerator. In Section 4, we illustrate the design of building blocks for computation en-
gines. Section 5 presents the resource allocation scheme of our accelerator to maximize throughput.
Section 6 gives the evaluation results and comparisons with other state-of-the-art (SOTA) im-
plementations. Section 7 concludes the paper and illustrates our future work.

2 BACKGROUND

In this section, we begin by introducing the concept of super-resolution and highlighting its wide
range of applications. We then proceed to present our newly proposed super-resolution network,
providing an overview of its key components and architecture. The network has been meticulously
designed, taking into account both super-resolution quality and hardware resources. Next, we
delve into the intricate design challenges that arise when implementing the network end-to-end
on an embedded FPGA. We discuss the complexities involved and the considerations that need to
be taken into account. Lastly, we summarize the fundamental principles that guide the design of
our accelerator. These principles encompass the computation scheme, data communication, and
dataflow of our proposed SR network. Through hardware-software co-optimization, we ensure an
optimal balance between performance and efficiency.

2.1 Super-Resolution and Its Applications

Image super-resolution (SR) is a fundamental task in computer vision that aims to reconstruct
high-resolution (HR) images from their corresponding low-resolution (LR) counterparts. It finds
extensive applications in various domains, including satellite imaging [9], surveillance [10, 11], and
medical imaging [12-14]. While SR can be performed on devices with rich computing resources,
such as desktops or PCs, there is also a growing need for SR at the edge, closer to end users. One
such scenario involves embedding super-resolution engines into video players to enhance the qual-
ity of low-resolution archives, like old movies and self-filmed videos. Additionally, embedded SR
accelerators have the potential to enhance the Quality of Experience (QoE) for online video sub-
scribers. SR has been widely adopted in internet video streaming systems, with approaches like
NAS [15] and SRAVS [16] integrating SR engines at the client side to improve video quality, par-
ticularly in poor network conditions. This paper primarily focuses on facilitating edge-based SR.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:4 H. Liu et al.

2.2 Adaptive Filter-Based Super-Resolution

Super-resolution has been a prominent area of research in computer vision and signal processing
for several decades. While traditional interpolation-based techniques such as bicubic interpola-
tion are simple and efficient, they struggle to restore fine details in images. In recent years, deep
learning approaches have gained traction by leveraging the statistical relationships between LR
and HR images. One notable deep learning model, SRCNN [17], employs a deep convolutional
neural network to learn an end-to-end mapping between bicubic interpolated images and HR im-
ages. Another model, FSRCNN [18], introduces a deconvolution layer as the final layer, enabling
direct upsampling from the original low-resolution image. To further address the computational
and memory overhead of deconvolution, ESPCN introduced a sub-pixel convolution technique,
specifically pixelshuffle, as the primary upsampling method. ESPCN utilizes convolutional layers
to extract features and then applies sub-pixel convolution to increase spatial resolution. Addition-
ally, VSDR [19] demonstrates that increasing network depth significantly improves SR quality.
Furthermore, SRGAN [20] treats SR as an image generation problem and leverages adversarial
and content loss within a generative adversarial network to produce highly realistic images.

Although deep learning-based SR achieves superior performance than conventional algorithms.
Stacking deeper layers often demands substantial computational resources, making them imprac-
tical for embedded applications. To address this, adaptive filter-based methods, as suggested by
[21, 22], offer a solution. These methods reduce computational demands while still providing high-
quality SR results. They involve three main stages: interpolation, filter generation, and filtering.
In the interpolation phase, bilinear or bicubic interpolation techniques are employed to obtain
up-sampled images. The filter generation phase focuses on learning the relative importance of
neighboring elements. Finally, the filtering stage enhances the quality of cost-effective up-sampled
images.

2.3 Network Architecture of Proposed SR Network

As adaptive filter-based methods demonstrate a balance between computation demands and super-
resolution performance. Our proposed super-resolution network builds upon the foundations of
LAPAR [24], one of the leading methods in this field. Despite LAPAR’s impressive state-of-the-art
performance, even its most lightweight version (LAPAR-C) falls short of achieving real-time per-
formance (> 25fps) on an embedded FPGA. To address this limitation, we have simplified LAPAR to
make it highly suitable for embedded applications. Initially, our approach involves selectively re-
taining essential operators such as convolution, pixelshuffle, and Einstein summation (einsum).
This strategy helps us to minimize design efforts and enables maximal hardware component reuse,
thereby enhancing efficiency. Secondly, we strategically omit certain layers from our model to sig-
nificantly reduce computational demand. This step is critical in optimizing performance without
compromising the core functionality of the network. Furthermore, we streamline the entire net-
work architecture by eliminating some residual connections. This simplification not only reduces
complexity but also aids in unifying the data flow within the accelerator. These modifications col-
lectively ensure a more efficient and cohesive operation of our super-resolution network, striking
a balance between performance and hardware resource utilization. In Figure 1, we present perfor-
mance comparisons of various DNN-based SR models. LAPAR-A, LAPAR-B, and LAPAR-C corre-
spond to different versions of LAPAR with varying network sizes and complexities, as proposed
in the original paper. Additionally, we introduce “Ours,” which represents our newly developed
SR network based on LAPAR. The results demonstrate that LAPAR networks achieve superior SR
quality with less computational cost. Notably, our SR network produces higher quality HR images
with similar computation overhead compared to FSRCNN [18] and MoreMNAS-C [25].

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:5

38.0 _#LAPAR-A
_wrtRParp oSelNet
37.8 -
e SRFBN:S
a #TAPAR-C
[an] A
S 37.61 L
z - CARN-M
o 7 LapSRN VDSR
Z 37.41 e
a ’r’
3721 #Ours
MoreMNAS-C
37.04 oFSRCNN
10 100 1000

MAC Operations (G)

Fig. 1. Comparison between different DNN-based SR networks on Set5 [23] for X2 setting. MAC represents
the count of multiply-accumulate operations required to obtain the HR images. Peak signal-to-noise Ratio
(PSNR) is a commonly used metric to evaluate the quality of generated HR images.

Filter Generation

Concat

T
g
£
7}

O]
B
=9

| Bilinear Il

Fig. 2. Adaptive filter based SR.

Figure 2 illustrates the architecture of our proposed SR network, which is an adaptive filter-
based SR algorithm that has been refined from LAPAR [24]. The filter generation phase comprises
multiple convolutional layers, with the first 3 X 3 convolution having a stride of 2, while the subse-
quent convolutions employ a stride of 1. In the filtering phase, we incorporate a convolutional layer
to extract features from the interpolated image, and we utilize an einsum operator for calibration,
which involves reshaping the filters prior to the calibration process.

2.4 Design Challenges

In recent years, we have witnessed significant improvements on accelerating image classifica-
tion [26-29], object detection [30-33] and speech recognition [34-36] tasks on FPGAs. However,
few works are targeting the SR problem. SR models are very different from the networks men-
tioned above. They take in a high-dimensional input and give out a larger feature map. This up-
sampling procedure indicates a larger memory footprint and more intensive computation. Figure 3
illustrates the computation complexity and memory footprint comparison between our target SR
network and some famous classification networks. We use Giga Operations (GOP) to evaluate
the required operations and the sum of feature map size to evaluate the memory footprint of a
network. The input size of our SR network is 540 X 960, while the input size for other networks is
224 x 224. Although our SR network is no deeper than most classification networks, much larger

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:6 H. Liu et al.

| | |
C_—JMemory Footprint [MB]
[Required Operations [GOP]

- = b ﬂ % N

1
esc)Q GC’\'\ 60\‘5 O‘)‘s

&
N
Fig. 3. Computation complexity and memory footprint comparison between our SR network and some fa-
mous classification networks.

feature maps inevitably incur higher total computation and communication complexity. In classi-
fication and detection tasks, rescaling the input images does not harm the accuracy much when
dealing with high-resolution images. While in SR tasks, it is not practicable to reduce computa-
tion by resizing. Moreover, the model structure, dataflow, and operators of SR models are distinct
from well-studied neural networks. We need specialized optimization to accomplish the objective
of real-time inference, especially in an embedded system.

2.5 Design Principles

The roofline model [37, 38] suggests that the actual performance of a system can be constrained
by either the computation roof or the communication to computation ratio. Regarding computa-
tion, the number of DSPs on embedded FPGAs is severely limited, posing difficulties in construct-
ing high-performance compute engines since most computations heavily rely on DSPs. In terms
of communication, managing large feature maps becomes challenging due to restricted on-chip
memory and limited bandwidth. These factors can impede efficient data transfer and exacerbate
the communication bottleneck. To address the demands of handling large feature maps and inten-
sive computation workloads, we optimize our accelerator from the following three aspects.

Computation. Firstly, we consider improving the maximum attainable performance. Generally,
the attainable performance of each DSP depends on the number of operations finished per cycle
and working frequency [39], as shown in the following equation:

#Operations

Performance Per DSP = X Frequency. (1)

#Cycles

Therefore, we should both consider fully leveraging the potential of DSPs and improving the work-
ing frequency. To increase operations finished per cycle, we refer to the DSP usage listed in [40]
with a slight modification. For the purpose of improving frequency, we consider two policies. One
is to let DSPs run at a clock rate that is two times higher than the system clock. Another is to
optimize resource usage to ease timing closure. The compute engines are, in fact, the cascade of
DSPs. However, we need to incorporate LUTs and FFs to ensure accurate timing when designing
the compute engines. There are different ways to organize the connection of DSPs. As we use most
of the DSPs to meet the real-time requirement, minimizing the usage of FFs and LUTs is essential
to guarantee high frequency. It is tedious and time-consuming to search for the optimal design by
trial and error. Therefore, we propose an analytical model to search for the Pareto frontier designs.

Data Communication. A well-designed computing engine is not sufficient because the ac-
tual performance can also be bounded by data communication. Given restricted on-chip memory
and bandwidth, we propose a novel cache strategy to handle intensive memory traffic. Our cache

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:7

3 x 3 Conv Engine

Partial Sum
Memory 17| AX!
- Out Fmap) T 1
| Buffer | | LReLU |
Interpolated Image
Buffer > 5 x 5 Conv Engine
Adaptive Filters
Buffer > Einsum Engine
Buffer |« I
t Output Image

’ CPU ‘<_4,< Controller

Fig. 4. Architecture of our SR accelerator.

Programmable Logic

strategy can deal with different strides and is scalable to very large input images. Also, the memory
hierarchy efficiently explores the data reuse of input feature maps, convolution kernels, and partial
sums to save power. Moreover, the cache strategy can continuously provide data for computation
engines without stalling arithmetic operations.

System Level Optimization. We have designed the architecture of our SR network to suit
its unique operations and data flow, which differ significantly from those of conventional classifi-
cation and detection networks. As a result, we can fully exploit the computation and data reuse
patterns specific to our network. In order to make the most of limited resources, we have developed
a resource allocation scheme that involves solving a constraint optimization problem.

3 ACCELERATOR ARCHITECTURE

Figure 4 provides the sketch of our SR accelerator. The architecture is consistent with the network
structure in Figure 2. We only show the main components of the 3 X 3 convolution engine because
the structure of the 5 5 convolution engine is similar. For the 1 X 1 convolution, the kernel is zero-
padded to 3 X 3 to eliminate additional hardware support. Before convolution, the weights are pre-
fetched to on-chip buffers and stay stationary for further access. Layout trans unit is responsible
for preparing data for convolution, and we will illustrate the details of its mechanism in Section 3.2.
If a large feature map is split into multiple chunks, storing partial sums to DRAM temporarily and
reading them back for accumulation is needed. The controller will decide to accumulate partial
sums or biases through a mux.

Firstly, we rely on the 3 X 3 convolution engine to generate adaptive filters. Then, 5 X 5 convolu-
tion engine and einsum engine work simultaneously to generate the final HR images. To be more
specific, the output of 5 X 5 convolution engine is fed into the einsum engine directly. Once the
einsum engine receives data from the 5 X 5 convolution engine, filters generated in the first phase
are read from DRAM to perform computation, and the HR image is generated gradually. Although
there is no data dependency between 3 X 3 convolution and 5 X 5 convolution, they are processed
separately because the limited bandwidth cannot support concurrent computing.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:8 H. Liu et al.

- Filters
Dot Product Engine
Dot Product Engine

I
N
1NN
N

¥ V
Dot Product Engine J Input Feature Map 3 b q
0%
44 .
Dot Product Engine :| f , 71 :
q | 32
. :| _______ 3P
- G
Dot Product Engine P 3 H P 4 4 -’
. 3, %
A ’ 3LV
3 P

Dot Product Engine T/ /]

Dot Product Engine L

I.-.:|I
©
|
|
|
|
|
o
o
|
|
|
|
|

d 7
Dot Product Engine

Tensor A

Tensor B

Fig. 6. Stack of DPEs in Einsum Engine.

3.1 Convolution Engine and Einsum Engine

In our SR accelerator, we build a Dot Product Engine (DPE) to compute the dot product of two
vectors a = [ay,a,...,am] and b = [by, by, ..., by]:

a b= aib; = arby + ashy + -+ + ambp. @)
i=1

Consider the convolution operation

O[n, k, h,w] = ZZJ[n,y,h+r,w+s]XiK[k,y, r,s], (3)

y rs

where 0,7, X denote the output tensor, input tensor, and convolution kernels, respectively. The
einsum operation between two tensors with summation convention “nchw,nchw—nhw” can be
expressed as

Dln, h,w] = Zﬁ[n, ¢, h,w] X B[n,c, h, w], (4)

where A, B are two input tensors and D is the output tensor. From Equation (3) and Equation (4)
we can see that convolution and einsum can be factorized into multiple dot product operations.
For example, when r = s = 3 in Equation (3), the inner summation can be seen as the dot product
between two vectors with size 9. Based on the above analysis, we use DPEs as building blocks to
construct the convolution engine and einsum engine.

Figure 5 illustrates how DPE is stacked to form the 3 X 3 convolution engine. The processing
array is divided into p slices, and each slice contains ¢ DPEs. Within a slice, ¢ DPEs handle the
convolution between a specific channel of the input feature map with g convolution kernels simul-
taneously. Similarly, p slices process p input channels at the same time. In other words, p can be
seen as the input channel parallel factor and q can be seen as the kernel parallel factor.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:9

20 10 00
0001 [02[03]04]05 21 1 01
101 f2]13f14]15 2 12 2 Ty
Cyclez |20]21]22]23]24]25 23 13 03 0201 |oo
- il R el I el
30|31 [32[33]3]35| Jo4 14 04 12| 11|10
\ / 15 05 222120
\ 7 o L L
\N_7 .
BM_1 BM_2 BM_3
00|01 [02[03]04]05 20 10 00
wo|ulfsfufs| 5 Gl (ol
le z+1 1 [—1 -~
Cycle 20 (2122 23] 24 2‘5 2 12 02 I/ ‘o
3031|32]33[34]as 23 13 03 03|02 o1
! 2] 2] [os 13|2fn
DDR (N il I Rl el
~-» 25 15 05 B2

Shift Registers

Fig. 7. Cache strategy for stride 1 convolution.

Figure 6 represents the structure of einsum engine when ¢ = 8 in Equation (4). v DPEs can
consume 8v data points from each input tensor and produce v data points every cycle.

3.2 Cache Strategy of Convolution

DNN-based super-resolution networks typically operate on input feature maps that are consider-
ably larger than those used in traditional classification and object detection tasks. Additionally, SR
algorithms seek to generate high-resolution images, which results in even larger intermediate fea-
ture maps during the model inference process. This can create a bottleneck in the overall system
due to limited bandwidth and intensive communication between on-chip and off-chip memory,
highlighting the need for an efficient cache strategy to mitigate this issue. To tackle the intense
data communication in our SR network, we propose a novel row-buffer-based cache scheme with-
out stalling the convolution engine. Although some previous works also use row/column-based
cache strategy, our revised cache scheme can handle different stride sizes effectively. Moreover, we
will show that this cache strategy is scalable to large input images given today’s BRAM features.
Flexibility. Figure 7 shows the input feature map cache strategy of 3 X 3 convolution when
stride is 1. The three buffers indicate three individual BRAM modules on the FPGA board, and
different BRAM models are used to cache different row data from the input feature map. When
we fetch data from the three buffers using the same address, acquired data points are exactly
from the same column in the feature map. Then, the three data points move to an array of shift
registers to rearrange the data layout. This caching scheme enables us to write one data point to
the on-chip buffers but read three data points from the on-chip buffers every cycle. After all three
BRAMs are filled, the data in the first BRAM becomes out of date, and new data from DRAM can be
written into this BRAM. Therefore, when reading from the buffers, there are three states because
the latest data can be either in BRAM_1, BRAM_2, or BRAM_3. Thanks to the shift registers, data
points can be reused by different sliding windows of convolution. We can significantly reduce the
communication traffic between off-chip and on-chip memory. By replacing the oldest data with the
newest data, we can utilize on-chip memory effectively. Moreover, as data fetch, computing and
data writeback are working simultaneously, the execution time of convolution will overshadow
the time spent on data transfer. For 5 X 5 convolution, we only need to increase the number of
BRAMs to five. Figure 8 illustrates the cache strategy of 3x convolution when stride is 2. Instead
of placing a whole row of input feature map into a single BRAM, data from one row is put into
two BRAMs alternately. For instance, “00, 01” is written into BRAM_1 while “02, 03” is written

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:10 H. Liu et al.

00 f01]02]03|0405(06]07 40 | 41| [30]31 20 | 21 10| 11 00 | o1 '-‘
0]1f12113)14f15)16)17 42|43 223 32033 02|03 12|13 03021 o1
Cyclez |20f21]22]23|24]25)26)27 4 3435 24|25 14|15 04|05 R -
30]31|32[33]34]35]36]37
Y 26|27 3637 06 | 07 16|17 B 20
40(41]42]143]44[45(46)147| 38|39 28129 18 [19 08 [09
\\ /,
-~ -
——__- N
’ \\
/
00 o1 [02]03]|04(05]06|07 40 41| | 3031 2021 101 00 for| , ¥
1
|1 f12]13]14f15]16]17 42|43 22123 32133 0203 121131 0504 [03
20|21]22|23 2425|2627 44 (45| |34]35 24125 1415 0405 15] 1413
Cycle z+1 |30 | 31323334]35]36(37 46 | 47 26(27 36 {37 0607 16 {17 25 (2423
40 | 414243 | 44|45 46|47 3 38139 28129 18119 08 [09 . .
N , Shift Registers
Ay 4 :
< .
_f/
DDR BM 6 BMS5S BM4 BM3 BM2 BM.I

Fig. 8. Cache strategy for stride 2 convolution.

into BRAM_2. When reading from BRAMs, data points from two adjacent columns are pushed
into the shift registers every cycle. Similarly, the data out of data can be replaced by new data to
save BRAM consumption.

Scalability. We also analyze the scalability of our cache scheme. Considering one BRAM on
UltraScale+ architecture, it is capable of storing up to 36K data and can be configured as two
independent 18 Kb RAMs. Assuming an input image dimension of 1 X H X W and a bit width of
8, the BRAM in Figure 8 would require a bit width of 16 and a depth of W/2. This means that a
single 18 Kb RAM can meet the requirement as long as W is less than or equal to 2048, and a total
of three 36 Kb RAMs would be needed. After the stride 2 convolution, the width reduces to W/2,
allowing one 18 Kb RAM to cache two channels. Therefore, to cache a C x % X % feature map, we
would need % 36 Kb RAMs.

4 OPTIMIZATION OF DPE

The efficiency of DPEs is a crucial factor in achieving real-time performance for our SR accelerator,
as we stack multiple DPEs to build Convolution Engine and Einsum engine. Moreover, the resource
consumption of DPE significantly affects overall resource utilization, which in turn impacts the
attainable frequency. This section will explore how to find a DPE topology that minimizes resource
utilization and an architectural design methodology that enables high throughput.

4.1 DPE Topology Generation

This subsection will discuss how to organize the connections between DSPs to construct DPE.
Firstly, we propose a data structure to characterize the DSP cascade. After that, we present a search
algorithm to explore the optimal DPE structure with the least resource consumption.

DPE Topology Abstraction. Equation (2) shows that the dot product of two vectors is composed
of a series of multiply-accumulate (MAC) operations. By configuration, one DSP on FPGA fab-
ric can be used as a MAC unit, and cascaded DSPs can serve as a DPE. To accumulate partial sum
correctly, incorporating LUT-based adders may be needed. Furthermore, registers are indispens-
able to ensure signals arrive at the input ports of DSP at the right cycle. There are multiple feasible
organizations, and different organizations of DSPs may induce different resource utilization of
FFs and LUTs. For instance, Figure 9(a) shows two different ways to organize the connection of 5
DSPs. The left-side organization consumes no LUT-based adders but consumes more shift registers
to cache the input signal than the right-side organization. It is tedious and error-prone to search

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:11

OAdder
[CJRegister

g DSP

D
U

S
585y

© OO

Fig. 9. (a) Two ways to organize DSP cascades; (b) Corresponding ABDTree representations.

Table 1. Notations of ABDTree

Notation Explanation

t An ABDTree.

Ci The set of ABDTrees rooted at i.

fo(t) The number of leaf nodes noted by 0 in t.
fa(t) The number of adders in corresponding DPE.
fr(®) The height of ¢.

fp(t) The imbalance degree of ABDTree ¢.

DSP organizations directly. We need an efficient way to encode DSP connections to search for a
DPE structure that minimizes FFs and LUTs usage. A dot product can be seen as the summation
of two dot products with more minor scales. Intuitively, we use a binary tree-like data structure
to represent the DSP organization. For example, Figure 9(b) shows the tree abstractions of the two
DSP organizations in Figure 9(a). Nodes in the tree represent partial sums, and the digit indicates
how many products have been accumulated. The leaf node marked by 1 denotes the product a;b;
for some i, and the root node marked by 5 denotes the result of @ - b when m = 5 in Equation (2).
To better illustrate the abstraction and search process, we provide some definitions regarding this
abstraction.

Definition 1 (Adder-Buffer-DSP Tree (ABDTree)). A tree that abstracts the connection among LUT-
based adders, registers, and DSPs in a DPE.

Definition 2 (Imbalance degree of an ABDTree). The sum of the height difference between the
left child and right child of all none-leaf nodes.

We take the second ABDTree in Figure 9(b) as an example. The height difference between the
left child and the right child of node 5 is 1, which is 2 for node 3. Therefore, the imbalance degree
of this ABDTreeis1+2+1+1=5.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:12 H. Liu et al.

Table 1 lists notations and explanations used in our search procedure. Like a traditional binary
tree, we can build up a larger ABDTree by connecting two smaller subtrees. If t; € C, and t; € Cy,
we can build an ABDTree ¢ € Cy, that satisfies the following equations.

Jo(t) = fo(tr) + fo(t2). ®)
fa(t) = folt) - 1. (6)
Ju(t) = max (fa(t1), fu(t2)) + 1. ™)
Jo®) = fio(t) + fo(t2) + | fu(t) — fr(t2)l. ®)

Equation (5) shows that the number of leaf nodes marked by 0 in an ABDTree is the sum of such
nodes in the left subtree and right subtree. We can obtain the number of LUT-based adders in a
DPE by observing the number of nodes marked by 0 in its corresponding ABDTree. As shown
in Equation (2), the dot product of two vectors with length n requires n multiplications and n — 1
additions. Adding a zero to the dot product requires one more adder. As every DSP contributes one
adder and one multiplier, adding a zero is penalized with a LUT-based adder except for the first
time. That’s the intuition that we get Equation (6). Equation (7) means constructing an ABDTree
from two subtrees will increase height by 1. Equation (8) indicates that the imbalance degree of
an ABDTree comes from the imbalance degree of its left subtree, its right subtree, and the height
difference between its left subtree and right subtree. The imbalance degree of ABDTree ¢ reflects
the number of registers used in the DSP organization that can be represented by ¢. By now, we
have shown how the resource consumption of a DPE can be inferred from its corresponding AB-
DTree. To discover DPEs that consume fewer hardware resources, we need to define what kinds
of ABDTrees are better than others.

Definition 3 (Pareto Dominance). An ABDTree t; is said to dominate another ABDTree t; rooted
at same number iif f;(¢;) < f7(t;), V7 € {a,b} and 37 € {a, b} such that f;(t;) < f-(t)).

Definition 4 (Pareto Optimality). An ABDTree is said to be Pareto optimal if there is no other
ABDTree rooted at the same number that could dominate this ABDTree. Note that we define Pareto
Dominance and Pareto Optimality within ABDTrees rooted at the same number.

The height of an ABDTree tree is not taken into account when defining Pareto dominance,
despite the fact that the tree’s height reflects the end-to-end latency of its corresponding DPE.
This is because DPEs operate in a pipelined manner, then latency does not accumulate when the
computation is continuously performed in the DPEs.

We perceive that the mapping between a DSP organization and its corresponding ABDTree is
invertible. Therefore, the optimal DPE topology generation problem is equal to finding the corre-
sponding ABDTrees that are Pareto Optimal.

Problem 1 (Optimal DPE Topology Generation). Given the number of DSPs in a DPE n, optimal
DPE topology generation can be formulated to construct Pareto optimal ABDTrees rooted at n.

DPE Topology Generation Algorithm. Directly exploring ABDTrees is impractical because
it requires storing all ABDTrees generated during the search process. Instead, we can decou-
ple the search process and tree construction process. During the search process, only the at-
tributes of ABDTrees and their construction details are recorded. Specifically, we use a tuple
(fos fn» fo.left, right) consisting of five elements to describe an ABDTree. The interpretations of
fo, fn, and f} are the same as that in Table 1, while left and right are pointers to the attributes of
the left and right subtrees. Algorithm 1 illustrates the optimal DPE topology generation algorithm.
We maintain a bucket to store the attributes of ABDTree rooted at the same number. Initially,
we initialize bucket; and bucket,. Then, we explore the properties of ABDTrees with larger and

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:13

(1, 1,0, null, null)

(0,0,0, null, null)

T
X
X
x X
X
30 - x % o
X
* x N §
4 x M
) o X
5 20 % % « o
% * X x
5} x X X
X X X X
10 © X x x b4 x *
o] X X X X
o] X X X
O
5 & 3
O
0 | | | |
0 2 4 6 8
Adders #

Fig. 11. Pareto frontier of DPE design.

larger size though SearchABDTree function. Lines 20-21 indicate that the number of DSP cascaded
is limited. For example, if we use 8-bit precision, Cy,4x is set to 7 [40]. After that, we prune these
non-optimal ABDTrees by comparing the f,, fj, and fp. Finally, we can construct a Pareto optimal
ABDTree via ConstructABDTree function. Figure 10 shows an example of building buckets though
bucket; and bucket,. An ABDTree and its corresponding attributes are the same color.

We observe that the generation algorithm can produce many DPE topologies with the same
resource utilization, which could increase the search space exponentially as DPE size increases.
When search space compression is enabled, we only add DPE topologies with different resource
consumption to the solution pool. Figure 11 demonstrates the Pareto frontier when n = 9 and
Cmax = 3. The red points denote Pareto optimal designs, and the green points represent non-Pareto
optimal designs. These Pareto optimal designs achieve a tradeoff between LUT and FF consump-
tions so that we may choose corresponding DPE topology based on accessible sources for different
FPGA boards.

4.2 DPE Architectural Design

This subsection introduces the architectural design of DPEs in the Convolution Engine and Einsum
Engine to fully release the potential of DSPs.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:14 H. Liu et al.

ALGORITHM 1: Optimal DPE Topologies Generation Algorithm

Input: n: the number of DSPs in a DPE; Cp,4x: the maximum number of cascaded DSPs allowed.
Output: Pareto optimal DSP organizations.
1: Init bucket; «— {(0,0, 0, null, null)(1, 1,0, null, null)};

2: Init buckety «— {(1, 2, 1, null, null)(2, 2, 0, null, null)};
3: fori « 3tondo
4: bucket; «— 0;
5: forj « 1to L%J do
6: C’ « SearchABDTree(i,i — j);
7: bucket; < bucket; U C’;
8: end for
9: end for
10: Prune none-optimal ABDTrees in buckety;
11: for each T € bucket, do
12: BuildaBDTree(T);
13: end for
14: function SearchABDTree (i,j)
15: C' 0
16: for each T, € bucket; do
17: for each Ty € bucket; do
18: curT.fo < Ty.fo + Ty fos
19: curT. fp < max (Ty.fp. Ty . fr) + 1;
20: curT.fb — T,] 'fb + TY 'fb + |Tf7’fb - Ty .fb|;
21: curT. left « Ty;
22: curT.right « Tys
23: if curT.fy, > Cmax and curT.f, == i+ j then
24: continue;
25: end if
26: if Enable search space compression then
27: if AT* € C' = (curT.f, == T*.f,) and (curT.f;, == T*.f3,) and (curT.f;, == T*.f;) then
28: C’ =C’UcurTree;
29: end if
30: else
31: C’ =C’ UcurTree;
32: end if
33: end for
34: end for
35: return C’;

36: end function
37: function BuildABDTree(T)
38: if T.left == emptyand T.right == empty then

39: return Corresponding ABDTree;

40: else

41: Set Bui1ldABDTree(Tleft) as left subtree;

42: Set BuildABDTree(T.right) as right subtree;
43: end if

44: end function

Convolution predominates the computation overload of our SR accelerator. Besides, there exists
a lot of data reuse in convolution operations. Here we introduce the DPE design in Convolution
Engine to take advantage of modern DSP characteristics and data reuse possibilities. Figure 12(a)
shows detailed information about the DSP48E2 slice on Xilinx UltraScale+ MPSoC. The DSP48E2

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:15

P
" o D M Jan
o——> 48
PCIN
PCOUT
45
18 8 9 9 8 9 9 8 9 9
27 27
5 A 5 Xo Woo/W o W/ X; Woi/ Wy, W/ Xy Wou/ Wy, W/
(@) (b)
I 27 i
[www Lol lelololelo] - [

D ‘ DI[8] ‘ D8] ‘ DI[8] ‘ DI[8] ‘ DI8] ‘ D[8] ’ DI[8:0] ‘
B B[7] ‘ B[7] ‘ B[7] ’ B[7:0]

: 18 i
(©)

Fig. 12. (a) DSP48E2 on FPGA fabric; (b) DPE in Convolution Engine; (c) Data format of DPE inputs in
Convolution Engine.

slice contains a 27-bit pre-adder, a 27 X 18 multiplier, and a 48-bit post-adder. Through proper
configuration illustrated in [40], one DSP can accept three INT8 operands A, B, and D to compute
AB and AD in parallel. Quantization inevitably induces quality degradation of output SR images.
To keep quality loss as low as possible but preserve 2x speedup, the input activations are quantized
to 8 bits, and the weights are quantized to 9 bits. Figure 12(c) shows the data format of DSP inputs,
which is slightly different from that in [40]. Another way to improve throughput is to increase the
working frequency of DPE. DSPs on FPGA are hard-core components, which means they can run
at a very high frequency. However, most DNN accelerators on FPGA run below 200MHz, achieving
less than half of the maximum DSP clock rate. To fully release the potential of DSPs, we propose a
design with two clock domains, with one clock running 2x faster than another clock. In the DPE,
the weights from two different convolution kernels are pre-cached on the chip, and they are fed
into DPE alternately every 2x clock. Therefore, two convolution kernels reuse the input feature
map in every lower clock. For instance, in Figure 12(b), the weights with the same color are fed
into DPE at the same time, while weights with different colors are switched every 2x clock. The
input vector x is renewed every 1x clock. In this way, the computation works 2x faster than the
data communication between off-chip and on-chip memory.

There is no data reuse in einsum operation, so we simply function a DSP as a MAC unit. There-
fore, the input operands are fed into DPE every 1x clock. Also, they are updated every 1x clock.

5 HARDWARE DESIGN PARAMETER CONFIGURATION

DNN-based SR models are hungry for both computation and memory resources. Unsuitable re-
source management can result in already strained resources, leading to suboptimal system per-
formance. Brute-force search for resource allocation can become untractable when dealing with a
vast design space. To address this, various approaches have been proposed to explore optimal hard-
ware design parameter configurations. [41] prioritizes computation resources to achieve maximum

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:16 H. Liu et al.

throughput, followed by adjustments to memory and bandwidth resources. Another approach,
discussed in [42], develops analytical models for resource utilization and latency modeling. Also,
the authors design a tool to determine the optimal configuration. For our accelerator, the alloca-
tion of resources is about deciding the parallel factors of computation engines. As mentioned in
Section 3.2, our memory hierarchy makes sure that computation engines are not stalled by data
communication. This important property makes the modeling of latency and resource consump-
tion very straightforward. Firstly, the latency of our accelerator can be inferred by summing up the
required cycles to process feature maps for computation engines. Furthermore, the parallel factors
directly determine the consumption of DSPs and BRAMs. Finally, the required bandwidth can be
deduced given the defined dataflow. Here, we complete the resource allocation by solving a con-
straint programming problem. In the optimization problem, our objective is to minimize latency
with variables representing the parallel factors and constraints representing utilization of FPGA
resources should not exceed the resources the FPGA board equipped. The problem can be solved
easily by heuristics without a time-consuming trial-and-error search.

If we define the input channel parallelism factor and output channel parallelism factor of 3 x 3
convolution as p; and g; respectively, and use C:" and C¢“’ to denote the number of input channels
and output channels of the i;;, 3 X 3 convolution layer, the latency of all 3 X 3 convolutional layers

Ly can be formulated by
cin
Ly = Z : “ X

ieX P
where H?* and W " represent the height and width of the output feature map for the i;; 3 X 3
convolution layer. X denotes the set of 3 X 3 convolutional layers and Fre represents the working
frequency of the accelerator. The “4” before g; refers to the 4x speedup discussed in Section 4.2.

Given that the time spent on data transfer can be overshadowed by computation time, L; is close
to the actual runtime of the filter generation phase. Similarly, the latency of 5 X 5 convolutional

layer L, is given by

Cin Cout

Lzz{*}x * —_— (10)

P2 4q, Fre
where H?*! and W"! represent the height and the width of the output feature map after the 5 x 5
convolution. CI", C%%! denote the input channels and output channels of 5 X 5 convolution. Since
the 5 x 5 Convolution Engine and the Einsum Engine form a balanced pipeline, the latency of the
two computation engines is nearly equal to the latency of the 5 X 5 convolution engine. Thus, the
latency of our accelerator can be approximated by Ly + L.

The constraint programming then can be formulated as in Formula (11).

1

m’ (9)

C;}ut
4611

X ngut X M/iout X

1
X H;Jut X W*out X

min Li+1L, (11a)
P1,q1,P2, 92,0
st 9p1q1 + 25p2q2 + 8v < Rpsp; (11b)
1 2

3{% + 5|22 | < Ropan: (11c)
4q, = 8v; (11d)

BW
balpr +4q1 +4q1) < = (11e)

re

BW

ba(pz +8v +v) < —; 11f
dpr 804 0) < 2 (1)
D1, 91, P2, q2 are power of two. (11g)

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:17

Table 2. Performance Comparison between Our Network and Two Lightweight SR Networks
with Similar Computation Cost

Set5 Set14 BSDS100 Urban100
Method Params = MAC po\p/SSIM- PSNR/SSIM~ PSNR/SSIM PSNR/SSIM
FSRCNN [18] 12K 6G 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020
MoreMNAS-C [25] 25K 6G 37.06/0.9561 32.75/0.9094 31.50/0.8904 29.92/0.9023
Ours 103K 6G 37.24/0.9724 32.79/0.9106 31.59/0.8920 30.01/0.9043

Here b, and BW denote the bit precision of activations and DRAM throughput, respectively.
In our design, the bit width of activation is 8 and the theoretical throughput of DDR for Zynq
UltraScale+ MPSoC is 19200MB/s. v is the parallel factor of the Einsum Engine defined in Figure 6.
Constraint (11b) requires the sum of DSP slices consumed by different computational engines
should be no more than the overall DSP resources on the FPGA board. According to the analysis
in Section 3.2, we can get the BRAM consumption of 33 and 5% 5 convolution. The input channel
of stride 2 convolution is always 1, which is much less than that of stride 1 convolution. Besides,
BRAMs for stride 1 and stride 2 convolution can be reused. Therefore, we only consider the BRAM
consumption of stride 1 convolution. Constraint (11c) requires BRAMs to cache convolution engine
should be less than total BRAMs.

As mentioned in Section 3, the 55 Convolution Engine and Einsum Engine form a pipeline. To
ensure the perfect pipeline, the 5 X 5 Convolution Engine’s output data should be half the size of
the Einsum Engine’s input, which is guaranteed by Constraint (11d). Besides resource restrictions,
bandwidth limitations are also considered. For 3 X 3 convolution, we consider the bottleneck case
where it processes not just input feature maps, but also partial sums for accumulation. Every cycle,
the engine takes in p; input feature map data points and 4q; partial sum data points, while giving
out 4q; data points. Constraint (11e) shows that the data exchange rate between DRAM and on-
chip buffers should be less than the bandwidth of DRAM. Constraint (11f) can be obtained by
considering the memory traffic of the filtering stage. When 5 X 5 convolution reads p, data points,
The Einsum Engine reads 8v data points and gives out v data points. (11g) indicates the parallel
factors should be the power of two for efficient hardware implementation. Since the optimization
problem’s solution space is small, enumerating all possible values of decision variables can yield
the solution.

6 EXPERIMENTS
6.1 Effectiveness of Proposed SR Network

As described in Section 2.3, our lightweight SR network is a simplified version derived from
LAPAR. The training of our network was conducted on a single NVIDIA GeForce RTX 3090 GPU,
utilizing a mini-batch size of 32, and spanning 800K iterations on the DIV2K [43] and Flickr2K
image datasets. During the testing phase, we evaluated the performance of our SR network using
multiple standard benchmarks, including Set5 [23], Set14 [44], BSDS100 [45], and Urban100 [46].
The evaluation was based on two widely used metrics: peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM). In Table 2, we present a performance compari-
son between our network and two other lightweight SR networks, namely FSRCNN [18] and
MoreMNAS-C [25]. Our SR network achieves superior performance with a similar computational
cost. It is important to note that although our network has more parameters, after quantization,
they can all be stored in on-chip buffers without increasing the data communication overhead
between on-chip and off-chip memory.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:18 H. Liu et al.

Table 3. Optimal Solution Found by
Constraint Programming

Parallel factor P11 P2 G2V
Optimal solution 32 4 1 2 1

Table 4. Implementation Details of Our Accelerator on Two Embedded FPGA Boards

Board SR Frequency DSP Frequency DSP BRAM FF LUT
KV260 540p — 1080p 200MHz 400MHz 1210 (97%) 116 (81%) 143252 (61%) 65212 (56%)
ZCU104 720p — 1440p 250MHz 500MHz 1211 (70%) 134 (43%) 146782 (32%) 69164 (30%)

6.2 Experimental Settings

To achieve fine-grained DSP control and high-frequency design, we implement our accelerator
using SystemVerilog, and bitstream generation is performed by Vivado 2021.1. Our accelerator
will only process the Y channel, while other operations like color space conversion, interpolation
of the other two channels, and so on, are finished by the ARM CPU on the FPGA board. The
whole application runs on a customized Linux system based on Xilinx Petalinux, and we rely on
memory-mapped kernels to control the execution of the accelerator.

To verify the effectiveness of the proposed super-resolution framework, we implement our tar-
get SR network on two embedded FPGAs. Firstly, we implement a 540p — 1080p SR accelerator
on Kria KV260, a low-end FPGA board. To tackle the resource shortage, our proposed resource
allocation scheme is applied to minimize latency, and the optimal solution we find is listed in
Table 3. To see the potential of DPE to run at a higher frequency, we also realize a 720p — 1440p
SR accelerator on the ZCU104 with the same parallel factors. It is worth noting that our design
can easily be adapted to support higher resolutions, such as 4K. However, handling larger feature
maps would require larger parallel factors, consuming more hardware resources. In such cases,
a higher-end FPGA card like Alveo U200 would be necessary to achieve real-time inference. Ad-
ditionally, if we aim to achieve better SR quality, we may need to incorporate more layers into
our SR network, which would also require increased hardware resources. Nevertheless, the pro-
posed optimization techniques, such as fine-grained DSP control, design space exploration of DPE,
and resource allocation techniques, remain valuable in developing a high-performance accelerator.
Table 4 lists the details of the two implementations. We can see that the DSP consumption is al-
most the same (ZCU104 spends an extra DSP on calculating the AXI address). On the KV260, the
system runs at 200MHz and the DSPs run at only 400MHz due to high resource utilization. As the
ZCU104 possesses adequate resources, timing closure is more accessible, so the accelerator can
run at a higher frequency. Figure 13(a) shows the 540p—1080p demo on KV260. Figure 13(b) and
Figure 13(c) show the layout after placement and route on the two FPGA boards respectively. We
observe that the resource utilization is very high on KV260 but is much lower on ZCU104.

6.3 Comparison with FPGA Automation Tools

Firstly, we compare our accelerator with two FPGA automation tools. One is DNNBuilder [41], an
open-source automated tool to generate FPGA accelerators. Another is Xilinx DPU [50], a com-
mercial DNN accelerator IP. As DNNBuilder only supports the convolutional operations of our SR
network, we test on a model with five convolution layers that can mimic the memory footprint and
required computations of the filter generation phase in our SR network. We replace LeakyReLU
with ReLU, and substitute the concat operation, together with the two convolutions before it by a
3 X 3 convolution that can produce a feature map with the same dimension (We find that we can
also use a 1 X 1 convolution, which does not affect the results). The resource budget is adjusted

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:19

540p Input Image

y
PSR 1080p Output Image

KV260 with Power Meter
(@) (b) (©)

Fig. 13. (a) 540p — 1080p SR running on KV260 with a power meter monitoring the power consumption;
(b) Physical implementation on KV260; (c) Physical implementation on ZCU104.

Table 5. Comparison with SOTA FPGA Solutions and Commercial GPU and ASIC

540p—1080p 720p—1440p
Accelerator Latency FPS Power Power Efficiency | Latency =~ FPS Power Power Efficiency
(ms) (W) (FPS/W) (ms) (W) (FPS/W)
NX GPU [47] 41.82 2391 17.35 1.38 73.37 13.63 17.67 0.77
Ascend 310 [48] 52.04 19.22 10.14 1.90 94.32 10.60 10.46 1.01
Xilinx DPU [49] | >37.31 <26.80 N/A N/A >56.14 <17.81 N/A N/A
DNNBuilder [41] | >186.57 <536 N/A N/A >82.92 <12.06 N/A N/A
Ours 27.94 35.79 16.85 2.12 39.74 25.16 23.81 1.06

540p—1080p SR is based on KV260 and 720p— 1440p is based on ZCU104 for Vitis-Al, DNNBuilder and our accelerator.

based on attainable resources on KV260 and ZCU104, and the reported throughput is estimated
by the profiler embedded in the tool. As shown in Table 5, DNNBuilder can only achieve less than
5.36 FPS for 540p—1080p SR on KV260, and less than 12.06 FPS for 720p—1440p SR on ZCU104.
We use “<” here because only a sub-network is tested. If we implement unsupported operators
on the CPU, the end-to-end runtime would be even worse. DNNBuilder uses a pipeline structure,
with every layer possessing an individual compute unit. This architecture works well for networks
with small feature maps in each layer but not for SR networks with much larger feature maps. For
Xilinx DPU, we rely on the Vitis Al development stack to test the performance of DPU. We only
count the time for convolution, concat, and LeakyReLU because Vitis Al does not support other
operators. Xilinx DPU can only attain less than 26.80 FPS for 540p—1080p SR on KV260 and less
than 17.81 FPS for 720p—1440p SR on ZCU104. Although DPUs are designed to accelerate general
convolution neural networks, they can only support very limited operators, thus unable to enable
real-time SR.

6.4 Comparison with Commercial GPU & Al Chips

We also compare our accelerator with two commercial tools: NVIDIA Jetson Xavier NX [47] and
Atlas 200 DK [48]. NVIDIA Jetson Xavier NX is an embedded computing board that can deliver up
to 21 TOPS for Al workloads. Atlas 200 DK is a higher-performance Al application development
board equipped with one of the most powerful edge Al chips, Ascend 310. The two commercial
accelerators both take advantage of a compiler to translate a DNN model to machine codes. As our
accelerator uses INT8 data type to boost the performance, the SR model also inferences at INT8
mode on the two devices if any operators support INT8 quantization for a fair comparison. For the
software stack, we adopt CANN 5.0.2.alpha005 on Atlas 200 and TensorRT 8.0.1 on NVIDIA NX,
respectively. TensorRT does not support einsum operation directly. It will automatically convert it

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:20 H. Liu et al.

100 | C filter generation ‘72()1:)—‘)14401:‘) B

[filtering]
£
>
% sol 540p—1080p i
=
q H

0 P &ﬁ ENCE
€ ?'%& Q & ??& Q)

Fig. 14. Runtime breakdown of accelerators.

10 1 Modeled Latency (ms) 110
1 Measured Latency (ms)

51 15

oL M A [[SEP

N R
\;&16\;&e&\;ﬁe‘\;ﬁé\p‘lé\p‘ié\p‘le‘

Fig. 15. Comparison between measured latency and modeled latency of different layers.

into an element-wise multiplication operation followed by a reducesum operation,
which the GPU can provide native hardware support. This equivalent transformation can ensure
the consistency of the output image. As CANN cannot finish the operation mapping, we perform
the same conversion on the original SR network before feeding the network into CANN for com-
pilation. Then, we can run our SR network end to end, providing a fair comparison.

Figure 14 shows the runtime breakdown of the two phases of our SR model. We can see that
the latency of filtering on NX and Ascend310 is much lower than that on our accelerator be-
cause the two commercial tools possess hardware components highly optimized for convolution.
However, they do not perform well on operators like pixelshuffle multiplication, and
reduceSum, which are common in SOTA DNN-based SR networks. Generally, the architectures
of NX and Ascend310 are optimized for widely adopted DNN models. There is a gap between these
commercial development boards and SR models, both in operator and data flow levels.

6.5 Comparison with SR Accelerators on FPGAs

Table 6 presents a comprehensive comparison of performance and resource consumption among
various super-resolution (SR) accelerators implemented on FPGAs. We use AdaRound [53] quan-
tization algorithm to quantize our SR network into 8-bit. It is worth noting that previous accel-
erators prioritized high frame rates for high-resolution images but relied on simplified learning
techniques, resulting in compromised super-resolution quality. In contrast, our accelerator adopts
an end-to-end approach based on deep neural networks (DNN), ensuring the preservation of
superior SR quality associated with DNN-based algorithms. In edge scenarios, where hardware re-
sources, power supply, and transmission bandwidth are often constrained, our design strategically
focuses on achieving an optimal balance between FPS, resolution, and super-resolution quality.
Our accelerator prioritizes efficient and practical performance over merely pursuing high FPS and

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:21
Table 6. Comparisons of Different SR Accelerators on FPGAs
Method [51] [7] [8] [52] Ours-1 Ours-2
FPGA device XCKU040 XCKU040 XC7K410T XCKU15P KV26 XCZU7EV
Freqency 150MHZ 150MHz 130MHz 160MHz 200MHz 250MHz
DSP 108 1920 1512 1820 1210 1211
LUT 3K 151K 167K 98K 65K 69K
FF 2K 121K 158K 57K 143K 147K
Memory 92K 194KB 945KB 4842KB 4176KB 4824KB
Output resolution 38402160 3840%x2160 2880x1280 3840%x2160 19201080 2560x1440
Bit-width Fxp 14-bit Fxp 13-bit Fxp 16-bit Fxp 8-bit Fxp 8-bit Fxp
Frame rate 60fps 60fps 62.71ps 76fps 35.8fps 25.2fps
SR dataset PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM PSNR/SSIM
Set5 34.78/0.9460 | 36.64/0.9543 | 36.40/0.9527 | 36.76/0.9553 37.14/0.9566
Set14 31.63/0.9083 | 32.47/0.9770 | 32.21/0.9047 | 32.51/0.9076 32.15/0.8968
BSDS100 30.48/0.8776 | 31.31/0.8877 | 31.15/0.8858 | 31.31/0.8887 31.52/0.8905
Urban100 - 29.32/0.8939 - 29.30/0.8952 29.94/0.9026
Table 7. Comparison of DSP Efficiency with CNN Accelerators
Accelerators [54] [55] [56] [42] Ours-1 Ours-2
FPGA chip Zynq XC7Z045 Zynq XC7Z045 Altera Arria-10 GX 1150 PYNQ Z1 KVv26 Zynq ZUTEV
DSP Frequency 150MHz 100MHz 150MHz 100MHz 400MHz 500MHz
Precision Fix16 Fix16 Fix16 Fix12 Fix8 Fix8
DSPs (used/total) 780/900 824/900 1046/1518 220/220 1210/1248 1211/1728
Performance (GOPS) 137 230 316 83 987 1234
DSP Efficiency (GOPS/DSP) 0.18 0.28 0.30 0.38 0.82 1.02

resolution. There is a lower performance on the Set14 benchmark due to its sensitivity to low-bit
quantization. However, this benchmark, along with Set5, comprises a limited number of images (5
and 14, respectively) and may not fully represent broader performance. Our analysis across more
comprehensive benchmarks like BSDS100 and Urban100, which contain 100 images each, shows
a more substantial improvement. This underscores the effectiveness of our approach in delivering
improved super-resolution quality across a wider range of scenarios. Furthermore, our accelera-
tors are capable of achieving real-time performance (>25 fps), allowing for seamless processing of
video streams without any visual degradation.

6.6 Effectiveness of DPE Optimization

In Section 4, we introduce a DPE topology generation algorithm aimed at minimizing resource
consumption and an architectural design methodology that enables high throughput. These two
techniques significantly enhance the effective utilization of DSPs. Since convolution contributes to
the main computation overhead of our SR accelerator, we compare our design with previous Con-
volutional Neural Network (CNN) accelerators as well. As shown in Table 7, our design achieves
a DSP working frequency of 400MHz to 500MHz, which is notably higher than that of previous
CNN accelerators. This efficient utilization of DSPs allows our design to deliver the highest DSP ef-
ficiency compared to previous works. On the ZCU104 platform, our SR accelerator surpasses those
in [54], [55], [56], and [42] by 5.6X, 3.6X, 3.4X, and 2.7X, respectively, in terms of DSP efficiency.

6.7 Effectiveness of Cache Strategy

In order to validate the efficiency of our cache strategy, we study the relationship between mea-
sured latency and modeled latency of different layers on KV260 when the input image is 540p.
The theoretical latency of a layer is obtained by counting the number of cycles needed to finish
the computation, as listed in Equation (9) and Equation (10). Since 5 X 5 convolution and einsum

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:22 H. Liu et al.

w/o0. compression

W. compression

5O S—i—o—e—0—0—0—0—0— —_—
0 5 10 15

Number of DSPs

Fig. 16. Effectiveness of search space compression technique in DPE topology generation procedure.

are fused, we refer to it as a single layer named layer 7. From Figure 15, we notice that the ratio
between measured latency and modeled latency is very close to 1. The data fetch stage, compute
stage, and data writeback stage pipeline are not stalled by data communication, which means the
performance is bounded by computation, and DSPs are fully utilized. Also, the ratio validates the
rationality of our latency modeling in Section 5.

6.8 Effectiveness of Search Space Compression

The effectiveness of our search space compression technique, discussed in Section 4.1, is demon-
strated in Figure 16. Without compression, the search space undergoes exponential growth, be-
coming unsolvable when the number of DSPs is large. By employing search space compression,
we eliminate the need to store multiple DPE designs with identical resource consumption. While
this reduction may limit the number of attainable Pareto optimal DPE designs, it enables the han-
dling of larger-scale DSP cascades. For instance, with 15 DSPs, the potential DPE topologies prior
to compression can exceed 6x 10°, whereas with compression enabled, it is reduced to less than 800.

7 CONCLUSION AND FUTURE WORK

This paper introduces a lightweight SR network paired with an accelerator designed specifically
for real-time super-resolution on edge FPGAs. Addressing the challenge of reconciling compute-
intensive SR tasks with limited FPGA resources, we optimize the DSPs in two ways: by increasing
the number of operations executed per cycle and enhancing the operating frequency. To stream-
line the timing closure of the accelerator, we offer a design space exploration framework that
identifies the most resource-efficient DSP cascade configurations in terms of LUTs and FFs. More-
over, we put forward a flexible and scalable cache strategy that prevents computation stalling. Our
customized architecture and resource allocation approach are crafted to maximize the use of the
limited resources available on FPGAs. Experimental results demonstrate that our accelerator not
only excels beyond previous FPGA solutions but also outpaces commercial GPUs and Al chips.

Multi-modal computing with multiple DNNs has emerged as a critical workload at the edge in
recent years [57]. This domain presents similar challenges, including resource scarcity and high
computational demands. In future work, we plan to extend our research to design efficient multi-
modal computing accelerators on FPGAs.

REFERENCES

[1] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a deep convolutional network for image
super-resolution. In European Conference on Computer Vision. Springer, 184-199.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:23

[2] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. 2018. Image super-resolution using very
deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV). 286~
301.

[3] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. 2018. Fast and accurate image super-resolution
with deep Laplacian pyramid networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 11 (2018),
2599-2613.

[4] Kai Zhang, Wangmeng Zuo, and Lei Zhang. 2018. Learning a single convolutional super-resolution network for mul-
tiple degradations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3262-3271.

[5] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. 2019. Second-order attention network for single
image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11065
11074.

[6] Zhuolun He, Hanxian Huang, Ming Jiang, Yuanchao Bai, and Guojie Luo. 2018. FPGA-based real-time super-resolution
system for ultra high definition videos. In 2018 IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 181-188.

[7] Yongwoo Kim, Jae-Seok Choi, and Munchurl Kim. 2018. A real-time convolutional neural network for super-resolution
on FPGA with applications to 4K UHD 60 fps video services. IEEE Transactions on Circuits and Systems for Video
Technology 29, 8 (2018), 2521-2534.

[8] Jung-Woo Chang, Keon-Woo Kang, and Suk-Ju Kang. 2018. An energy-efficient FPGA-based deconvolutional neural
networks accelerator for single image super-resolution. IEEE Transactions on Circuits and Systems for Video Technology
30, 1 (2018), 281-295.

[9] Ngoc Long Nguyen, Jérémy Anger, Axel Davy, Pablo Arias, and Gabriele Facciolo. 2021. Self-supervised multi-image
super-resolution for push-frame satellite images. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 1121-1131.

[10] Liangpei Zhang, Hongyan Zhang, Huanfeng Shen, and Pingxiang Li. 2010. A super-resolution reconstruction algo-
rithm for surveillance images. Signal Processing 90, 3 (2010), 848-859.

[11] Pejman Rasti, Tonis Uiboupin, Sergio Escalera, and Gholamreza Anbarjafari. 2016. Convolutional neural network
super resolution for face recognition in surveillance monitoring. In International Conference on Articulated Motion
and Deformable Objects. Springer, 175-184.

[12] Hayit Greenspan. 2009. Super-resolution in medical imaging. The Computer Journal 52, 1 (2009), 43-63.

[13] Yawen Huang, Ling Shao, and Alejandro F. Frangi. 2017. Simultaneous super-resolution and cross-modality synthesis
of 3D medical images using weakly-supervised joint convolutional sparse coding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 6070-6079.

[14] Jithin Saji Isaac and Ramesh Kulkarni. 2015. Super resolution techniques for medical image processing. In 2015 Inter-
national Conference on Technologies for Sustainable Development (ICTSD). IEEE, 1-6.

[15] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han. 2018. Neural adaptive content-aware
internet video delivery. In 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18).
645-661.

[16] Yinjie Zhang, Yuanxing Zhang, Yi Wu, Yu Tao, Kaigui Bian, Pan Zhou, Lingyang Song, and Hu Tuo. 2020. Improving
quality of experience by adaptive video streaming with super-resolution. In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 1957-1966.

[17] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image super-resolution using deep convolutional
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 2 (2015), 295-307.

[18] Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the super-resolution convolutional neural net-
work. In Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II 14. Springer, 391-407.

[19] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Accurate image super-resolution using very deep convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1646-1654.

[20] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W.
Shi. 2017. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 4681-4690.

[21] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon Joo Kim. 2018. Deep video super-resolution network using

dynamic upsampling filters without explicit motion compensation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 3224-3232.

Ben Mildenhall, Jonathan T. Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, and Robert Carroll. 2018. Burst denoising

with kernel prediction networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2502-2510.

[22

—

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

53:24 H. Liu et al.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie-Line Alberi-Morel. 2012. Low-complexity single-
image super-resolution based on nonnegative neighbor embedding. In British Machine Vision Conference, BMVC 2012,
Surrey, UK, September 3-7, 2012, BMVA Press, 1-10.

Wenbo Li, Kun Zhou, Lu Qi, Nianjuan Jiang, Jiangbo Lu, and Jiaya Jia. 2020. LAPAR: Linearly-assembled pixel-adaptive
regression network for single image super-resolution and beyond. Advances in Neural Information Processing Systems
33 (2020), 20343-20355.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. 2020. Multi-objective reinforced evolution in mobile neural architecture
search. In European Conference on Computer Vision. Springer, 99-113.

Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, and Yu
Cao. 2016. Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks. In
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 16-25.

Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gambardella, Michaela Blott, Luciano
Lavagno, Kees Vissers, John Wawrzynek, and Kurt Keutzer. 2019. Synetgy: Algorithm-hardware co-design for con-
vnet accelerators on embedded fpgas. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays. 23-32.

Yao Chen, Jiong He, Xiaofan Zhang, Cong Hao, and Deming Chen. 2019. Cloud-DNN: An open framework for mapping
DNN models to cloud FPGAs. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 73-82.

Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen, Deming Chen, and Zhiru Zhang. 2021. FracBNN: Accu-
rate and FPGA-efficient binary neural networks with fractional activations. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 171-182.

Duy Thanh Nguyen, Tuan Nghia Nguyen, Hyun Kim, and Hyuk-Jae Lee. 2019. A high-throughput and power-efficient
FPGA implementation of YOLO CNN for object detection. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 27, 8 (2019), 1861-1873.

Hongxiang Fan, Shuanglong Liu, Martin Ferianc, Ho-Cheung Ng, Zhigiang Que, Shen Liu, Xinyu Niu, and Wayne Luk.
2018. A real-time object detection accelerator with compressed SSDLite on FPGA. In 2018 International Conference on
Field-Programmable Technology (FPT). IEEE, 14-21.

Anupreetham Anupreetham, Mohamed Ibrahim, Mathew Hall, Andrew Boutros, Ajay Kuzhively, Abinash Mohanty,
Eriko Nurvitadhi, Vaughn Betz, Yu Cao, and Jae-sun Seo. 2021. End-to-end FPGA-based object detection using
pipelined CNN and non-maximum suppression. In 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL). IEEE, 76-82.

Suchang Kim, Seungho Na, Byeong Yong Kong, Jaewoong Choi, and In-Cheol Park. 2021. Real-time SSDLite object
detection on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29, 6 (2021), 1192-1205.

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang,
Huazhong Yang, and William (Bill) J. Dally. 2017. Ese: Efficient speech recognition engine with sparse Istm on fpga.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field- Programmable Gate Arrays. 75-84.
Chen-Lu Li, Yu-Jie Huang, Yu-Jie Cai, Jun Han, and Xiao-Yang Zeng. 2018. FPGA implementation of LSTM based on
automatic speech recognition. In 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technol-
ogy (ICSICT). IEEE, 1-3.

Huaixiang Hu, Jiatong Li, Chunchun Wu, Xueyang Li, and Yuping Chen. 2022. Design and implementation of intel-
ligent speech recognition system based on FPGA. In Journal of Physics: Conference Series, Vol. 2171. IOP Publishing,
012010.

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance model
for multicore architectures. Commun. ACM 52, 4 (2009), 65-76.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based accel-
erator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 161-170.

Jiaxi Zhang, Wentai Zhang, Guojie Luo, Xuechao Wei, Yun Liang, and Jason Cong. 2019. Frequency improvement of
systolic array-based CNNs on FPGAs. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
1-4.

Yao Fu, Ephrem Wu, and Ashish Sirasao. 2017. 8-bit dot-product acceleration. Xilinx Inc.: San Jose, CA, USA (2017).
Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. 2018.
DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 1-8.

Hanchen Ye, Xiaofan Zhang, Zhize Huang, Gengsheng Chen, and Deming Chen. 2020. HybridDNN: A framework for
high-performance hybrid DNN accelerator design and implementation. In 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1-6.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

A High-Performance Accelerator for Real-Time Super-Resolution on Edge FPGAs 53:25

[43] Eirikur Agustsson and Radu Timofte. 2017. NTIRE 2017 challenge on single image super-resolution: Dataset and study.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 126-135.

[44] Roman Zeyde, Michael Elad, and Matan Protter. 2012. On single image scale-up using sparse-representations. In Curves
and Surfaces: 7th International Conference, Avignon, France, June 24-30, 2010, Revised Selected Papers 7. Springer, 711—
730.

[45] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. 2001. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings Eighth
IEEE International Conference on Computer Vision. ICCV 2001, Vol. 2. IEEE, 416-423.

[46] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. 2015. Single image super-resolution from transformed self-

exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5197-5206.

([n. d.]). NVIDIA-NX. https://developer.nvidia.com/embedded/jetson-xavier-nx

([n. d.]). Atlas 200 DK. https://e.huawei.com/hk/products/cloud-computing-dc/atlas/ascend-310

Vinod Kathail. 2020. Xilinx Vitis unified software platform. In Proceedings of the 2020 ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays. 173-174.

([n. d.]). Xilinx DPU. https://www.xilinx.com/products/intellectual-property/dpu.html

Yongwoo Kim, Jae-Seok Choi, and Munchurl Kim. 2018. 2X super-resolution hardware using edge-orientation-based

linear mapping for real-time 4K UHD 60 fps video applications. IEEE Transactions on Circuits and Systems II: Express

Briefs 65, 9 (2018), 1274-1278.

[52] Kaicong Sun, Maurice Koch, Zhe Wang, Slavisa Jovanovic, Hassan Rabah, and Sven Simon. 2021. An FPGA-based
residual recurrent neural network for real-time video super-resolution. IEEE Transactions on Circuits and Systems for
Video Technology 32, 4 (2021), 1739-1750.

[53] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. 2020. Up or down?
Adaptive rounding for post-training quantization. In International Conference on Machine Learning. PMLR, 7197-7206.

[54] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song,
Yu Wang, and Huazhong Yang. 2016. Going deeper with embedded FPGA platform for convolutional neural network.
In Proceedings of the 2016 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 26-35.

[55] Qingcheng Xiao, Yun Liang, Ligiang Lu, Shengen Yan, and Yu-Wing Tai. 2017. Exploring heterogeneous algorithms
for accelerating deep convolutional neural networks on FPGAs. In Proceedings of the 54th Annual Design Automation
Conference 2017. 1-6.

[56] Yufei Ma, Minkyu Kim, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. 2017. End-to-end scalable FPGA accelerator for
deep residual networks. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1-4.

[57] Xiaofeng Hou, Cheng Xu, Jiacheng Liu, Xuehan Tang, Lingyu Sun, Chao Li, and Kwang-Ting Cheng. 2022. Character-
izing and understanding end-to-end multi-modal neural networks on GPUs. IEEE Computer Architecture Letters 21, 2
(2022), 125-128.

—r——
IS
O o0
2R =

—
wul
(=3

[t

[51

—

Received 22 April 2023; revised 17 January 2024; accepted 6 March 2024

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 53. Publication date: May 2024.

https://developer.nvidia.com/embedded/jetson-xavier-nx
https://e.huawei.com/hk/products/cloud-computing-dc/atlas/ascend-310
https://www.xilinx.com/products/intellectual-property/dpu.html

