
Stitch Aware Detailed Placement for Multiple E-Beam Lithography

Yibo Lin1, Bei Yu2, Yi Zou1,3, Zhuo Li4, Charles J. Alpert4, and David Z. Pan1

1ECE Department, University of Texas at Austin, Austin, TX, USA
2CSE Department, The Chinese University of Hong Kong, NT, Hong Kong

3College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
4Cadence Design Systems, Inc., Austin, TX, USA

ABSTRACT

As a promising candidate for next generation lithography,

multiple e-beam lithography (MEBL) is able to improve man-

ufacturing throughput using parallel beam printing. In MEBL,

a layout is split into stripes and the layout patterns are cut by

stripe boundaries, then all the stripes are printed in parallel. If a

via pattern or a vertical long wire is overlapping with a stitch, it

may suffer from poor printing quality due to the so called stitch
error; then the circuit performance may be degraded. In this

paper, we propose a comprehensive study on the stitch aware

detailed placement to simultaneously minimize the stitch error

and optimize traditional objectives, e.g., wirelength and den-

sity. Experimental results show that our algorithms are very ef-

fective on modified ICCAD 2014 benchmarks that zero stitch

error is guaranteed while the scaled half-perimeter wirelength

is very comparable to a state-of-the-art detailed placer.

I. INTRODUCTIONS

Due to the capability of accurate pattern generation, e-beam

lithography (EBL) is a promising candidate for next genera-

tion lithography technologies for sub-14nm nodes, along with

other techniques such as extreme ultra violet (EUV) and di-

rected self-assembly (DSA) [1]. However, low throughput

is still the bottleneck of an EBL system. Recently, an ex-

tended EBL technique, multiple e-beam lithography (MEBL),

is proposed to improve manufacturing throughput using paral-

lel beam printing [2]. MEBL system utilizes thousands of par-

allel beams to write multiple layout patterns simultaneously.

Industry has already explored different MEBL implementa-

tions and has demonstrated promising performance in terms of

both lithography accuracy and throughput [3, 4].

In MEBL manufacturing process, a layout is split into

stripes, and the boundary between two touching stripes is de-

fined as a stitch line. Each stripe has width of 50∼200 microns,

and different stripes are printed simultaneously through differ-

ent electron beams. Although the parallel writing scheme can

dramatically improve the system throughput, it also introduces

serious printability issues. That is, each stitch can introduce so

called stitch error, in an area with width around 15nm [3]. If

a pattern is overlapping with a stitch, it may suffer from poor

printing quality due to the stitch error. Therefore, if not care-

fully designed, due to the shape distortion, an MEBL system

may confront yield issue or even functional error.

We observe very significant shape distortions on via patterns

and long vertical wires. Fig. 1 shows two SEM images of shape

Stitching Regions

(a)

Stitching Regions

(b)

Fig. 1. SEM images of stitch error for (a) via layer and (b) metal layer vertical

wires.

distortion on via layer and metal layer, respectively. In Fig. 1(a)

we can see that all vias are very regular inside the beam stripes.

However, at the stripe boundaries, the vias suffer from obvious

distortions and irregular shrinking. In Fig. 1(b) we can see that

the vertical wires are malformed in the stitch regions. Simi-

lar observations were also reported by Fang et al. [5] that the

vertical wires are more susceptible to stitch errors than the hor-

izontal wires.

There are several methods to minimize the impacts of stitch

errors from lithography perspective, e.g., avoiding dividing a

critical pattern into adjacent sub-fields [6], using different field

sizes [7], or reducing the field size [8]. Recently, Fang et al. [5]

considered the stitch error during detailed routing stage. How-

ever, detailed routing is a very late stage in physical design

flow, thus there may exist some stitch errors difficult to be re-

moved. For instance, stitch errors from vias dropped on pins of

a standard cell cannot be optimized during routing stage.

In this work we propose a comprehensive study to consider

the stitch error removal in detailed placement. We can di-

rectly optimize the positions of both vias and intra-cell vertical

wires. In addition, we consider local congestion, thus a router

(e.g. [5]) has more routing options to effectively remove stitch

errors in higher metal layers. Fig. 2 shows a placement exam-

ple with three gates, where the density of vertical metal1 seg-

ments varies from cell to cell. Some cells are more susceptible

to stitch errors as they have vertical wire segments distributed

at every site, while other cells have more space to avoid stitch

errors. The comparison between Fig. 2(a) and Fig. 2(b) shows

that it is possible to smartly avoid stitch errors with small cell

movement.

To the best of our knowledge, this is the first work taking

stitch errors into consideration in placement stage. Our contri-

butions are summarized as follows.

• We propose a comprehensive detailed placement study to

978-1-4673-9569-4/16/$31.00 ©2016 IEEE

2C-3

186

(a)

(b)

Fig. 2. An example of (a) stitch errors in placement and (b) e-beam friendly

placement.

simultaneously minimize the stitch error and optimize tra-

ditional objectives, e.g., wirelength and density.

• We develop a swap-based detailed placement engine with

an optimal stitch aware single row placement.

• We present an O(nM) pruning technique to speed-up the

single row problem, where n and M are number of cells

in a row and maximum displacement respectively. Our

pruning technique is very generic that it is applicable to

conventional placement and other applications.

The rest of this paper is as follows. Section II introduces

the stitch constraints and the problem formulation. Section III

explains the optimization algorithms in detail. Section IV lists

the experimental results, followed by conclusion in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In an MEBL system, stitch lines repeat periodically with

equal intervals. If a standard cell is not carefully placed and

overlaps with one stitch line, it may suffer from stitch error. In

this work we consider three kinds of possible stitch errors, as

follows. (1) Stitch over via: if a via is cut by a stitch line, it can

lead to potential disconnection. (2) Vertical routing: a vertical

routing segment suffers more from stitch lines than horizon-

tal lines. (3) Short polygon: short horizontal routing segment

with vias may also result in problem.

To accurately capture a stitch error, we partition each cell

into sites with width equal to the poly pitch. Since some intra-

cell segments or vias are very susceptible to stitches, we note

those sites covered by these segments/vias as dangerous sites.

For example, Fig. 3 shows the dangerous sites of cell BUF X8.

Note that for simplicity, here only intra-cell segments are illus-

trated. A stitch error happens iff one dangerous site overlaps

with an MEBL system stitch line.

This work adopts scaled half-perimeter wirelength (sHPWL)

from ICCAD 2013 placement contest, defined as follows.

sHPWL = HPWL× (1 + α× PABU) (1)

where α is set to 1, and HPWL denotes half-perimeter wire-

length. PABU represents ABU penalty to evaluate the place-

Dangerous Sites

Fig. 3. An example of cell BUF X8, where dangerous sites are labeled as red.

Initial Placement

Zero Stitch
Errors? Stitch Aware Global Swap

Stitch Aware
Single Row Placement

Output Placement

N

Y

Fig. 4. Overall flow of our stitch aware detailed placement.

ment congestion. Please refer to [9] for more details regarding

the PABU calculation.

Problem 1 (Stitch Aware Detailed Placement). Given an initial
detailed placement with the information of dangerous sites for
each standard cell, we seek a legal placement to minimize the
stitch errors and the sHPWL, simultaneously.

III. DETAILED PLACEMENT ALGORITHMS

In this section we describe the details of our placement al-

gorithms. As shown in Fig. 4, our framework mainly consists

of two stages. In the first stage, single row based approach

is applied to optimize wirelength and stitch errors optimally.

If all stitch errors are removed successfully by this stage, we

directly output placement solutions. Otherwise, in the second

stage, cell swapping and movement are introduced to improve

both wirelength and congestion. Note that the stitch error is

considered through the whole flow.

A. Single Row Placement

As a powerful approach in detailed placement, single row

based placement is widely studied in both conventional place-

ment [10–12] and lithography aware application, such as triple

patterning lithography (TPL) compliance [13–15]. If there are

fixed macros in the layout, conventional single row algorithms

(e.g. Abacus [12]) divide a row into several sub-rows. How-

ever, this strategy is not suitable for MEBL application, as the

stitch lines are soft constraints rather than hard constraints. In

TPL compliance, the main challenge lies in the distance be-

tween abutting cells, while the stitch errors in MEBL are not

related to neighboring cells. In addition, in the single row al-

gorithm proposed by [13], a graph based approach is applied

to find optimal solution in O(mnK). Here m is the site num-

ber in the row, n is the cell number, and K is the number of

pre-coloring solutions for each cell. Usually m is a very large

2C-3

187

TABLE I

NOTATIONS USED IN SINGLE ROW PLACEMENT

M Maximum displacement for a cell.

p0i Initial position of Cell ci.
pi The position of Cell ci, p

0
i −M ≤ pi ≤ p0i +M .

αi(pi) solution of c1 to ci in which ci is placed at pi.
ti(pi) The cost of best placement solution from c1 to ci in

which ci is placed at pi.
γi(pi) The position of ci−1 in the optimal solution of c1 to ci−1

in which ci is at pi.
ri(pi) Whether the solution corresponding to ti(pi) is inferior

or not.

costi(pi) The cost of ci when it is placed to pi.
wi Width of Cell ci.

−M

1−M

M − 1

M

−M −M −M

1−M 1−M 1−M

M − 1 M − 1 M − 1

M M M

c1c1 cici ci+1ci+1 cncn

ss tt

Fig. 5. Single row placement algorithm.

number, thus this algorithm may suffer from runtime for large

size circuits.

In this paper we adapt a dynamic programming based al-

gorithm [16] to solve single row detailed placement. Differ-

ent from other techniques (e.g. [12]), it can naturally han-

dle both hard constraints (fixed macros) and soft constraints

(stitch errors). Each cell is associated with a movable range,

which is usually a finite site candidates. The dynamic program-

ming scheme is able to achieve optimal solution for combined

cost functions, such as movement, wirelength and stitch errors.

Note that comparing with [16], we significantly improve the

runtime complexity while still maintaining the optimality.

For convenience, Table I lists some definitions used in the

single row placement. The algorithm for single row placement

is explained with a graph in Fig. 5. All candidate displacement

values of a cell is listed as a column of nodes. There is an edge

between two nodes if they can reach their displacement values

without overlap. For example, the maximum displacement for

cell ci is M , so the displacement range for ci is from −M to

M , the value of which is marked in the node. Each edge also

contains a cost according to Eqn. (2). Two additional nodes, s
and t, are inserted to the graph. The problem is stated as finding

the path with lowest cost from node s to node t, which can be

solved with dynamic programming.

The costi(pi) function in the experiments is as follows,

costi(pi) = τ ·WL(pi) + φ ·MOV (pi) + ν · SP (pi),

SP (pi) =

{
0, no stitch,

large number, generate a stitch error,

(2)

where WL denotes wirelength cost, MOV denotes movement,

and SP denotes stitch error penalty. SP is set to a very large

number when a stitch error is generated, e.g., half-perimeter of

the layout. In our experiments, τ , φ, and ν are set to 10, 1, and

1. In legalization step, we simply set τ and ν to zero.

Given an ordered sequence of cells S, to calculate wirelength

cost for cell ci, we need to fix the positions for all other cells.

The wirelength cost is determined by the bounding boxes of

nets. But if cell ci has connection to any cell in S, the wire-

length cost for cell ci cannot be determined since cells in S are

not fixed. To handle this, we introduce the wirelength model

in [17] which ensures the wirelength cost for cell ci is indepen-

dent to other cells in S, while the optimality of the solutions are

maintained. It turns out that this wirelength model is equivalent

to HPWL.

We can see that function costi(pi) is quite flexible, since we

can include movement, wirelength and stitch errors. For hard

constraints like fixed macros, we only need to set its maximum

displacement M to zero. For soft constraints like stitch lines,

additional cost is applied if a cell has overlap with them.

Lemma 1. Algorithm shown in Fig. 5 is optimal for cost func-
tion in Eqn. (2).

The proof is similar to that in [16], and is omitted here for

brevity. The basic idea is that the optimal placement solution

can be found through a shortest path from s to t, and all the po-

sitions of cells can be derived from the displacement values of

corresponding nodes. Since the constructed graph is a directed

acyclic graph, the shortest path can be calculated using topo-

logical traversal in O(nM2) steps, where n is the cell number

in the row, and M is the maximum displacement for each cell.

B. An O(nM) Pruning Algorithm

The runtime complexity of the above single row placement

is O(nM2). When M is very large, the runtime becomes un-

acceptable. Here we propose a set of pruning techniques to

achieve further speedup, while still keeping the optimality. In

addition, we can theoretically prove that the runtime complex-

ity can be improved from O(nM2) to O(nM).

Algorithm 1 Single Row Placement with Pruning

Require: A set of ordered cells c1 to cn of a row.

Ensure: All the cells in the set are placed subjecting to optimal objective func-

tion

1: t1(p1) ← cost1(p1), p1 ∈ [p01 −M,p01 +M];
2: ti(pi) ← ∞, i ← 2 to n, pi ∈ [p0i −M,p0i +M];
3: ri(pi) ← 0, i ← 1 to n, pi ∈ [p0i −M,p0i +M];
4: for each ci, i ← 2 to n do
5: N ← p0i−1 −M ;

6: for each pi ∈ [p0i −M,p0i +M] do
7: for each pi−1 ∈ [N, p0i−1 +M] do
8: if ri−1(pi−1) = 0 then
9: cost ← ti−1(pi−1) + costi(pi);

10: if cost < ti(pi) then
11: ti(pi) ← cost;
12: γi(pi) ← pi−1;

13: N ← pi−1;

14: else
15: break;

16: Check inferior solutions and mark their ri(pi) to 1;

17: costmin ← ∞;

18: for pn ∈ [p0n −M,p0n +M] do
19: if tn(pn) < costmin then
20: costmin ← tn(pn);
21: Pn ← pn;

22: for i ← n down to 2 do
23: Pi−1 ← γi(pi);

2C-3

188

The details of our O(nM) implementation is shown in Algo-

rithm 1. The main difference between the problems in [13, 16]

and our problem lies in the cost function. That is, the cost

functions for a cell in the former problems depend on other

cells, such as the distance or coloring cost between two abut-

ting cells, while the cost defined in Eqn. (2) is only related to

the cell itself; i.e., it is independent to any other cell. Due to

the independence in the cost function, we can minimize the to-

tal cost with O(nM) time complexity. Our speedup technique

is generic that it can also be applied into conventional detailed

placement and legalization with an objective like wirelength or

movement.

Lemma 2. Comparing two solutions αi(pi) and αi(qi), if
ti(pi) ≥ ti(qi) and pi ≥ qi, then αi(pi) is inferior to αi(qi)

Proof. Suppose cell ci has two candidate positions pi and qi,
where pi ≥ qi and ti(pi) ≥ ti(qi). Now consider any candidate

position pi+1 for cell ci+1. If cell ci can be placed at pi without

overlapping with cell ci+1, then qi is also a legal position for

cell ci. We can always move cell ci from pi to qi for better

cost, because the total cost at cell ci+1 is the minimum value

of ti(pi) + costi+1(pi+1). Therefore, solution αi(qi) is better

than αi(pi).

Lemma 2 corresponds to line 8 and line 20 in Algorithm 1

where all inferior solutions are marked and skipped in the for

loop. It implies that ti(pi) < ti(qi) when pi > qi.
If pi−1 introduces overlaps between cell ci−1 and ci, the cost

is assigned to infinity. After skipping all inferior solutions, one

should also note that in line 10, the condition cost < ti(pi) is

always satisfied when no overlapping occurs. The reason lies in

that ti−1(pi−1) is decreasing w.r.t pi−1 according to Lemma 2

and costi(pi) does not change in the for loop from line 7 to 18.

So the else condition in line 14 only happens when pi−1 results

in overlaps, and we can break the loop under such a condition.

Lemma 3. Let p∗i−1 be the optimal position of cell ci−1 when
cell ci is placed at pi, and q∗i−1 be the optimal position of cell
ci−1 when cell ci is placed at qi. If qi ≥ pi, then q∗i−1 ≥ p∗i−1.

Proof. For a legal position pi of cell ci, to minimize ti(pi), we

need to find the smallest ti−1(pi−1) for all possible pi−1, be-

cause costi(pi) has been determined by pi. Let Pi−1 be the set

of all legal values of pi−1 and Qi−1 denote all possible values

of qi−1. Suppose p∗i−1 is the best position for cell ci−1 when ci
is placed at pi and q∗i−1 is the best position for cell ci−1 when

ci is placed at qi. Pi−1 and Qi−1 should share the same left

boundary l. Let P r
i−1 be the right boundary of set Pi−1 and

Qr
i−1 be the right boundary of set Qi−1. P r

i−1 is no larger than

Qr
i−1, as qi ≥ pi. In other words, we have Pi−1 ⊆ Qi−1. The

relationship can be rewritten as,

Pi−1 = {pi−1| l ≤ pi−1 ≤ P r
i−1, pi−1 ∈ Z},

Qi−1 = {qi−1| l ≤ qi−1 ≤ Qr
i−1, qi−1 ∈ Z},

P r
i−1 ≤ Qr

i−1.

If q∗i−1 lies in the range between l and P r
i−1, it must be equal

to p∗i−1; otherwise, it is equal to some value between P r
i−1 and

Qr
i−1. Hence, q∗i−1 ≥ p∗i−1.

Lemma 3 corresponds to line 5, 7 and 13 in Algorithm 1.

After computing the optimal solution for cell ci at position pi =
q, We can start pi−1 from N (line 5 of Algorithm 1) instead of

p0i−1 −M to find an optimal solution for a value pi > q.

The above analysis guarantees the optimality of Algorithm 1.

Compared with previous O(M2) algorithms in [13, 16], Algo-

rithm 1 changes the complexity of the local search (from line

6 to line 19) to O(M). Line 20 also takes O(M) time to mark

all inferior solutions. The runtime complexity of Algorithm 1

is O(nM).
It should be noted that our pruning algorithm is flexible to

any cost function costi(pi) as long as it only depends on pi
itself. That is, it can be applied to speed-up the conventional

single row detailed placement problems [10–12].

C. Stitch Aware Global Swap

In this step, the main objective is to optimize regions that

contain cells involved in stitch errors. After the optimization

of single row placement, most stitch errors have been resolved.

The remaining ones usually appear in highly congested place-

ment bins. Therefore, we only try to move cells in such bins to

alleviate the congestion and meanwhile reduce wirelength.

Due to the congestion of these regions, it is difficult to re-

solve them with local perturbation such as reordering or slid-

ing window. Thus global swap [17, 18] is adopted where cells

are allowed to move anywhere within the displacement con-

straints. Generalized swap not only enables swapping with

cells but also white spaces, which integrates both swapping and

moving strategies. The basic procedure for cell swap is itera-

tively repeating the following three steps: (1) Select a source

cell to swap; (2) Identify optimal region for source cell; (3)

Find the best cell or white space to swap with the source cell in

the optimal region.

In our implementation, we set the score function for swap as

follows,

score(ci, cj) = ΔsHPWL− λ · Pds − μ · Pov, (3)

where ΔsHPWL indicates sHPWL improvement, Pds indi-

cates the penalty for density increase of dangerous sites, and

Pov is overlap penalty. Suppose cell ci is in bin Bi and cell

cj belongs to bin Bj . The area of both bins is Ab. We define

the density of dangerous sites as the number of dangerous sites

over total amount of available sites in a bin. If a bin has overlap

with any stitch line, we account only 70% of its total sites as

available. Let Dds(i) denote the density of dangerous sites in

bin Bi before swap and D′
ds(i) denote the density of danger-

ous sites in bin Bi after swap. Then we can define Pds with the

following equation,

Pds = max(0, |D′
ds(i)−D′

ds(j)|−|Dds(i)−Dds(j)|)·Ab (4)

The overlap penalty is the area difference between the source

cell and target cell or white space. If the target white space is

larger than the source cell, overlap penalty is zero. To achieve

an equivalent numeric scale to wirelength cost, Pds and Pov

are divided by site half-perimeter in the implementation. In

this way, all the costs have the same unit as distance. λ and μ
are set to 100. Only swapping attempt with best positive scores

is accepted.

2C-3

189

The scoring scheme proposed in Eqn. (3) aims for balanc-

ing the density of cells and dangerous sites while improving

wirelength. Although the penalty from ABU density is able to

handle global density distribution, local control is necessary to

avoid extremely dense regions. Furthermore, it is easier for a

congested region with very few dangerous sites to find a stitch-

error-free solution than that with a lot of dangerous sites. Thus

we introduce Pds as the additional penalty for such kind of

regions. Since row-based legalization engine is applied, the

height of bins for Pds is set to row height.

Overlap penalty is introduced to control the efforts during

legalization. High legalization efforts will incur large displace-

ment for some cells and thereby large wirelength degradation.

Hence, after every 5000 swaps, legalization algorithm will be

performed to remove overlaps. Legalization algorithm is based

on single-row placement (Section A) with minimum movement

as an objective.

We observe that the runtime for global swap is highly re-

lated to the complexity of score function. Considering that

wirelength is included in the calculation, it will be very slow

to query the bounding box of large nets. Thus we develop a

data structure in which pins of a net are stored as an ordered

sequence according to pin positions. Cells in a row is kept in a

linked-list [18] for fast cell swap and movement.

Usually a cell is connected to limited number of nets, thus

its degree can be treated as constant. Using the data struc-

tures above, it only takes constant time to query the bounding

box and O(log e) to update cell position in a net with e pins.

Since score calculation happens much more frequent than ac-

tual cell swap or movement, faster score calculation helps to

reduce overall runtime. Let k be the number of swapping can-

didates for a cell ci, we can achieve O(k) time complexity for

score calculation and O(log emax) for cell position update if a

swap or movement is accepted, where emax is the maximum e
of nets connected to cell ci.

IV. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++ and tested on a

3.40 GHz Linux machine with 32 GB memory. Since tra-

ditional academic placement benchmark suites has no intra-

cell wire information, we integrated the NanGate 15nm stan-

dard cell library [19] into ICCAD 2014 placement benchmarks

[9]. ICCAD 2014 placement contest defines two maximum

displacement values for each benchmark, and we choose the

smaller ones for less perturbation to the original placements.

We applied a state-of-the-art detailed placer, RippleDp [20],

to generate the initial placement solutions. We scaled the bin

dimensions for ABU density analysis from the ICCAD 2014

benchmarks, so most generated test cases match to the number

of bins in the original ones. We pre-computed dangerous sites

for all standard cells in the library, which was served as input

to our placer. We set the stripe width of each single beam to

50μm.

The metrics of the new benchmarks are shown in Table II,

where columns “#cells” and “#nets” list the total cell number

and net number, respectively. Besides, columns “#blk”, “dt”
and “Disp.” represent the blockage (fixed macro) number, the

target density, and the maximum displacement in um. Note

TABLE II

BENCHMARKS FOR STITCH AWARE PLACEMENT

Design #cells #nets #blk Density dt Disp.

vga lcd 165K 165K 0 68.94% 70% 10

b19 219K 219K 0 44.85% 70% 20

leon3mp 649K 649K 0 72.02% 75% 30

leon2 794K 795K 0 84.19% 90% 40

mgc edit dist 131K 133K 13 67.26% 70% 30

mgc matrix mult 155K 159K 16 59.31% 65% 30

netcard 959K 961K 12 66.29% 70% 50

that test cases mgc edit dist, mgc matrix mul and netcard con-

tain mixed-sized cells.

Table III lists the performance of our placer at different

optimization stages. The initial placement solutions (column

“Init.”) are generated by a traditional detailed placer, RippleDp

[20], which aims at minimizing wirelength. As the state-of-

the-art detailed placer, RippleDp can produce very high quality

placement solutions in terms of both HPWL and sHPWL. Here

we set displacement constraint to be a very large number so

that RippleDp can produce converged results. Column “SR”

stands for single row placement, while column “Full Flow”

denotes the whole flow combining global swap and single row

placement. To evaluate the effectiveness of our algorithms, fol-

lowing metrics are introduced. HPWL stands for half perime-

ter wirelength which is used as a metric for wirelength. ST#
represents the number of cells that contains stitch errors. It

is measured by how many dangerous sites are covered by the

beam boundaries. Placement solutions with high congestion

are not desired, so we introduce sHPWL as discussed in Sec-

tion II. When measuring Runtime, which is the CPU run time

in seconds, single thread is applied for consistency of results.

From Table III we can see that, with certain displacement

constraints, the proposed single row placement can achieve

very good efficacy in stitch error cancellation. That is, 99.9%

of the initial stitch errors are removed. Meanwhile, an average

of 0.19% HPWL improvement and slight sHPWL increase are

observed. However, for some corner cases, such as leon2 and

netcard, the single row placement is not powerful enough due

to the movement constraints from blockages or congestions.

Therefore, global swap is introduced as a follow-up optimiza-

tion step, and the corresponding results are shown in the last

column. We can see that swapping cells between rows im-

proves congestion in dense regions and optimize wirelength.

By applying global swap together with single row algorithm,

we are able to achieve zero stitch errors for all test cases. As

only small number of bins are considered for global swap, the

runtime overhead can be neglected. Small changes in HPWL

and sHPWL also indicate that the algorithm produces little per-

turbation to initial placement.

It should be noted that the runtime of single row placement in

Table III for case netcard is very close to that of leon2, while

the former has much larger cell number. The reason lies in

those blockages in netcard. That is, the runtime of single row

placement is not only related to the number of cells, but also the

amount of maximum displacement. Blockages have zero max-

imum displacement. So during the propagation of candidate

solutions in the dynamic programming process, many infeasi-

ble solutions are automatically pruned. Therefore, the solution

space has been significantly reduced and as a consequence, the

2C-3

190

TABLE III

RESULT COMPARISON AMONG DIFFERENT APPROACHES.

Design

Init. SR Full Flow

HPWL sHPWL ST ΔHPWL ΔsHPWL ST Runtime ΔHPWL ΔsHPWL ST Runtime

(×106) (×106) # (%) (%) # (s) (%) (%) # (s)

vga lcd 1.42 1.87 1266 -0.28 +0.36 0 7.70 -0.28 +0.36 0 7.74

b19 0.97 1.14 1435 -0.25 -0.00 0 10.54 -0.25 -0.00 0 10.74

leon3mp 5.34 6.84 6474 -0.32 -0.14 0 33.36 -0.32 -0.14 0 33.59

leon2 13.09 14.49 8172 -0.09 +0.12 1 42.24 -0.10 +0.11 0 49.90

med 1.52 1.88 864 -0.14 +0.18 0 6.05 -0.14 +0.18 0 6.11

mmm 0.91 1.13 1117 -0.17 -0.13 0 7.22 -0.17 -0.13 0 7.28

netcard 14.57 20.19 7789 -0.11 +0.06 21 44.68 -0.10 +0.08 0 50.02

avg. 5.40 6.79 3873 -0.19 +0.06 3 21.68 -0.19 +0.07 0 23.62

ratio - - 1 - - 0.001 1.00 - - 0 1.09

Fig. 6. Comparison on algorithm scalability.

best solution is found in shorter time.

Fig. 6 compares the runtime difference for variant amounts

of cells in a row between whether applying pruning techniques

or not. The data is directly collected from benchmarks in Table

II and the runtime values of rows with the same number of

cells are averaged. We can see the runtime grows linearly with

the problem size and the difference in the slopes shows that

pruning techniques effectively drop runtime. On average, the

O(nM) pruning technique can provide around 30× speedup

without any loss of optimality.

V. CONCLUSION

This work develops the first placement framework consid-

ering e-beam stitch errors during detailed placement stage. A

linear-time single row placement algorithm is proposed with

highly-adaptable objective functions. Experimental results

show its effectiveness in stitch cancellation while maintaining

wirelength and congestion. With the collaboration of stitch

aware post-placement optimization such as [5], better manu-

factorability can be achieved. In addition, our high perfor-

mance pruning technique can be natually embedded into ex-

isting physical design flow with different metrics (e.g., wire-

length, routability, or congestion).

ACKNOWLEDGMENT

This work is supported in part by NSF and SRC. Thanks to

William Chou and Prof. F. Y. Young for the updated version of

RippleDp.

REFERENCES

[1] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with emerg-

ing nanolithography,” IEEE Transactions on CAD, vol. 32, no. 10, pp.

1453–1472, 2013.

[2] B. J. Lin, “Future of multiple-e-beam direct-write systems,” Journal of
Micro/Nanolithography, MEMS, and MOEMS (JM3), vol. 11, no. 3, pp.

033 011–1, 2012.

[3] C. Van den Berg, G. De Boer, S. Boschker, E. Hakkennes, G. Holgate,

M. Hoving, R. Jager, J. Koning, V. Kuiper, Y. Ma et al., “Scanning expo-

sures with a MAPPER multibeam system,” in Proc. of SPIE, vol. 7970,

2011.

[4] M. A. McCord, P. Petric, U. Ummethala, A. Carroll, S. Kojima, L. Grella,

S. Shriyan, C. T. Rettner, and C. F. Bevis, “REBL: design progress to-

ward 16 nm half-pitch maskless projection electron beam lithography,”

in Proc. of SPIE, vol. 832311, 2012.

[5] S.-Y. Fang, I.-J. Liu, and Y.-W. Chang, “Stitch-aware routing for multiple

e-beam lithography,” in DAC, 2013, pp. 25:1–25:6.

[6] K. Suzuki, T. Fujiwara, K. Hada, N. Hirayanagi, S. Kawata, K. Morita,

K. Okamoto, T. Okino, S. Shimizu, and T. Yahiro, “Nikon EB stepper:

its system concept and countermeasures for critical issues,” in Proc. of
SPIE, vol. 3997, 2000.

[7] D. Dougherty, R. Muller, P. Maker, and S. Forouhar, “Stitching-error re-

duction in gratings by shot-shifted electron-beam lithography,” Journal
of Lightwave Technology, vol. 19, no. 10, pp. 1527–1531, oct 2001.

[8] J. Albert, S. Theriault, F. Bilodeau, D. Johnson, K. Hill, P. Sixt, and

M. Rooks, “Minimization of phase errors in long fiber bragg grating

phase masks made using electron beam lithography,” IEEE Photonics
Technology Letters, vol. 8, no. 10, pp. 1334–1336, oct. 1996.

[9] M.-C. Kim, J. Hu, and N. Viswanathan, “ICCAD-2014 CAD contest in

incremental timing-driven placement and benchmark suite,” in ICCAD,

2014, pp. 361–366.

[10] U. Brenner and J. Vygen, “Faster optimal single-row placement with

fixed ordering,” in DATE, 2000, pp. 117–121.

[11] A. B. Kahng, I. L. Markov, and S. Reda, “On legalization of row-based

placements,” in GLSVLSI, 2004, pp. 214–219.

[12] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: fast legal-

ization of standard cell circuits with minimal movement,” in ISPD, 2008,

pp. 47–53.

[13] B. Yu, X. Xu, J.-R. Gao, and D. Z. Pan, “Methodology for standard cell

compliance and detailed placement for triple patterning lithography,” in

ICCAD, 2013, pp. 349–356.

[14] J. Kuang, W.-K. Chow, and E. F. Y. Young, “Triple patterning lithography

aware optimization for standard cell based design,” in ICCAD, 2014, pp.

108–115.

[15] T. Lin and C. Chu, “TPL-aware displacement-driven detailed placement

refinement with coloring constraints,” in ISPD, 2015, pp. 75–80.

[16] T. Taghavi, C. Alpert, A. Huber, Z. Li, G.-J. Nam, and S. Ramji, “New

placement prediction and mitigation techniques for local routing conges-

tion,” in ICCAD, 2010, pp. 621–624.

[17] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed

placement algorithm,” in ICCAD, 2005, pp. 48–55.

[18] S. Popovych, H.-H. Lai, C.-M. Wang, Y.-L. Li, W.-H. Liu, and T.-C.

Wang, “Density-aware detailed placement with instant legalization,” in

DAC, 2014, pp. 122:1–122:6.

[19] “NanGate FreePDK15 Open Cell Library,” http://www.nangate.com/

?page id=2328, 2015.

[20] W.-K. Chow, J. Kuang, X. He, W. Cai, and E. F. Young, “Cell density-

driven detailed placement with displacement constraint,” in ISPD, 2014,

pp. 3–10.

2C-3

191

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

