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Abstract—In advanced technology nodes, layout decomposition and
mask optimization are two key stages in integrated circuit design. Due
to the inconsistency of the objectives of these two stages, the performance
of conventional layout and mask optimization may be suboptimal. To
tackle this problem, in this paper we propose a unified framework, which
seamlessly integrates layout decomposition and mask optimization. We
propose a gradient based approach to solve the unified mathematical
formulation, as well as a set of discrete optimization techniques to avoid
being stuck in local optimum. The conventional optimization process can
be accelerated as some inferior decompositions can be smartly pruned
in early stages. The experimental results show that the proposed unified
framework can achieve more than 17× speed-up compared with the
conventional two-stage flow, meanwhile it can reduce EPE violations by
18%, and thus maintain better design quality.

I. INTRODUCTION

In accordance with the Moore’s law, through extreme scaling, the

transistor number on a chip has increased exponentially in the last

five decades. However, the continued scaling of the transistor feature

size has pushed the conventional 193nm wavelength lithography

system into its resolution limit, thus the whole semiconductor

industry is facing severe manufacturing challenges [1]. To overcome

these issues, resolution enhancement techniques (RETs) on layout

and mask levels toward better printability and yield are of great

importance [2].

Two of the most critical RET stages are layout decomposition and

mask optimization. In the first stage, layout decomposition divides

target image into several masks so that the coarser pitches on every

mask can be manufactured through 193nm wavelength lithography.

According to different processes, layout decomposition can be clas-

sified into litho-etch-litho-etch (LELE)-type or spacer-type [1]. Since

LELE-type manufacturing process can support complex and flexible

design patterns, in this work we concentrate on LELE-type layout

decomposition. Depending on the total mask number available, the

problem is also called double patterning layout decomposition (two

masks) or triple patterning layout decomposition (three masks). In

the second stage, each decomposed mask needs to be further refined

by mask optimization, e.g., optical proximity correction (OPC), to

reduce edge placement error (EPE). Finally, all optimized masks go

through lithography process separately, then all printed images are

combined together to generate target.

In emerging technology nodes, the conventional two-stage flow

(i.e., layout decomposition followed by mask optimization) cannot

achieve good printability on their own. The reasons are two-fold.

(1) The layout decomposition and mask optimization are separated

from each other and each problem is solved independently, which

may lose a global view. (2) Due to the inconsistency between the ob-

jectives of the two stages, decomposed results with identical quality

This work is supported in part by The Research Grants Council of Hong
Kong SAR (Project No. CUHK24209017).

Target

LD

MO

Printed
Image

(a) (b)

Fig. 1: Same quality layout decompositions (LD) can achieve

different EPE violation number after mask optimization (MO):

(a) Solution 1 with #EPE violation = 3; (b) Solution 2 with

#EPE violation = 1.

may cause diverse printed image qualities after mask optimization.

That is, the layout decomposition is based on simple design or color-

ing rules, which are just coarse regression of complicated lithography

model; while the mask optimization is verified by accurate and

sophisticated lithography simulation. Fig. 1 gives an example on

such inconsistency. Given the identical target, two different layout

decomposition results are found (LD stage in the figures), and both

of them satisfy all design rules and coloring rules. After the mask

optimization (MO stage in the figures) on each mask, however, it

can be observed that the qualities of the printed images are diverse:

Fig. 1(a) has three EPE violations, while Fig. 1(b) has only one EPE

violation. Therefore, there is an increasing need to bridge the gap

between layout decomposition and mask optimization by a unified

design framework.

There is a wealth of literature on LELE-type layout decom-

position. The general layout decomposition problem minimizing

both conflict and stitch can be optimally solved through integer

linear programming (ILP) [3]–[5]. Due to the computationally in-

tractable of ILP solutions, there are several speed-up techniques

under different scenarios. For the double patterning scenario, Xu

et al. [6] formulated the problem into a maximum-cut problem and

proposed an ILP formulation on stitch minimization, while Tang et
al. [7] computed a stitch graph and proved that the stitch graph

is planar, and proposed min-cut-based approaches to minimize the

stitch number optimally. For the triple patterning or general multiple

patterning scenarios, Yu et al. proposed semidefinite programming

(SDP) formulation to achieve reducing the ILP formulation [5],

[8]; Fang et al. [9] discussed several graph division techniques and
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proposed a stitch-aware mask assignment algorithm which can find

the mask assignment such that the conflicts in the same mask are

more likely to be resolved by inserting stitches; Tian et al. [10]

proposed a polynomial time algorithm for row based design and

the mask assignment was found by searching for a shortest path;

Lin et al. [11] developed a linear programming based relaxation;

Kuang et al. [12] applied efficient graph matching. Chang et al. [13]

considered more complex coloring rules for triple patterning layout

decomposition, where the graph coloring problem was reduced to

an exact cover problem. Kuang et al. [14] applied fixed-parameter

tractable (FPT) algorithm to layout decomposition. There are few

studies considering the quality of printed images in the early layout

decomposition stage. Yu et al. [15] optimized the local balanced

density, while Chen et al. [16] introduced the concept of spacing

based density. However, both density measurements are just coarse

estimate of complicated lithography model, thus their fidelities to

the mask optimization are not guaranteed.

There are also investigations on mask optimization or OPC,

which can be classified into three types: rule-based OPC, model-

based OPC, and inverse lithography technique (ILT). Rule-based

OPC requires comprehensive experiments determining design rules

to compensate non-desired patterns, thus can only be applied to

less aggressive designs [17]. Model-based OPC segments pattern

edges into small parts and moves them slightly to make corrections

for printed images. However, it is heavily based on lithography

simulation so usually is time-consuming [18]–[20]. ILT has become

a promising OPC solution, which handles the mask optimization as

an inverse problem of the lithography system. Poonawala et al. [21]

proposed a systematic formulation; Jia et al. [22] applied a stochastic

gradient descent method to update the mask in each iteration; Gao et
al. [23] proposed a speed-up technique for lithography simulation as

well as a formulation for accurate EPE calculation. Note that some

previous literatures [24]–[26] studied multiple exposure effects in

ILT framework, but none of them addressed the layout decomposi-

tion problem because they only considered the multiple exposures

on a single mask.

In this paper, we propose a unified optimization framework which

aims at solving layout decomposition and mask optimization simul-

taneously. Combining the two processes together leads to a larger

solution space, which has potential to search for a higher quality

mask design. In addition, through effective pruning techniques, our

framework can avoid exhaustive mask optimization on all layout

decomposition solutions, therefore the overall efficiency can be

significantly improved. The main contributions of this work are listed

as follows.

• To the best of our knowledge, this is the first work handling

multiple patterning layout decomposition and mask optimiza-

tion simultaneously.

• We propose a unified mathematical formulation and then de-

velop a gradient-based optimization approach.

• We further apply a set of discrete optimization techniques (e.g.,

semidefinite programming, randomized rounding, and pruning)

to avoid being stuck in local optimum.

• The experimental results verify the effectiveness of the pro-

posed framework.

The rest of the paper is organized as follows. Section II introduces

the lithography models and gives the problem formulation. Section

III describes the algorithmic details in our framework. Section IV

lists the experimental results to support our ideas and methodologies,

followed by conclusion in Section V.

TABLE I: Notations used in this paper.

Zt Target image
M1, M2 Output masks
P1, P2 Unconstrained variables
I1, I2 Aerial images
Z1, Z2 Binary images

Z Printed image
H A set of optical kernels {h1, . . . ,hK}
H∗ The conjugate transpose of H
� Element-wise matrix multiplication operator
⊗ Convolution operator

Target contour

Printed image

Measure point

EPE violation EPE

Fig. 2: Illustration of EPE measurement.

II. PRELIMINARIES

In this section, we provide some preliminaries on lithography

models, and then introduce the problem formulation. For conve-

nience, some notations used in this paper are listed in TABLE I.

Note that in this paper we focus on double patterning scenario, but

the problem formulation and the corresponding methodologies can

be extended to triple patterning counterpart.

A. Forward Lithography Models

Two models are needed to transform mask patterns into printed

image: optical lithography model and photo resist model. First, an

aerial image is generated by convolving the mask with a set of optical

kernels [27], which is represented as

I = foptical(M) =

K∑
k=1

wk · |M⊗ hk|2, (1)

where hk is the k-th optical kernel, wk is the weight of hk, and K
is the total kernel number.

Then a resist model is applied to the aerial image. In our work

a constant threshold resist model is used, which sets an intensity

threshold Ith to binarize the aerial image, denoted by Z in the

following equation.

Z(x, y) = fresist(I) =

{
1, if I(x, y) ≥ Ith,

0, otherwise.
(2)

Finally, binary images Z1 = fresist(I1) and Z2 = fresist(I2) are

combined to form the printed image. Considering that the printed

image is binary as well, the process can be represented by performing

logical OR operation as follows:

Z(x, y) = Z1(x, y) ∨ Z2(x, y). (3)

B. Problem Formulation

Given a target layout and the printed image, the edge placement

error (EPE) is defined as follows.

Definition 1 (EPE). EPE is defined as the geometric displacement
of the image contour from the edge of target image on the layout. A
violation is introduced if the perpendicular displacement is greater
than an EPE threshold value.

In our implementation, the EPE threshold value is set to 10nm.

An example of our EPE measurement is given in Fig. 2: to facilitate
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the computation, a set of measure points are sampled on each edge

and EPE violation will be checked at the measure points.

Based on the above notations, the problem of layout decomposi-

tion and mask optimization (LDMO) is defined as follows.

Problem 1 (LDMO). Given target image Zt, two optimized masks,
M1 and M2, are generated. The objectives are to minimize the
difference between the final printed image Z and the target image
Zt, meanwhile minimize the number of EPE violations.

III. ALGORITHMS

A. Mathematical Formulation

Since we are seeking a pair of masks which can form printed

image with high fidelity, the LDMO problem can be formulated as

an optimization problem as follows.

min
M1,M2

F = ‖Zt − Z‖22 (4)

s.t. M1(x, y) ∈ {0, 1}, ∀x, y, (4a)

M2(x, y) ∈ {0, 1}, ∀x, y, (4b)

I1 =

K∑
k=1

wk · |M1 ⊗ hk|2, (4c)

I2 =
K∑

k=1

wk · |M2 ⊗ hk|2, (4d)

Z = fresist(I1) ∨ fresist(I2). (4e)

The problem is strongly non-convex with discrete constraints, thus

is hard to be solved directly. In this section, we propose a unified

flow for solving the LDMO problem.

B. Numerical Optimization

Gradient-based method has been widely adopted in solving nu-

merical optimization problems. However, there are non-differentiable

discrete constraints in our formulation. Therefore, it is necessary to

do relaxation before deriving the gradient.

In the formulation of LDMO, the variables M1, M2, Z1, and Z2

are binary, which are non-differentiable. One possible method is to

relax them into floating values with a feasible region of [0,1], which

cannot be solved by gradient-based method directly. Alternatively,

the binary constraints can be replaced with sigmoid function for

relaxation so that the variables become unconstrained, and hence

convenient to derive the gradient. To apply sigmoid function, we

need to introduce new variables P1 and P2. Then M1 and M2

can be relaxed by applying sigmoid function on P1 and P2,

respectively (see Equations (5) and (6)).

M1(x, y) = sig(P1(x, y)) =
1

1 + exp[−θMP1(x, y)]
, (5)

M2(x, y) = sig(P2(x, y)) =
1

1 + exp[−θMP2(x, y)]
. (6)

Similarly, the sigmoid function can be applied to I1 and I2 to

relax Z1 and Z2 as shown in Equations (7) and (8). θM and θZ are

user-defined parameters which represent the steepness of sigmoid
functions, and Ith is the threshold in the resist model.

Z1(x, y) = sig(I1(x, y)) =
1

1 + exp[−θZ(I1(x, y)− Ith)]
, (7)

Z2(x, y) = sig(I2(x, y)) =
1

1 + exp[−θZ(I2(x, y)− Ith)]
. (8)

Note that Z is also a binary value, but different from Z1 and Z2,

it is calculated by logical OR. We relax constraint (4e) to

Z(x, y) = min{Z1(x, y) + Z2(x, y), 1}. (9)

0 0.5 1 1.5 2
0

0.5

1

Z1(x, y) + Z2(x, y)

Z
(x
,y
)

Fig. 3: Relation between Z(x, y) and Z1(x, y) + Z2(x, y).

Considering that the maximum value of Z before relaxation is 1,

here we set an upper bound to 1, which may reduce the error when

calculating the objective value. The relation between Z(x, y) and

(Z1(x, y) + Z2(x, y)) is shown in Fig. 3. Then it is easy to derive

the gradient formulation of Z with respect to Z1 and Z2, denoted

by B, which is given by

∂Z(x, y)

∂Z1(x, y)
=

∂Z(x, y)

∂Z2(x, y)
=B(x, y) =

{
1, if Z(x, y) ≤ 1,

0, otherwise.
(10)

After relaxation, we can formulate the relaxed LDMO problem as

follows.

min
P1,P2

F = ‖Zt − Z‖22 (11)

s.t. (4c) − (4d), (5) − (9).

Now variables P1 and P2 are unconstrained, and functions in

Equations (5)–(9) are differentiable. We obtain the gradient accord-

ing to the chain rule.

∂F

∂P1(x, y)
=

∂
∑

i,j(Zt(i, j)− Z(i, j))2

∂P1(x, y)

= 2
∑
i,j

(Z(i, j)− Zt(i, j)) · ∂Z(i, j)

∂Z1(i, j)
· ∂Z1(i, j)

∂P1(x, y)
, (12)

where

∂Z1(i, j)

∂P1(x, y)
= θMθZZ(i, j)(1− Z(i, j))

×{[M1(i, j)⊗H∗(i, j)]H(i− x, j − y)

+ [M1(i, j)⊗H(i, j)]H∗(i− x, j − y)}
×M1(i, j)[1−M1(i, j)]. (13)

Then we can compute the gradient of F with respect to P1 and P2

as follows.

∇P1F = 2θMθZ ×M1 
 (1−M1)

{H⊗ [(Z− Zt)
B
 Z
 (1− Z)
 (M1 ⊗H∗)]+

H∗ ⊗ [(Z− Zt)
B
 Z
 (1− Z)
 (M1 ⊗H)]},
(14)

∇P2F = 2θMθZ ×M2 
 (1−M2)

{H⊗ [(Z− Zt)
B
 Z
 (1− Z)
 (M2 ⊗H∗)]+

H∗ ⊗ [(Z− Zt)
B
 Z
 (1− Z)
 (M2 ⊗H)]}.
(15)

The numerical optimization algorithm is described in Algorithm 1.

First we initialize P1 and P2, the maximum iteration number N and

the tolerance ε (line 1). An intuitive initial solution is that P1 and P2

are initialized so that the corresponding M1 and M2 are identical

to the target image. In each iteration, the printed image is obtained
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Algorithm 1 Numerical Optimization Flow

1: Initialize P1, P2, maximum iteration N , tolerance ε;
2: for i = 1, · · · , N do
3: Compute the printed image according to current P1 and P2;

4: if mod(i, w) == 0 and printed image is illegal then
5: Discrete optimization ; � Section III-D

6: else
7: MaskUpdate(P1, P2); � Algorithm 2

8: if RMS(∇P1F ) +RMS(∇P2F ) ≤ ε then
9: break;

10: end if
11: end if
12: end for

Algorithm 2 Gradient-Based Mask Update

1: function MaskUpdate(P1, P2)

2: Initialize stepsize t;
3: Compute the relaxed masks M1,M2;

4: Compute Z according to current P1 and P2;

5: Compute the gradient ∇P1F , ∇P2F through Equa-

tions (4c)–(4e), (14)–(15);

6: P1 ← P1 − t×∇P1F ;

7: P2 ← P2 − t×∇P2F ;

8: return P1,P2, ∇P1F , ∇P2F ;

9: end function

based on variables P1 and P2 (line 3). The violation checking will

be carried out by every w iterations, which will be introduced in

Section III-C. If the printed image is illegal, a discrete optimization

step will be executed, which will be introduced in Section III-D.

Otherwise, the function MaskUpdate will be called to update the

masks. To save the runtime, the loop will exit early if the sum of the

root mean square (RMS) of the gradient is less than a tolerance ε,
which indicates that the objective function may be very close to the

optimal value. The loop will finally terminate when the maximum

number of iteration N is achieved. In our implementation, w is set

to 3. N is set to 20. θM and θZ are set to 85 and 4, respectively.

The procedure for mask update is described in Algorithm 2. To

derive the gradient, the lithography simulation is conducted first to

compute the corresponding printed image based on current masks

(line 4). Next, gradient of objective F with respect to P1 and P2

are computed (line 5), followed by variables update (lines 6–7). In

our implementation, the tolerance ε is set to 0.01 and stepsize t is

set to 0.4.

C. Violation Detection

Since there may exist conflicting patterns in the mask, the printed

image must be illegal and it is difficult to be legalized only through

gradient-based optimization. Intuitively, the violation can be resolved

if the violated patterns are assigned to different masks. However, we

need to locate where the violations occur. To do so, a Hanan-like

grid is built based on the geometry of the bounding box of each

target image. Each bounding box shares the same centroid with the

pattern inside. Considering that the further assignment is also based

on the grid and extra pattern may be generated around the original

pattern during the mask optimization, each bounding box is set to

be a bit larger than the pattern. In our implementation, the extra

width and extra height are both set to 20nm. All the grids are then

categorized into pattern grid and spacing grid depending on their

positions on the target image. Different from conventional Hanan

grid in which all the grids are aligned horizontally and vertically,

V

V

H

D

D

Pattern grid Spacing grid V HD Horizontal VerticalDiagonal

Merged spacing grid

Fig. 4: Pattern grids and spacing grids.

Printed image

Violation

PG

PG

PG PG

PG

PG

PG Pattern grid

Fig. 5: Different kinds of violation.

the adjacent pattern grids in our Hanan-like grid will be merged

so that a single pattern will not be split by grids. In addition, the

spacing grids between two patterns are also merged into one grid.

The orientation of each merged spacing grid is set according to its

relative position to the two pattern grids, as shown in Fig. 4. The

H, V and D in Fig. 4 represent the orientation of horizontal, vertical

and diagonal, respectively.

As mentioned before, the violation checking is conducted by every

w iterations rather than by each iteration such that the efficiency of

the whole flow is maintained. The violation detection is performed

through the following way. The printed image is first mapped to

the Hanan-like grids. Since all the violations happen at the region

between patterns, i.e., the spacing grids, we only check the spacing

grids between two patterns (see Fig. 5). Next, we initialize a matrix

A with the same size of the grid so that each pixel in the grid

corresponds to an entry of A. Then we find all printable pixels in the

grid and set the corresponding entries of the matrix to 1 and set the

rest of the entries to 0. An intuitive observation is that a horizontal

or vertical violation is caused by a printable line in spacing grids

which connects an edge to the opposite side. Diagonal violation is

due to the printable lines diagonally connecting two corners. For

vertical or horizontal violation, we can check the sum of each row

and each column of the matrix A. Combined with the orientation,

the violation can be determined. If the sum of one row is equal

to the width W or the sum of one column is equal to the height

H , there exists a violation. For diagonal violation, we compute the

diagonal length of diagonal spacing grid. If the diagonal length is

less than a spacing threshold, there is a diagonal violation. In our

implementation, the threshold is set as 110nm.

D. Discrete Optimization

The masks M1 and M2 are updated in each iteration to reduce

the objective value. Since LDMO is a highly non-convex problem,

the gradient-based method can only achieve local optimum with

poor quality. One reason is that the gradient-based method actually

performs a greedy search and it is hard to escape from local

optimum. To tackle this problem, we further propose a discrete

optimization method to collaborate with the numerical optimization

flow.

The main goal of LDMO problem is to resolve violations in

the printed image and reduce EPE violation number. Generally,

resolving violations can be achieved by assigning violated pattern
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Fig. 6: Graph construction based on printed image; (a) Pattern on

the mask and lithography printed image with EPE violations; (b)

Corresponding weighted graph.

violation edge 

EPE edge
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4 5

W =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 β
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
β 0 0 1 0

⎤
⎥⎥⎥⎥⎦

Fig. 7: The conflict graph and the corresponding weighted matrix

W.

grids to different masks. However, since the correlation between EPE

violation and the distribution of patterns is unknown, it is difficult

to derive a mathematical formulation to bridge the gap.

To overcome this issue, in this work we develop a discrete

optimization approach seeking a two-way partitioning of the pattern

grids considering image violation and EPE violation. Note that the

proposed approach here can be easily extended to handle triple

patterning lithography, where a three-way partitioning is adopted.

With the position of printed image violation and the position of EPE

violation, a weighted graph G(V,E) can be constructed, where the

vertex vi represents i-th pattern grid and the edges with weight 1

connecting two vertices are conflict with each other. In addition, we

add edges with weight β between the vertices which have large EPE,

where 0 < β < 1. Therefore, the objective of discrete optimization is

to find a cut of the graph so that total weight of the edges between the

cut and its complement is maximized. We use a vector x to denote

the assignment of pattern grids, where xi = 1 means vi is assigned

to mask 1 and xi = −1 means vi is assigned to mask 2. Then the

two-way partitioning problem can be formulated as follows.

max
x

∑
(i,j)∈E

wij(1− xixj) (16)

s.t. xi ∈ {−1, 1}, ∀vi ∈ V, (16a)

where wij defines the edge weight as follows.

wij =

⎧⎪⎨
⎪⎩

1, if vi and vj have conflict,

β, if vi and vj both have large EPE,

0, otherwise.

(17)

In our implementation, if the sum of EPE violations of two grids is

greater than seven and they are not violated patterns, they will be

connected by an edge of weight β, and β is set as 0.1.

Formulation in (16) can be approximated to a semidefinite pro-

gramming (SDP) with below formulation, which can be solved

efficiently while maintaining high accuracy.

min
X

W •X (18)

s.t. diag(X) = e, (18a)

X � 0, (18b)

where e = [1, 1 . . . , 1]ᵀ.

The optimal solution X∗ of Problem (18) need not to be in the

form of xxᵀ, and hence it does not yield a feasible solution to

Problem (16) immediately. However, we can extract from X∗ a

solution via randomized rounding [28]. First, we compute Cholesky

factorization X∗ = UᵀU of X∗. The i-th column of U, denoted

by ui, corresponds to the assignment of grid i. Let r be a vector

uniformly distributed over the unit sphere (i.e., ‖r‖2 = 1). Then we

can set xi as follows.

xi = sgn(uᵀ
i r) =

{
1, if uᵀ

i r ≥ 0,

−1, otherwise.
(19)

In other words, we partition the grids according to whether their

corresponding vectors lie “above” or “below” the hyperplane. The

girds are therefore assigned to different masks according to the value

of xi.

An example of graph construction is given in Fig. 6 and Fig. 7.

After solving the SDP, the solution X∗ and U are given by

X∗ =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 −1
0 1 −1 0 0
0 −1 1 0 0
1 0 0 1 −1
−1 0 0 −1 1

⎤
⎥⎥⎥⎥⎦
,U =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 −1
0 1 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
.

With a random vector r = [r1, r2 · · · r5]ᵀ and Equation (19), vector

x is obtained by

x = [sgn(r1), sgn(r2), sgn(−r2), sgn(r1), sgn(−r1)]
ᵀ. (20)

By solving SDP we can obtain multiple solutions which are

useful to avoid being stuck in local optimum during the succeeding

numerical optimization process. Furthermore, the runtime cost of

solving SDP is much smaller than lithography simulation. Therefore,

SDP is an efficient method for our discrete optimization. Once the

SDP is solved, we can obtain multiple solutions for x. Then all

these obtained solutions are further optimized through numerical

optimization flow without violation checking, where these solutions

will go through a pruning process and suboptimal ones will be

removed. The detailed procedure is shown in Algorithm 3. Firstly,

an empty set P is initialized to store the potential solutions (line 1).

Then S solutions are obtained by randomized rounding, from which

we can get the corresponding assignment solution for two masks, i.e.,

P1 and P2. Each pair of P1 and P2 is treated as a 2-tuple which is

stored in P (lines 2–6). Next, gradient-based mask update illustrated

in Algorithm 3 is performed for T iterations for each solution in P.

After that, the number of EPE violations of all the solutions will be

compared and half of the solutions with larger EPE violation will be

discarded (lines 8–14). The pruning process will be repeated until

only one element in P is left. In order to balance the runtime and

performance, T and S are both set to 5 in our implementation.

E. Overall Flow

From the problem formulation, it is clear that the LDMO is

a strongly non-convex problem without analytic structure, which

makes LDMO numerically hard to solve. In order to solve the

problem, we design a unified optimization flow which includes a

numerical optimization flow and a discrete optimization flow. These

two engines are collaborative with each other. Basically, the masks

are optimized numerically with gradient-based optimization. Once

the violation is detected in the printed image, another SDP-based

discrete optimization engine is triggered to resolve the violations.

Multiple solutions are obtained from the solution of SDP, which can

help to jump out of local optimum and act as a guidance of numerical
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Algorithm 3 Pruning

Require: SDP solution X∗.

Ensure: P1, P2.

1: Initialize set P;

2: for i ← 1, · · · , S do
3: Randomized rounding; � Equation (19)

4: Get corresponding Pi
1, Pi

2; � {P1,P2} is a 2-tuple

5: Save {Pi
1,P

i
2} in P;

6: end for
7: while P.size()> 1 do
8: for all {Pi

1,P
i
2} ∈ P do

9: for j ← 1, · · · , T do
10: MaskUpdate(Pi

1,P
i
2); � Algorithm 2

11: end for
12: Get the number of EPE violations;

13: end for
14: Remove half of solutions with larger EPE violations;

15: end while
16: return the remaining {P1,P2};

Output Optimized 
Masks

Discrete Layout 
Optimization

Numerical Layout 
Optimization

Grid Construction

SDP

Pruning

Initialization

 Gradient-based Mask 
Update

Violation Detection

Y

N

converge?

Input Cell Layout

Fig. 8: Overall flow to solve LDMO problem.

optimization. The solutions returned by SDP will be numerically

optimized until a pair of masks with highest quality is selected,

which will be further optimized by numerical optimization flow. The

overall flow is presented in Fig. 8.

IV. EXPERIMENTAL RESULTS

We implement our algorithms with MATLAB on an Intel Core 2.6

GHz Linux machine with 48 GB RAM. To solve SDP we use CVX,

a package for specifying and solving convex programs [29]. We use

an open source lithography simulator and EPE checker [30], where

the intensity threshold is set to 0.039. The EPE violation threshold

value is set to 10nm, which is more strict than the 15nm used in

[30]. The experiments are conducted using NanGate, an open-source

standard cell library [31]. We test the proposed unified framework on

contact layers where stitches are forbidden. Fig. 9 gives an example

of our output masks and the printed images for cell OR2_X1. We

implement a layout decomposition engine, where branch-&-bound

methodology is applied to search for all legal coloring solutions. In

layout decomposition, the coloring distance is set to 110nm, so all

contact layers are double patterning friendly. We obtain a modified

binary of mask optimization engine [23], where only EPE violation

is optimized while the process variation (PV) band is ignored.

In the first experiment, we compare the proposed framework with

an exhaustive optimization flow, where all legal layout decompo-

sition solutions are enumerated, and all the solutions are fed into

the mask optimization engine [23]. The results of the exhaustive

optimization are shown in the merged column “ENUM + [23]”

of TABLE II. The column “#LD” represents the total number of

Mask 2

Target LDMO Output Printed Image

Mask 1

Fig. 9: Example of our layout decomposition and mask optimization

on cell OR2_X1.

enumerated layout decomposition solutions. Considering that it will

take extremely long time if we run mask optimization on all layout

decomposition solutions, we set an upper bound of runtime, which

is 36000 seconds (i.e., 10 hours). The column “#Complete” lists

the total number of solutions that have been finished within the

runtime limit. Then we can obtain the best decomposed layout with

the least EPE violations. The columns “#EPEV” and “RT (s)” list the

best EPE violation number and the total mask optimization runtime

in seconds. Note that compared to expensive mask optimization,

the runtime of layout decomposition is usually ignorable. The

corresponding results of our unified framework are shown in the

merged column “Ours”. From the table we can see that, compared

with the exhaustive optimization flow, our unified framework can

effectively reduce the EPE violations number by 15%, meanwhile it

can achieve more than 17× speed-up on average.

In order to avoid the unrealistic runtime cost of the exhaustive

optimization, heuristic selection methods were proposed in previous

work by Yu et al. [15] and Chen et al. [16]. In the second

experiment, we use these two strategies to select from the exhaustive

layout decomposition solutions, and feed the selected solutions to

mask optimization engine of [23]. Then we compare the quality of

corresponding printed patterns with ours. The corresponding results

are shown in merged columns “ [15] + [23]” and “ [16] + [23]”

in TABLE II. Here columns “#EPEV” and “RT (s)” represent the

EPE violation number and the runtime of mask optimization on the

selected layout decomposition solutions. From the table we can see

that our proposed framework can achieve around 65% and 66% EPE

violation reduction compared to the heuristic selection in [15] and

[16], respectively. The experimental results show that the density

based layout decomposition strategy may not promise an optimal

printed image quality after mask optimization.

For comprehensive comparison among the three flows listed

in TABLE II, we plot the distribution of EPE violations of all

enumerated solutions of a cell according to the results of “ENUM+

[23]” (see Fig. 10). We can find that different solutions of layout

decomposition result in diverse EPE cost after mask optimization.

The solution obtained by different methods are marked in the figure.

It can also be seen that among all the potential solutions, most

coloring solutions are actually sub-optimal, while methods proposed

in [15] and [16] do not select the optimal ones which correspond

to the leftmost bar in each chart. Take Fig. 10(a) as an example.

There are 22 DPLD solutions, while the number of EPE violations

of these solutions ranges from 1 to 9, among which half of the

solutions have 5 EPE violations, including the solutions selected

by methods proposed in [15] and [16]. The masks generated by

our method can achieve only 1 EPE violation, which is the same

as the optimal solution of two-stage exhaustive optimization. From

Fig. 10(c), we can see that the quality of the masks obtained by
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TABLE II: Comparison between previous flow and unified flow.

Cell
ENUM + [23] [15] + [23] [16] + [23] Ours

#LD #Complete #EPEV RT (s) #EPEV RT (s) #EPEV RT (s) #EPEV RT (s)

INV_X1 10 10 1 11814 1 1183 1 1183 1 1995

NOR2_X1 18 18 2 25117 4 1405 8 1421 1 1996

BUF_X1 22 22 1 23072 5 1068 5 867 1 1990

CLKBUF_X1 30 30 1 30486 1 737 1 1046 0 1996

OAI211_X1 34 34 3 >36000 7 1207 5 1213 6 1996

AOI211_X1 42 31 3 >36000 8 1080 5 1048 1 1989

AND2_X1 52 23 3 >36000 13 1061 13 1080 1 1993

OR2_X1 82 33 0 >36000 3 1220 7 1046 0 1997

NAND4_X1 86 31 3 >36000 6 1176 5 1173 1 1997

NAND3_X2 252 35 6 >36000 8 774 7 1171 3 1998

OR4_X1 1282 33 1 >36000 2 1233 5 1188 0 1987

NOR3_X2 3016 37 3 >36000 4 1168 5 773 7 1999

OAI33_X1 6178 40 4 >36000 10 922 11 1017 6 1998

Average 2.55 >34595.35 6.09 1058.73 6.27 1056.55 2.15 1994.62

Ratio 1.18 >17.35 2.83 0.53 2.91 0.53 1.00 1.00
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Fig. 10: (a) Distribution of #EPE violations of BUF_X1; (b) Dis-

tribution of #EPE violations of OR2_X1; (c) Distribution of #EPE

violations of NAND4_X1.

unified optimization can even outperform all the solutions obtained

by conventional two-stage flow.

Fig. 11 demonstrates the convergence of the EPE violation

number. Since the optimization process will not get stuck in local

optimum as it will jump out, it can be seen that the number of EPE
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Fig. 11: Convergence of #EPE violations.

(a) (b) (c)

Fig. 12: Printed image of cell BUF_X1; (a) [15] + [23], #EPEV=5;

(b) [16] + [23], #EPEV=5; (c) Ours, #EPEV=1.

violations goes up on some iterations. Eventually, it will converge

to a solution with fewer EPE violations.

Examples of printed image of the contact layer of standard cells

are given in Figs. 12, 13 and 14 in which the EPE violations are

marked with red cross on the pattern. It can be seen more explicitly

that the proposed algorithm can find masks with higher quality,

which have fewer EPE violations on printed image.

V. CONCLUSION

In this paper we have proposed a unified framework solving

LDMO problem. In this framework, we designed two collaborative

flows for optimization: a gradient based numerical optimization,

as well as a set of discrete optimizations to jump out local opti-

mum. The experimental results show that our proposed framework

outperforms conventional flow in terms of both runtime and EPE
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(a) (b) (c)

Fig. 13: Printed image of cell OR2_X1; (a) [15] + [23], #EPEV=3;

(b) [16] + [23], #EPEV=7; (c) Ours, #EPEV=0.

(a) (b) (c)

Fig. 14: Printed image of cell NAND4_X1; (a) [15] + [23],

#EPEV=6; (b) [16] + [23], #EPEV=5; (c) Ours, #EPEV=1.

violation number. Note that our framework is general and it can

be extended for handling triple or quadruple patterning lithography

coloring rules, as well as other mask optimization targets, such as

PV band minimization.
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