
Hardware-software Co-design of
Slimmed Optical Neural Networks

Zheng Zhao

UT Austin

zhengzhao@utexas.edu

Derong Liu

UT Austin

deronliu@utexas.edu

Meng Li

UT Austin

mengli@utexas.edu

Zhoufeng Ying

UT Austin

zfying@utexas.edu

Lu Zhang

CUHK

lzhang@cse.cuhk.edu.hk

Biying Xu

UT Austin

biying@utexas.edu

Bei Yu

CUHK

byu@cse.cuhk.edu.hk

Ray T. Chen

UT Austin

chen@ece.utexas.edu

David Z. Pan

UT Austin

dpan@ece.utexas.edu

ABSTRACT
Optical neural network (ONN) is a neuromorphic computing hard-

ware based on optical components. Since its first on-chip experimen-

tal demonstration, it has attracted more and more research interests

due to the advantages of ultra-high speed inference with low power

consumption. In this work, we design a novel slimmed architecture

for realizing optical neural network considering both its software

and hardware implementations. Different from the originally pro-

posed ONN architecture based on singular value decomposition

which results in two implementation-expensive unitary matrices,

we show a more area-efficient architecture which uses a sparse tree

network block, a single unitary block and a diagonal block for each

neural network layer. In the experiments, we demonstrate that by

leveraging the training engine, we are able to find a comparable

accuracy to that of the previous architecture, which brings about

the flexibility of using the slimmed implementation. The area cost

in terms of the Mach-Zehnder interferometers, the core optical

components of ONN, is 15%-38% less for various sizes of optical

neural networks.

1 INTRODUCTION
Computing using light has recently been reignited as a promis-

ing alternative to digital electronics, for its ultra-high speed and

power efficient on-chip optical interconnects and computing as

Moore’s law winds down [1, 2]. Besides the intensive study on

realizing optical logics [3–6] and developing optical on-chip in-

terconnect for on- and inter-chip communications [7, 8], optical

neural network (ONN) distinguishes itself by directly exploiting

optical principles to perform neuromorphic operations, diverging

from the long-established digital paradigms.

The recent research of ONN expands across optical reservoir

computing [9, 10], photonic spike processing [11, 12] and the de-

sign and realization of integrated photonic platforms for multilayer

perceptron (MLP) inference [13]. MLP is the basic neural network

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6007-4/19/01. . . $15.00

https://doi.org/10.1145/3287624.3287720

architecture which lays the foundation for the more advanced con-

volutional and recurrent neural networks. In MLP, the core and

performance-critical computation is the matrix multiplication, a

computationally expensive operation for electronics. While for op-

tics, this computation has been successfully demonstrated with

an interconnected array of optical components [14–17], by which

matrix multiplication can be performed with near-zero energy. Fur-

thermore, the computation is executed at the speed of light and

the detection rate can go over 100 GHz with the state-of-the-art

electro-optical components [13].

Based on these works, Shen et al. [13] present and fabricate a

generic MLP platform consisting of an interconnected array of

Mach-Zehnder interferometers (MZIs) with thermal phase shifters

on the arms of the waveguides to realize the matrix multiplications

of the hidden layers of the network. Once the network is trained

by software, the phase of each phase shifter can be computed and

set up. The whole optical implementation thus becomes completely

passive such that the power consumption is minimal. Furthermore,

because optical signals can transport in the same channel indepen-

dently with wavelength-division multiplexing (WDM), it offers the

possibilities of scaling the process bandwidth by tens of times. In

other words, the same ONN can process tens of inputs in parallel.

Our work slims down the previous MLP architecture proposed

in [13] by a software-hardware co-design methodology. Compared

with the previous ONN architecture where the optical hardware im-

plementation is derived from a software-trained neural network, we

adopt a different methodology where the optical hardware imple-

mentation and software training implementation are co-designed to

reduce the hardware implementation cost. As will be shown, the co-

designed architecture eliminates one of the area-expensive unitary

blocks of the previous architecture by leveraging a much smaller

sparse tree network. The loss of the testing accuracy is negligible

compared to the previous architecture. The main contributions of

this paper are summarized as follows:

• We propose an area-efficient architecture for optical neu-

ral network where the number of optical components are

effectively reduced.

• We co-study the hardware and software implementation of

the proposed architecture, incorporating the optical struc-

tures and constraints as well as their software embodiment.

• We demonstrate experimentally that the slimmed architec-

ture can lead to an area saving of 15%-38% and better ro-

bustness compared with the previous basic architecture with

minimal accuracy loss.

https://doi.org/10.1145/3287624.3287720

The remainder of this paper is organized as follows. Section 2

introduces the principles of ONN building blocks, followed by the

basic ONN architecture. Section 3 presents our slimmed architecture

and co-design details. Section 4 reports the experimental results

on MNIST dataset [18] for MLP neural network, followed by the

conclusion in Section 5.

2 BACKGROUND
In this section, we introduce the principles of the fundamental

optical components of optical neural network (ONN). Then the

standard ONN architecture is described.

2.1 Mach-Zehnder Interferometer
Mach-Zehnder interferometer (MZI) is the fundamental building

block of the optical neural network. Figure 1(a) shows the schematic

of a 2×2MZI. The working principle of MZI is based on interference

of light. Initially, two lights source from the inputs, entering the first

coupling region and split into the two arms of the interferometer by

the input coupler and re-combined by the output coupler. With the

phase difference (ϕ) induced by the coupling region in the middle,

MZI can provide constructive or destructive interference of the

two input lights. Specifically, suppose the input modal amplitudes

are y1 and y2 and output modal amplitudes are y′
1
, y′

2
; the transfer

relation of a 2 × 2 MZI can be written as(
y′
1

y′
2

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

) (
y1
y2

)
. (1)

Thus a response dependent on the phase difference (realized by a

phase shifter) is produced on the amplitude of the output light. The

phase difference ϕ is determined by ϕ = 2π/λ · ∆Nef f · L, where λ
is the light wavelength, Nef f is the effective refractive index for

the propagation mode of the waveguide and L is the sensitive arm

length. A heater or electrical signal can be employed to control the

phase shift by adjusting the effective refractive index Nef f , so that

the transfer behavior of MZI can be adjusted.

ϕ

input
coupler

output
coupler

(a)

…

……

Tn,1…
Tn,n-1

Tn-1,1…
Tn-1,n-2

T3,1…T3,2T2,1

(b)

Figure 1: (a) MZI schematic; (b) MZI array for unitary imple-
mentation.

2.2 ONN Architecture
The fundamental optical neural network [13] realizes the basic MLP

neural network. In MLP, each hidden layer is a fully connected layer.

The optical implementation of each layer is shown in Figure 2.

The fully connected layer has two parts: the linear part which

UV* Σinput actf… …… output

W = U Σ V*

Linear transform
(MZI array)

Non-linear
activation

(saturable absorber)

Figure 2: Basic ONN architecture layer.

realizes a weight matrixW and the non-linear part which realizes

an activation function.

To implement an m × n real weight matrix W for the linear

part, it is first decomposed into three matrices using singular value

decompositionW
svd

= UΣV ∗, whereU is anm ×m unitary matrix;

Σ is anm × n non-square diagonal matrix whose diagonal values

are non-negative real numbers called singular values; V ∗ is an
n×n unitary matrix. (·)∗ denotes the conjugate transpose. A square

matrix A is unitary if the product of it and its conjugate transpose

is an identity matrix, i.e., AA∗ = I . For real matrixW , bothU and

V ∗ are real and the conjugate transpose (·)∗ is equivalent to the

transpose operation. Note that V ∗ is denoted with the transpose

symbol as a convention; the physical implementation is directly

based on the unitary matrix V ∗, rather than based on V .

Each of the unitary transformationsU and V ∗ is implemented

with a triangular planar array with 2 × 2 MZIs shown in Fig-

ure 1(b). As can be verified, the transfer matrix of a 2 × 2 MZI

is a 2-dimensional unitary matrix denoted as SU (2). It is proved in

[14] that, by joining multiple SU (2) blocks into the triangular array,
we can realize any arbitrary n × n unitary matrix. In the planar

triangular array, each MZI is connected with the neighboring MZIs

and thus, each SU (2) will be extended to a special n-dimensional

matrix Ti j . Ti j is an n-dimensional identity matrix except for the

four elements at index (i, i), (i, j), (j, i) and (j, j), which are replaced
by SU (2) elements: cosϕ, sinϕ, -sinϕ, and cosϕ, respectively. It can
be seen thatTi j is also unitary. The array naturally implements a

matrix multiplication of the individualTi j transfer matrices. The re-

sultant n×n unitary matrix of the triangular MZI array is calculated

as [14, 16, 17]:

U (n) = D ·
2∏

i=n

i−1∏
j=1

Ti j . (2)

D is a square diagonal matrix. For real unitary matricesU and V ∗,
the elements of D are either 1 or −1. The values can be computed

simultaneously with the parameters ϕ’s ofTi j to satisfy the equa-

tion. Given a unitary matrix, the computation of the parameters is

derived from the following inductive relation:

T ∗n,n−1 ·T
∗
n,n−2 · · ·T

∗
n,1 ·U (n) =

(
U (n − 1), 0

0, ±1

)
.

The inverse of the consecutive termsT ∗n,n−1 ·T
∗
n,n−2 · · ·T

∗
n,1 corre-

sponds to a squared area as shown in Figure 1(b). Each ofT ∗n, j for

j = n − 1, · · · , 1, aims at transformingU (n) such that one element

in the last row and in the last column ofU (n) become zero. Based

on this, the corresponding ϕ is calculated. We can successively ap-

ply T ∗i j ’s so that the n-dimensional unitary matrix is reduced by

one dimension. The whole process is performed upon the (n − 1)-
dimensional matrix, etc. Finally, all the off-diagonal elements of the

given unitary matrix become 0 and all the phases for the triangular

array are decided. As a last step, the triangular array is combined

with the diagonal D. The 1 and −1 element of D are implemented

by a direct waveguide and a single π phase shifter, respectively.

As for the real non-negative diagonal matrix Σ which simply

performs a scaling operation, it can be implemented using optical

attenuators or optical amplification materials. The area overhead

of each attenuator is estimated to be the size of an MZI: indeed, if

the scaling factor is smaller than 1, we can readily use an MZI with

one of its outputs to realize it. It should be noted that the nonlinear

activation part is not easy to be fully integrated in optical domain.

The authors of [13] offered the saturable absorber as a potential

candidate to simulate the nonlinearity function in their experiment.

Based on Equation (2), an n × n unitary matrix needs n(n − 1)/2
MZIs and is the most costly block of the architecture. Given anm×n
layer weight matrixW , the number of the MZIs for the three parts

can be calculated asm(m − 1)/2, n and n(n − 1)/2, respectively.

3 SLIMMED ONN ARCHITECTURE
In this section, we discuss the details of the proposed architecture

from both hardware and software perspectives. The general archi-

tecture of a single fully connected layer is shown in Figure 3. The

linear weight matrix (W) of each layer is implemented by three

parts, a tree network (T), a unitary network (U) and a diagonal

network (Σ). Based on Figure 3, the transfer matrix of the linear

part is then

W = TUΣ.

The tree network allows sparse connections of the inputs and out-

puts of the network. We will discuss its physical implementation

as well as the setup and constraints for the training. The next two

blocks of the linear part, the unitary network and the diagonal net-

work, share the same physical implementation as their counterparts

of the basic neural network [13]. The difference from the basic ar-

chitecture is, in the training, their parameters are directly encoded

as training parameters and are decided by the training engine, so

that the neural network accuracy is optimized. Since the area bot-

tleneck comes from the unitary block, by skillfully eliminating one

of the unitary matrix, we are able to achieve area reduction.

input Diagonal
Network Σ

Unitary
Network U

Tree
Network T actf… ……

output
W = T U Σ

Figure 3: Proposed slimmed layer implementation.

3.1 Tree Network Construction
The goal of the tree network is two folds: to connect the inputs and

outputs which may have different dimensions, and to implement

the connection efficiently with MZIs. Assume that we have n input

andm output ports. The following discussion is based on the case

of n > m. If n ≤ m, we can straightforwardly connect the n inputs

to the first n of them outputs without losing the input information.

The connection can have different scaling factors which are decided

by the training process.

For the case of n > m, our goal is to construct a network that

is optically implementable and area-efficient. We propose the tree

network detailed as follows. We first divide the total n inputs into

m groups, each group corresponding to a subtree connected to one

output port. For the first (m − 1) groups, there are ⌊n/m⌋ inputs in
each individual group; while the residual inputs are contained in

the last group for them-th output. For each subtree, we connect the

first two inputs with a single-output MZI (2× 1MZI); the output of

their connection is subsequently joined with the third input, etc.,

until all the inputs are connected.

Figure 4 provides an example of a 7-input 3-output tree network.

It is shown that for the first 2 groups, each consists of ⌊7/3⌋ inputs;

their outputs are connected to the first and the second outputs

respectively. The residual 3 inputs are formed as a 2-level subtree;

the output of the subtree is then connected to the third output. In

this way, the first (m − 1) subtrees share the same tree-topology

and the regularity is enhanced for the ease of fabrication.

2nd subtree

1st subtree

in
pu

ts

ou
tp

ut
s

3rd subtree
in

pu
ts

ou
tp

ut
s

Figure 4: Tree network example.

The transfer matrix of the example tree network is provided as

follows, which has 3 rows and 7 columns:

α1,1 α1,2 0 0 0 0 0

0 0 α2,1 α2,2 0 0 0

0 0 0 0 α3,1 α3,2 α3,3

*.....
,

+/////
-

where α is employed to denote the transfer ratio, i.e., the modal

amplitude ratios, of the input and output of the subtrees. Specifically,

for each N × 1 subtree, the output y is a linear combination of the

input x ’s: y =
∑N
i=1 αi · xi , each xi being scaled by the modal

amplitude ratio αi . In the matrix, each box corresponds to one

subtree. Since the inputs of the subtrees are independent, for each

row which corresponds to an output, the non-zero α elements are

also column-wise independent. In other words, for each column,

there is at most one non-zero element. The resultant matrix is a

sparse matrix with at most n non-zero elements and the non-zero

items are distributed along the diagonal line of the matrix.

The tree network is realized by an MZI array. As briefly men-

tioned, the basic connection components are 2 × 1 MZIs. By using

the upper branch of the 2×2MZI, we obtain a 2×1MZI, the transfer

function of which is y1 = cosϕ · x1 + sinϕ · x2. Hence, the modal

amplitude ratio α1 = cosϕ and α2 = sinϕ.
Note that the necessary and sufficient condition of the modal am-

plitude ratios (α1, α2) of a feasible 2 × 1 MZI is α2
1
+ α2

2
= 1, for

−1 ≤ α1,α2 ≤ 1. In the physics perspective, the constraint can be

directly derived from the energy conservation constraint. Generally,

for a subtree with N inputs, the energy conservation requires that∑N
i=1 α

2

i = 1 with −1 ≤ αi ≤ 1. We can further prove that

Claim1. Given anN -input subtreewith arbitrarymodal amplitude

ratios satisfying the constraint

α1,α2, · · · ,αN , s .t .,
N∑
i=1

α2i = 1,−1 ≤ αi ≤ 1, i = 1, · · · ,N

we can implement it by cascading (N − 1) (2 × 1) MZIs, with N − 1
phases ϕ1,ϕ2, · · · ,ϕN−1.

In the other words, as long as the the energy conservation con-

straint is satisfied, it is always possible to use the proposed tree

structure to realize the given amplitude ratios. The claim can be

proved by mathematical induction and is omitted due to the page

limit. Hence, the area of this construction is upper bounded by the

dimension n. The best modal amplitude ratios αi ’s are determined

by training. The energy conservation constraint is also encoded

with these parameters and guaranteed. Once the amplitude ratios

are decided, the phase of each subtree component can be calculated

iteratively, from the deepest branch which is closest to the output

to the shallowest branch which is farthest to the output.

3.2 Unitary and Diagonal Block Construction
Following the tree network, the second and the third blocks of

the proposed architecture are the unitary block and the diagonal

block. The optical implementations follow the same as the basic

architecture. However, in order to save one unitary matrix, SVD

is not reflected in our physical architecture. On that account, the

software setup for the training is also changed. Basically, we will

apply the gradient descent optimization engine to train all the

parameters of the unitary block and the diagonal block as well.

For the unitary blockU , which is constrained byUU ∗ = I , we
add the regularization term

reд = ∥UU ∗ − I ∥F (3)

to the training objective that originally embodies the accuracy ob-

jective, where ∥·∥F is the Frobenius norm. This regularization will

impel the optimization engine to find a matrix that is close to a

unitary matrix. As shown in the experiments, the trained resultUt
can be sufficiently close to the real unitary. However, as only a true

unitary can be implemented by theMZI array, we further find a clos-

est unitary matrix by leveraging the software SVD-decomposition.

Specifically, the trained matrix is decomposed as

Ut
svd

= PSQ∗.

Since Ut is close to a unitary matrix, meaning that the column

vectors being close to orthogonal, the decomposed singular value

diagonal matrix S will be close to an identity matrix I . Therefore,
Ut can be approximated by

Ua = PQ∗. (4)

The matrices P andQ are true unitary and so is their productUa . As

for the effectiveness of this approximation, we have the following

claim.

Claim 2. To minimize the regularization term reд is equivalent to

minimize the Frobenius norm of the difference

ϵ := ∥Ut −Ua ∥F .

Proof. Rewriting the Frobenius norm with trace Tr ,

ϵ2 = ∥Ut −Ua ∥
2

F = Tr [(Ut −Ua) (Ut −Ua)
∗
]

= Tr (UtU
∗
t −UtU

∗
a −UaU

∗
t +UaU

∗
a)

= Tr (UtU
∗
t +UaU

∗
a) −Tr (UtU

∗
a +UaU

∗
t)

= Tr (UtU
∗
t + I) − 2 ·Tr (UtU

∗
a).

Once trained, the matrix Ut is fixed, so UtU ∗t remains constant.

Thus, the minimization of ϵ is equivalent to the maximization of

Tr (UtU ∗a). SubstituteUt = PSQ∗ and we obtain

Tr (UtU
∗
a) = Tr (PSQ

∗U ∗a) = Tr (SPQ
∗U ∗a). (5)

Let R := PQ∗U ∗a and denote the elements of R to be ri j ’s, the
singular values contained in S to be si ’s. Since R is unitary, each

element −1 ≤ ri j ≤ 1 must satisfy

∑
i |ri j |

2 = 1 for j = 1, · · · ,N .

Since the square matrixUt is real, the singular values si ’s are real
and positive. Equation (5) can be rewritten as: Tr (SR) =

∑N
i=1 sirii .

Thus, the maximum is obtained when rii = 1 for i = 1, · · · ,N ,

or equivalently, R being an identity matrix. By definition of R :=

PQ∗U ∗a , the best unitary approximation matrixUa = PQ∗. □

Thus, based on the true unitary matrixUa , we parameterize the

phases of the MZI array for constructing the unitary block. The

last block before the activation function is a diagonal block. The

dimension of the diagonal block is the same as the unitary block.

The diagonal elements are also encoded in training to optimize the

objective.

Dataset OutputONN of True W impl.

Approx. Param.

PQ* ϕi’s unitary
impl.unitary

Tr
ai

ne
d tree

diag

Cascade
(Matmul.)

Tree impl.Inductive constr.

Array
Constr.

Figure 5: Implementation setup.

The setup of our proposed architecture is summarized in Figure 5.

The three network blocks, tree, unitary and diagonal blocks, are

determined in the training. Given their trained transfermatrices: the

tree block is constructed by the inductively calucating the phase

of each subtree components; the trained unitary matrix is first

approximated by a true unitary Ua = PQ∗ and the phases ϕi ’s
are computed by parameterizingUa which form the MZI array in

implementation; the diagonal matrix is directly implementable with

MZIs and amplification materials/optical on-chip amplifiers. The

three implementations are cascaded together to form the physical

realization of the weight matrix for a fully connected layer; the

transfer matrix is the multiplication of the three individual matrices.

Finally, the calculated transfer matrix is applied to each layer for

experimental evaluation. Given an n-inputm-output weight matrix,

the area in terms of the number of the MZIs for the three parts

is upper bounded by n, n(n − 1)/2 and n. Compared to the basic

architecture [13], the saving comes from the elimination of a unitary

matrix, which requires O(m2) number of MZIs.

4 EXPERIMENTAL RESULTS
We implemented the proposed architecture in Tensorflow and tested

it on a machine with an Intel Core i9-7900X CPU and an NVIDIA

TitanXp GPU. The experiments were conducted on the machine

learning dataset MNIST [18]. We also implemented the neural net-

work model of different sizes, detailed in Table 1. We assume both

the proposed architecture and the previous architecture use the

ideal Relu activation. Both architectures are trained for 300 epochs,

where the original architecture can converge and our architecture

can achieve a satisfactory solution balancing the accuracy and the

unitary approximation effectiveness.

In Table 1, the first column shows the neural network setup,

with different numbers of layers and dimensions considered. The

output dimensions for the input and each fully connected layer are

listed. For example, (14 × 14)-100-10 means the input layer has a

dimension of (14 × 14); then follows a fully connected layer whose

output dimension is 100, meaning the matrix size of the transfer

function is (14× 14)×100; and finally, a fully connected layer whose

output dimension is 10, which is the number of classes of the dataset,

the matrix size being 100 × 10. Note that the original dimension

for the MNIST image dataset is (28 × 28). We use max-pooling to

downsize the images in order to produce a small size network for

a better evaluation covering different neural network expressivity.

Generally, a higher-dimensional layer has a higher expressivity, in

terms of how many functions or distributions it is able to learn.

Nonetheless, a smaller neural network is still preferred due to its

lower computational or implementation cost.

In columns 2-4, the test accuracy of the basic architecture [13]

and our architecture are listed. For our architecture, both the ac-

curacy directly achieved by the trained unitary Ut and the true

implementable unitaryUa are presented. Comparing the test accu-

racy of the previous architecture and our architecture (usingUa),

the greatest degradation of all the setup is a negligible 0.0088. The

average as computed in the last row is 0.0058. The accuracy differ-

ence between using the trained unitaryUt and the true unitaryUa
is also small, with the maximum value as 0.0002, which proves the

effectiveness of the approximation.

In columns 5-7, the number of MZIs for both architectures and

their ratios are computed. As discussed in Section 3, the main saving

of our architecture comes from the elimination of an MZI-intensive

array for each fully connected layer. For different neural network

setup, the saving varies from 15% to 38%. The average saving is

28.7%. Columns 8 and 9 display the effectiveness of approximating

the unitary. Column 8 shows the closeness of the trained unitaryUt
to the true unitary, by calculating ∥UtU ∗t − I ∥F ; Column 9 shows

the closeness of the unitary approximationUa to the trainedUt , by

calculating ∥Ua −Ut ∥F . These values intend to provide the refer-

ence for selecting the number of training epochs for the correspond-

ing network setup. Finally, the time for training our architecture

for each epoch is listed in seconds in the last column. Due to the

0 50 100 150 200 250 300
of epoch

0.0

5.0

10.0

15.0

20.0

Re
gu

la
ri

za
ti

on

0.910
0.920
0.930
0.940
0.950
0.960
0.970
0.980

Te
st

 a
cc

ur
ac

y

(a)

0 50 100 150 200 250 300
of epoch

0.0

10.0

20.0

30.0

40.0

Re
gu

la
ri

za
ti

on

0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980

Te
st

 a
cc

ur
ac

y

(b)

0 50 100 150 200 250 300
of epoch

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

Re
gu

la
ri

za
ti

on

0.880
0.900
0.920
0.940
0.960
0.980

Te
st

 a
cc

ur
ac

y

(c)

Figure 6: Training curve for ONN setup (a) (28×28)-400-10 (b)
(28×28)-600-300-10 (c) (28×28)-600-600-300-10.

special software implementation and the extra regularization, the

training time is generally longer than that of the plain architecture.

Figure 6 plots the three training curves for three ONN settings:

(28 × 28)-400-10, (28 × 28)-600-300-10 and (28 × 28)-600-600-300-

10. The blue curves (left y-axis) correspond to the regularization

defined by Equation (3) and the black dashed curves (right y-axis)
correspond to the test accuracy. We can see that at the early stage,

the accuracy and regularization curves both oscillate greatly until

at the later stage a balance is reached with high test accuracy and

relatively low regularization, which suffices to meet the required

approximation effectiveness.

The last set of experiments studies the robustness advantage of

a slimmed architecture. Similar to other common neuromorphic

computing hardwares, the ONN hardwares, especially the phases

of the MZIs, are also exposed to the problem of noise, such as

manufacturing imperfectness and temperature crosstalk [13]. This

set of experiments intends to demonstrate that by decreasing the

number of optical components, the neural network robustness can

also be improved. As depicted in the box plots of Figure 7, there are

three random noise amplitude settings imposed upon the phases

of MZI: 0.020, 0.025 and 0.050. Each conforms with a truncated

norm distribution. For each noise setting, we generate 20 noisy

Table 1: Experimental Results for Different ONN Setups.

ONN setup

testing accuracy # of MZIs approx. results

epoch time

prev. [13] ours (Ut) ours (Ua) ours prev. [13] #ratio Ut ∼unitary Ua ∼ Ut

(14 × 14)-100-10 0.9744 0.9668 0.9668 24652 29165 84.53% 0.0879 0.0439 7.51

(14 × 14)-150-10 0.9772 0.9684 0.9684 30977 41665 74.35% 0.1083 0.0542 10.05

(28 × 28)-400-10 0.9834 0.9772 0.9772 389104 466991 83.32% 0.3800 0.1900 22.33

(14 × 14)-150-150-10 0.9753 0.9690 0.9690 42302 64165 65.93% 0.1562 0.0781 10.02

(28 × 28)-400-400-10 0.9827 0.9776 0.9774 469304 626991 74.85% 0.4426 0.2214 24.32

(28 × 28)-600-300-10 0.9824 0.9782 0.9781 534854 756991 70.66% 0.4524 0.2262 70.53

(14 × 14)-150-150-150-10 0.9787 0.9756 0.9756 53627 86665 61.88% 0.1864 0.0932 11.49

(28 × 28)-400-400-200-10 0.9822 0.9777 0.9776 489604 666991 73.40% 0.5575 0.2787 41.45

(28 × 28)-600-600-300-10 0.9820 0.9763 0.9764 715154 1116991 64.03% 0.5917 0.2959 70.87

average 0.9799 0.9741 0.9741 305509 428513 71.30% 0.3292 0.1646 29.84

0.02 0.025 0.05
Noise Amplitude

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

Ac
cu

ra
cy

(a)

0.02 0.025 0.05
Noise Amplitude

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

Ac
cu

ra
cy

(b)

Figure 7: Noise robustness of (a) the previous architecture
(b) the proposed architecture with the (14×14)-150-150-10
setup.

samples for both the previous architecture (Figure 7(a)) and the

slimmed architecture (Figure 7(b)). Taking (14 × 14)-150-150-10 as

an example, it can be seen that the accuracy distribution of the

slimmed architecture not only has higher average and geometric

means but also a smaller variation range between the best and

worst among all the samples.

5 CONCLUSION
In this work, we study the hardware-software co-design of a slimmed

architecture for optical neural networks. The proposed methodol-

ogy directly considers the structures and constraints of the optical

hardware implementation during the software training process.

The slimmed architecture contains a sparse tree network block, a

single unitary block and a diagonal block for each neural network

layer. The new design reduces the number of the MZI-intensive

unitary blocks in the previous architecture, leading to a smaller

optical hardware implementation. The reduction of the cascaded

optical components also brings about better robustness against

MZI-related noise.

ACKNOWLEDGEMENT
The authors acknowledge theMultidisciplinary University Research

Initiative (MURI) program through the Air Force Office of Scientific

Research (AFOSR), contract No. FA 9550-17-1-0071, monitored by

Dr. Gernot S. Pomrenke.

REFERENCES
[1] D. A. Miller, “Attojoule optoelectronics for low-energy information processing

and communications,” Journal of Lightwave Technology, 2017.
[2] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman,

J. M. Shainline, R. R. Avizienis, S. Lin et al., “Single-chip microprocessor that

communicates directly using light,” Nature, 2015.
[3] C. Condrat, P. Kalla, and S. Blair, “Logic Synthesis for Integrated Optics,” in

Proc. GLSVLSI, 2011.
[4] R. Wille, O. Keszocze, C. Hopfmuller, and R. Drechsler, “Reverse BDD-based

Synthesis for Splitter-free Optical Circuits,” in Proc. ASPDAC, 2015.
[5] Z. Zhao, Z. Wang, Z. Ying, S. Dhar, R. T. Chen, and D. Z. Pan, “Logic synthesis

for energy-efficient photonic integrated circuits,” in Proc. ASPDAC, 2018.
[6] Z. Ying, Z. Wang, Z. Zhao, S. Dhar, D. Z. Pan, R. Soref, and R. T. Chen, “Silicon

microdisk-based full adders for optical computing,” Optics letters, 2018.
[7] D. Ding, B. Yu, and D. Z. Pan, “GLOW: A global router for low-power thermal-

reliable interconnect synthesis using photonic wavelength multiplexing,” in

Proc. ASPDAC, 2012.
[8] D. Liu, Z. Zhao, Z. Wang, Z. Ying, R. T. Chen, and D. Z. Pan, “OPERON: optical-

electrical power-efficient route synthesis for on-chip signals,” in Proc. DAC, 2018.
[9] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic in-

formation processing at gigabyte per second data rates using transient states,”

Nature communications, 2013.
[10] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, and D. Brunner,

“Reinforcement learning in a large-scale photonic recurrent neural network,”

Optica, 2018.
[11] D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance

photonic pulse processing device,” Optics Express, 2009.
[12] A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight:

an integrated network for scalable photonic spike processing,” Journal of Light-
wave Technology, 2014.

[13] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun,

S. Zhao, H. Larochelle, D. Englund et al., “Deep learning with coherent nanopho-

tonic circuits,” Nature Photonics, 2017.
[14] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization

of any discrete unitary operator,” Physical review letters, 1994.
[15] A. Ribeiro, A. Ruocco, L. Vanacker, and W. Bogaerts, “Demonstration of a 4 ×

4-port universal linear circuit,” Optica, 2016.
[16] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A.

Walmsley, “Optimal design for universal multiport interferometers,” Optica, 2016.
[17] D. A. Miller, “Perfect optics with imperfect components,” Optica, 2015.
[18] Y. LeCun, “The MNIST database of handwritten digits,” http://yann.lecun.com/

exdb/mnist/, 1998.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

